Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T13:51:03.416Z Has data issue: false hasContentIssue false

7 - Our Evolving Planet

From Dark Ages to Evolutionary Renaissance

from Part III - History of Life on Earth

Published online by Cambridge University Press:  05 December 2012

Chris Impey
Affiliation:
University of Arizona
Jonathan Lunine
Affiliation:
Cornell University, New York
José Funes
Affiliation:
Vatican Observatory, Vatican City
Get access

Summary

Introduction

Earth records its own history in the physical, chemical, and biological features of sedimentary rocks. In particular, the history of life is recorded by the remains of organisms buried and preserved in accumulating sediments, by physical traces of organisms’ activity in sediments (e.g. burrowing), and by chemical changes wrought by organisms (e.g. oxygen produced by land plants, algae, and cyanobacteria). The process of sediment accumulation, so essential to preservation, has biased the fossil record: organisms that lived in environments where burial was likely are relatively well represented in the geologic record, whereas organisms that lived in habitats characterized by net erosion seldom become fossils.

There is a second bias to the fossil record. The organisms most likely to be preserved as fossils are those that produce “hard parts,” mineralized skeletons or decay-resistant organic compounds such as the lignin in wood. In contrast, organisms with no readily preservable components fossilize only under exceptional circumstances, although some leave a record in the form of “trace” fossils such as tracks and burrows. Some microorganisms produce walls, spores, and extracellular envelopes that also preserve well in accumulating sediments; thus, we have a fossil record of bacteria and unicellular eukaryotes that predates the conventional record of animals and land plants. As in the case of animals and their skeletons, some microorganisms routinely produce preservable structures, whereas others never do. There are also microbial trace fossils, recorded by the influence of microbial mat communities on bedding and stromatolites, distinctive three-dimensional structures formed where large colonies of microbes influenced or controlled the formation, texture, and/or mechanical properties of sediments. In general, then, the fossil morphologies that document early life largely record microorganisms that (1) lived where burial facilitates preservation and (2) made decay-resistant organic walls or sheaths. Cyanobacteria are well represented in Proterozoic sedimentary rocks; Archaea are unknown as microfossils (e.g. Knoll 2003).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P. 2005 Redox stratification and anoxia of the early Precambrian oceans: implications for carbon isotope excursions and oxidationPrecambrian Research 137 207Google Scholar
Anbar, A. D.Knoll, A. H. 2002 Proterozoic ocean chemistry and evolution: a bioinorganic bridge?Science 297 1137CrossRefGoogle ScholarPubMed
Bartley, J. K.Kah, L. C. 2004 Marine carbon reservoir, Corg–Ccarb coupling, and the evolution of the Proterozoic carbon cycleGeology 32 129CrossRefGoogle Scholar
Berner, R. A.Beerling, D. J.Dudley, R. 2003 Phanerozoic atmospheric oxygenAnnual Reviews of Earth and Planetary Sciences 31 105CrossRefGoogle Scholar
Bernhard, J. M.Habura, A.Bowser, S. S. 2006 An endosymbiont-bearing allogromid from the Santa Barbara Basin: implications for the early diversification of foraminiferaJournal of Geophysical Research 111CrossRefGoogle Scholar
Betts, J. N.Holland, H. D. 1991 The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygenGlobal and Planetary Change 97 5CrossRefGoogle ScholarPubMed
Beukes, N. J.Klein, C. 1992 Models for iron-formation depositionThe Proterozoic BiosphereSchopf, J. W.Klein, C.CambridgeCambridge University Press147Google Scholar
Bogdanova, S.Pisarevsky, S.Li, Z. 2009 Assembly and breakup of Rodinia (some results of IGCP Project 440)Stratigraphy and Geological Correlation 17 259CrossRefGoogle Scholar
Brocks, J. J.Love, G. D.Summons, R. E. 2005 Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic seaNature 437 866CrossRefGoogle Scholar
Broecker, W. S.Peng, T.-H. 1982 Tracers in the SeaPalisades, NYEldigio PressGoogle Scholar
Buick, R. 2007 Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse?Geobiology 5 97CrossRefGoogle Scholar
Buick, R. 2008 When did oxygenic photosynthesis evolve?Philosophical Transactions of the Royal Society B: Biological Sciences 363 2731CrossRefGoogle ScholarPubMed
Buick, R.Des Marais, D.Knoll, A. H. 1995 Stable isotope compositions of carbonates from the Mesoproterozoic Bangemall Group, Australia: environmental variations, metamorphic effects and stratigraphic trendsChemical Geology 123 153CrossRefGoogle Scholar
Caldeira, K.Kasting, J. F. 1992 The life span of the biosphere revisitedNature 360 721CrossRefGoogle ScholarPubMed
Campbell, I. H.Squire, R. J. 2010 The mountains that triggered the late Neoproterozoic increase in oxygen: the second great oxidation eventGeochimica et Cosmochimica Acta 74 4187CrossRefGoogle Scholar
Canfield, D. E. 1998 A new model for Proterozoic ocean chemistryNature 396 450CrossRefGoogle Scholar
Canfield, D. E.Teske, A. 1996 Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studiesNature 382 27CrossRefGoogle ScholarPubMed
Canfield, D. E.Poulton, S. W.Knoll, A. H. 2008 Ferruginous conditions dominated later Neoproterozoic deep water chemistryScience 321 949CrossRefGoogle ScholarPubMed
Catling, D. C.Glein, C. R.Zahnle, K. J.McKay, C. P. 2005 Why O2 is required by complex life on habitable planets and the concept of planetary ‘Oxygenation TimeAstrobiology 5 415CrossRefGoogle ScholarPubMed
Cloud, P. 1972 A working model of the primitive EarthAmerican Journal of Science 272 537CrossRefGoogle Scholar
Cohen, P. A.Kodner, R.Knoll, A. H. 2009 Large spinose acritarchs in Ediacaran rocks as animal resting cystsProceedings of the National Academy of Sciences 106 6519CrossRefGoogle Scholar
Dahl, T. W.Hammarlund, E.Gill, B. C. 2010 Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fishProceedings of the National Academy of Sciences 107 17853CrossRefGoogle ScholarPubMed
Degnan, B. M.Verwoort, M.Larroux, C.Richards, G. S. 2009 Early evolution of Metazoan transcription factorsCurrent Opinion in Genetics and Development 19 591CrossRefGoogle ScholarPubMed
del Giorgio, P. A.Duarte, C. M. 2002 Respiration in the open oceanNature 420 379CrossRefGoogle ScholarPubMed
Diaz, R. J.Rosenberg, R. 1995 Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofaunaOceanography and Marine Biology: An Annual Review 33 245Google Scholar
Embley, T. M.Martin, W. 2006 Eukaryotic evolution, changes and challengesNature 440 623CrossRefGoogle ScholarPubMed
Farquhar, J.Bao, H. M.Thiemens, M. 2000 Atmospheric influence of Earth's earliest sulfur cycleScience 289 756CrossRefGoogle ScholarPubMed
Fennel, K.Follows, M.Falkowski, P. G. 2005 The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic oceanAmerican Journal of Science 305 526CrossRefGoogle Scholar
Fike, D. A.Grotzinger, J. P.Pratt, L. M.Summons, R. E. 2006 Oxidation of the Ediacaran oceanNature 444 744CrossRefGoogle ScholarPubMed
Frei, R.Gaucher, C.Poulton, S. W.Canfield, D. E. 2009 Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopesNature 461 250CrossRefGoogle ScholarPubMed
Gaidos, E. 2010 Lost in transition: the biogeochemical context of animal originsKey Transitions in Animal EvoluionDesalle, R.Schierwater, B.Boca Raton, FLCRC PressGoogle Scholar
Gaidos, E.Dubuc, T.Dunford, M. 2007 The Precambrian emergence of animal life: a geobiological perspectiveGeobiology 5 351CrossRefGoogle Scholar
Guo, Q.Strauss, H.Kaufman, A. J. 2009 Reconstructing Earth's surface oxidation across the Archean–Proterozoic transitionGeology 37 399CrossRefGoogle Scholar
Halverson, G. P.Hoffman, P. F.Schrag, D. P. 2005 Toward a Neoproterozoic composite carbon-isotope recordGeological Society of America Bulletin 117 1181CrossRefGoogle Scholar
Hanson, P. J.Edwards, N. T.Garten, C. T.Andrews, J. A. 2000 Separating root and soil microbial contributions to soil respiration: a review of methods and observationsBiogeochemistry 48 115CrossRefGoogle Scholar
Heap, S. R. 2010 Detecting biomarkers in exoplanetary atmospheres with terrestrial planet finderEAS Publications Series 41 517CrossRefGoogle Scholar
Hernandez-Leon, S.Ikeda, T. 2005 A global assessment of mesozooplankton respiration in the oceanJournal of Plankton Research 27 153CrossRefGoogle Scholar
Hjort, K. M.Goldberg, A. V.Tsaousis, A. D. 2010 Diversity and reductive evolution of mitochondria among microbial eukaryotesPhilosophical Transactions of the Royal Society, Series B 365 713CrossRefGoogle ScholarPubMed
Hoffman, P. F.Schrag, D. P. 2002 The Snowball Earth hypothesis: testing the limits of global changeTerra Nova 14 129CrossRefGoogle Scholar
Holland, H. D. 2006 The oxygenation of the atmosphere and oceansPhilosophical Transactions of the Royal Society, Series B 361 903CrossRefGoogle ScholarPubMed
Hurtgen, M. T.Arthur, M. A.Halverson, G. P. 2005 Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyriteGeology 33 41CrossRefGoogle Scholar
Ilyin, A. 2009 Neoproterozoic banded iron formationsLithology and Mineral Resources 44 78CrossRefGoogle Scholar
Javaux, E.Knoll, A. H.Walter, M. R. 2001 Ecological and morphological complexity in early eukaryotic ecosystemsNature 412 66CrossRefGoogle ScholarPubMed
Johnston, D. T.Wolfe-Simon, F.Pearson, A.Knoll, A. H. 2009 Anoxygenic photosynthesis modulated proterozoic oxygen and sustained Earth's middle ageProceedings of the National Academy of Sciences 106 16925CrossRefGoogle ScholarPubMed
Johnston, D. T.Poulton, S. W.Dehler, C. 2010 An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USAEarth and Planetary Science Letters 290 64CrossRefGoogle Scholar
Kasting, J. F. 1987 Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmospherePrecambrian Research 34 305CrossRefGoogle ScholarPubMed
Kasting, J. F. 1992 Proterozoic climate: the effect of changing atmospheric carbon dioxide concentrationThe Proterozoic BiosphereSchopf, J. W.Klein, C.CambridgeCambridge University Press165Google Scholar
Kasting, J. F. 2005 Methane and climate during the Precambrian eraPrecambrian Research 137 119CrossRefGoogle Scholar
Kasting, J. F.Whitmire, D. P.Reynolds, R. T. 1993 Habitable zones around main sequence starsIcarus 101 108CrossRefGoogle ScholarPubMed
Knoll, A. H. 1992 Biological and biogeochemical preludes to the Ediacaran radiationThe Origin and Early Evolution of MetazoansLipps, J.Signor, P.New YorkPlenumGoogle Scholar
Knoll, A. H. 2003 Life on a Young Planet: The First Three Billion Years of Evolution on EarthPrinceton, NJPrinceton University PressGoogle Scholar
Knoll, A. H. 2011 39
Knoll, A. H.Hayes, J. M.Kaufman, J. 1986 Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East GreenlandNature 321 832CrossRefGoogle ScholarPubMed
Knoll, A. H.Kaufman, A. J.Semikhatov, S. A. 1995 The Proterozoic carbon isotope record: Mesoproterozoic carbonates from SiberiaAmerican Journal of Science 295 823CrossRefGoogle Scholar
Knoll, A. H.Javaux, E. H.Hewitt, D.Cohen, P. 2006 Eukaryotic organisms in Proterozoic oceansPhilosophical Transactions of the Royal Society, Series B 361 1023CrossRefGoogle ScholarPubMed
Knoll, A. H.Summons, R. E.Waldbauer, J.Zumberge, J. 2007 The geological succession of primary producers in the oceansThe Evolution of Primary Producers in the SeaFalkowski, P.Knoll, A. H.Burlington: VTElsevier133CrossRefGoogle Scholar
Kump, L. R.Pavlov., A.Arthur, M. A. 2005 Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxiaGeology 33 397CrossRefGoogle Scholar
Lasaga, A. C.Ohmoto, H. 2002 The oxygen geochemical cycle: dynamics and stabilityGeochimica et Cosmochimica Acta 66 361CrossRefGoogle Scholar
Lenton, T. M.Watson, A. J. 2004 Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the NeoproterozoicGeophysical Research Letters 31CrossRefGoogle Scholar
Logan, G. A.Hayes, J. M.Hieshima, G. B.Summons, R. E. 1995 Terminal Proterozoic reorganization of biogeochemical cyclesNature 376 53CrossRefGoogle ScholarPubMed
Love, G. 2009 Fossil steroids record the appearance of Demospongiae during the Cryogenian periodNature 457 718CrossRefGoogle ScholarPubMed
Mangum, C.Van Winkle, W. 1973 Responses of aquatic invertebrates to declining oxygen conditionsAmerican Zoologist 13 529CrossRefGoogle Scholar
Martin, M. W.Grazhdankin, D. V.Bowring, S. A. 2000 Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia; implications for metazoan evolutionScience 288 841CrossRefGoogle ScholarPubMed
Martin, W.Rotte, C.Hoffmeister, M. 2003 Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first, and a tree of genomes revisitedIUBMB Life 55 193CrossRefGoogle Scholar
McDonald, A. E.Vanlerberghe, G. C.Staples, J. F. 2009 Alternative oxidase in animals: unique characteristics and taxonomic distributionJournal of Experimental Biology 212 2627CrossRefGoogle ScholarPubMed
Millero, F. J. 2005 Chemical OceanographyBoca Raton, FLCRCGoogle Scholar
Narbonne, G. M. 2004 Modular construction of early Ediacaran complex life formsScience 305 1141CrossRefGoogle ScholarPubMed
Pagani, M.Caldeira, K.Berner, R.Beerling, D. J. 2009 The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million yearsNature 460 85CrossRefGoogle Scholar
Peterson, K. J.Cotton, J. A.Gehling, J. G.Pisani, D. 2008 The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil recordsPhilosophical Transactions of the Royal Society 363 1435CrossRefGoogle ScholarPubMed
Poulton, S. W.Fralick, P. W.Canfield, D. E. 2004 The transition to a sulphidic ocean similar to 1.84 billion years agoNature 431 173CrossRefGoogle Scholar
Raich, J. W.Schlesinger, W. H. 1992 The global carbon dioxide flux in soil respiration and its relationship to vegetation and climateTellus B 44 81CrossRefGoogle Scholar
Raich, J. W.Potter, C. S.Bhagawati, D. 2002 Interannual variability in global soil respiration, 1980–94Global Change Biology 8 800CrossRefGoogle Scholar
Rivkin, R. B.Legendre, L. 2001 Biogenic carbon cycling in the upper ocean: effects of microbial respirationScience 291 2398CrossRefGoogle ScholarPubMed
Ruiz-Trillo, I.Burger, G.Holland, P. W. H. 2007 The origins of multicellularity: a multi-taxon genome initiativeTrends in Genetics 23 113CrossRefGoogle ScholarPubMed
Runnegar, B. 1982 Oxygen requirements, biology, and phylogenetic significance of the late Precambrian worm , and the evolution of the burrowing habitAlcheringa 6 223CrossRefGoogle Scholar
Sakarya, O.Armstrong, K. A.Adamska, M. 2007 A post-synaptic scaffold at the origin of the animal kingdomPLoS ONE 2CrossRefGoogle ScholarPubMed
Schlesinger, W. H. 1997 Biogeochemistry: An Analysis of Global ChangeSan Diego, CAAcademic PressGoogle Scholar
Schuchert, P. 1993 (Phylum Placozoa) has cells that react with antibodies against the neuropeptide RF amideActa Zoologica 74 115CrossRefGoogle Scholar
Scott, C.Lyons, T. W.Bekker, A. 2008 Tracing the stepwise oxygenation of the Proterozoic oceanNature 452 456CrossRefGoogle ScholarPubMed
Shen, Y.Canfield, D. E.Knoll, A. H. 2002 The chemistry of Mid-Proterozoic oceans: evidence from the McArthur Basin, Northern AustraliaAmerican Journal of Science 302 81CrossRefGoogle Scholar
Shen, Y.Knoll, A. H.Walter, M. R. 2003 Evidence for low sulphate and deep water anoxia in a Mid-Proterozoic marine basinNature 423 632CrossRefGoogle Scholar
Shields, G. A. 2007 A normalised seawater strontium isotope curve: possible implications for Neoproterozoic–Cambrian weathering rates and the further oxygenation of the EartheEarth 2 35CrossRefGoogle Scholar
Slack, J. F.Grenne, T.Bekker, A. 2007 Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, Central Arizona, USAEarth and Planetary Science Letters 255 243CrossRefGoogle Scholar
Stolper, D. A.Revsbech, N. P.Canfield, D. E. 2010 Aerobic growth at nanomolar oxygen concentrationsProceedings of the National Academy of Sciences 107 18755CrossRefGoogle ScholarPubMed
Tosca, N. J.Johnston, D. T.Mushegian, A. 2010 Clay mineralogy, organic carbon burial, and redox evolution in Proterozoic oceansGeochimica et Cosmochimica Acta 74 1579CrossRefGoogle Scholar
Vaquer-Sunyer, R.Duarte, C. M. 2008 Thresholds of hypoxia for marine biodiversityProceedings of the National Academy of Sciences 105 15452CrossRefGoogle ScholarPubMed
Veizer, J.Jansen, S. L. 1979 Basement and sedimentary recycling and continental evolutionJournal of Geology 87 341CrossRefGoogle Scholar
Wilson, J. P. 2010 Geobiology of the Paleoproterozoic Duck Creek Formation, Northwestern AustraliaPrecambrian Research 179 135CrossRefGoogle Scholar
Wohlers, J.Engel, A.Zöllner, E. 2009 Changes in biogenic carbon flow in response to sea surface warmingProceedings of the National Academy of Sciences 106 7067CrossRefGoogle ScholarPubMed
Xiao, S.Knoll, A. H. 2000 Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou Province, South ChinaJournal of Paleontology 74 767CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×