Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T16:46:54.586Z Has data issue: false hasContentIssue false

Appendix: Complete bibliography of Fred Sanger

Published online by Cambridge University Press:  05 November 2014

George G. Brownlee
Affiliation:
University of Oxford
Edwin Southern
Affiliation:
University of Oxford
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Fred Sanger - Double Nobel Laureate
A Biography
, pp. 171 - 178
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sanger, F. Determination of nucleotide sequences in DNA. Biosci. Rep. 24: 237–253 (2004).CrossRefGoogle ScholarPubMed
Sanger, F. The early days of DNA sequences. Nat. Med. 3: 267–268 (2001).CrossRefGoogle Scholar
Sanger, E, Dowding, M, eds., Selected Papers of Frederick Sanger. Singapore: World Scientific (1996).CrossRefGoogle Scholar
Sanger, F, Nicklen, S, Coulson, AR. DNA sequencing with chain-terminating inhibitors. 1977. Biotechnology 24: 104–108 (1992).Google ScholarPubMed
Sanger, F. Sequences, sequences, and sequences. Ann. Rev. Biochem. 57: 1–28 (1988).CrossRefGoogle ScholarPubMed
Daniels, DL, Sanger, F, Coulson, AR. Features of bacteriophage λ: analysis of the complete nucleotide sequence. Cold Spring Harb. Symp. Quant. Biol. 47: 1009–1024 (1983).CrossRefGoogle ScholarPubMed
Sanger, F, Coulson, AR, Hong, GF, Hill, DF, Petersen, GB. Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162: 729–773 (1982).CrossRefGoogle ScholarPubMed
Anderson, S, de Bruijn, MH, Coulson, AR, Eperon, IC, Sanger, F, Young, IG. Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156: 683–717 (1982).CrossRefGoogle ScholarPubMed
Anderson, S, Bankier, AT, Barrell, BG, de Bruijn, MHL, Coulson, AR, Drouin, J, Eperon, IC, Nierlich, DP, Roe, BA, Sanger, F, Schreier, PH, Smith, AJH, Staden, R, Young, IG. In Slonimski, PP, Borst, P, Attardi, G, eds., Mitochondrial Genes. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 5–43 (1982).Google Scholar
Sanger, F. Determination of nucleotide sequences in DNA. Science 214: 1205–1210 (1981).CrossRefGoogle ScholarPubMed
Anderson, S, Bankier, AT, Barrell, BG, de Bruijn, MH, Coulson, AR, Drouin, J, Eperon, IC, Nierlich, DP, Roe, BA, Sanger, F, Schreier, PH, Smith, AJ, Staden, R, Young, IG. Sequence and organization of the human mitochondrial genome. Nature 290: 457–465 (1981).CrossRefGoogle ScholarPubMed
Sanger, F. Determination of nucleotide sequences in DNA. Biosci. Rep. 1: 3–18 (1981).CrossRefGoogle ScholarPubMed
Sanger, F. Nobel Lecture, 1980: Determination of nucleotide sequences in DNA. In Nobel Prizes, Chemistry 1970–1980. Singapore: World Scientific, pp. 431–447 (1993).Google Scholar
Sanger, F, Coulson, AR, Barrell, BG, Smith, AJ, Roe, BA. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143: 161–178 (1980).CrossRefGoogle ScholarPubMed
Barrell, BG, Anderson, S, Bankier, AT, de Bruijn, MH, Chen, E, Coulson, AR, Drouin, J, Eperon, IC, Nierlich, DP, Roe, BA, Sanger, F, Schreier, PH, Smith, AJ, Staden, R, Young, IG. Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc. Natl Acad. Sci. USA 77: 3164–3166 (1980).CrossRefGoogle ScholarPubMed
Air, GM, Coulson, AR, Fiddes, JC, Friedmann, T, Hutchison, CA, Sanger, F, Slocombe, PM, Smith, AJ. Nucleotide sequence of the F protein coding region of bacteriophage φX174 and the amino acid sequence of its product. J. Mol. Biol. 125: 247–254 (1978).CrossRefGoogle Scholar
Sanger, F, Coulson, AR, Friedmann, T, Air, GM, Barrell, BG, Brown, NL, Fiddes, JC, Hutchison, CA, Slocombe, PM, Smith, M. The nucleotide sequence of bacteriophage φX174. J. Mol. Biol. 125: 225–246 (1978).CrossRefGoogle ScholarPubMed
Sanger, F, Coulson, AR. The use of thin acrylamide gels for DNA sequencing. FEBS Lett. 87: 107–110 (1978).Google ScholarPubMed
Sanger, F, Nicklen, S, Coulson, AR. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74: 5463–5467 (1977).CrossRefGoogle ScholarPubMed
Sanger, F, Air, GM, Barrell, BG, Brown, NL, Coulson, AR, Fiddes, CA, Hutchison, CA, Slocombe, PM, Smith, M. Nucleotide sequence of bacteriophage φX174 DNA. Nature 265: 687–695 (1977).CrossRefGoogle Scholar
Smith, M, Brown, NL, Air, GM, Barrell, BG, Coulson, AR, Hutchison, CA, Sanger, F. DNA sequence at the C termini of the overlapping genes A and B in bacteriophage φX174. Nature 265: 702–705 (1977).CrossRefGoogle Scholar
Air, GM, Sanger, F, Coulson, AR. Nucleotide and amino acid sequences of gene G of φX174. J. Mol. Biol. 108: 519–533 (1976).CrossRefGoogle Scholar
Air, GM, Blackburn, EH, Coulson, AR, Galibert, F, Sanger, F, Sedat, JW, Ziff, EB. Gene F of bacteriophage φX174: correlation of nucleotide sequences from the DNA and amino acid sequences from the gene product. J. Mol. Biol. 107: 445–458 (1976).CrossRefGoogle ScholarPubMed
Sanger, F. The Croonian Lecture 1975: Nucleotide sequences in DNA. Proc. R. Soc. Lond. B 191: 317–333 (1975).CrossRefGoogle ScholarPubMed
Air, GM, Blackburn, EH, Sanger, F, Coulson, AR. The nucleotide and amino acid sequence of the N (5′) terminal region of gene G of bacteriophage φX174. J. Mol. Biol. 96: 703–719 (1975).CrossRefGoogle Scholar
Sanger, F, Coulson, AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94: 441–448 (1975).CrossRefGoogle ScholarPubMed
Sanger, F, Donelson, JE, Coulson, AR, Kössel, H, Fischer, D. Determination of a nucleotide sequence in bacteriophage f1 DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 90: 315–333 (1974).CrossRefGoogle ScholarPubMed
Sanger, F, Donelson, JE, Coulson, AR, Kössel, H, Fischer, D. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage f1 DNA. Proc. Natl Acad. Sci. USA 70: 1209–1213 (1973).CrossRefGoogle Scholar
Jeppesen, PGN, Barrell, BG, Sanger, F, Coulson, AR. Nucleotide sequences of two fragments from the coat-protein cistron of bacteriophage R17 ribonucleic acid. Biochem. J. 128: 993–1006 (1972).CrossRefGoogle ScholarPubMed
Sanger, F. The eighth Hopkins Memorial Lecture: Nucleotide sequences in bacteriophage ribonucleic acid. Biochem. J. 124: 833–843 (1971).CrossRefGoogle ScholarPubMed
Sanger, F, Brownlee, GG. Methods for determining sequences in RNA. Biochem. Soc. Symp. 30: 183–197 (1970).Google ScholarPubMed
Jeppesen, PJN, Nichols, JL, Sanger, F, Barrell, BJ. Nucleotide sequences from bacteriophage R17 RNA. Cold Spring Harb. Symp. Quant. Biol. 35: 13–19 (1970).CrossRefGoogle Scholar
Brownlee, GG, Sanger, F. Chromatography of 32P-labelled oligonucleotides on thin layers of DEAE-cellulose. Eur. J. Biochem. 11: 395–399 (1969).CrossRefGoogle ScholarPubMed
Adams, JM, Jeppesen, PG, Sanger, F, Barrell, BG. Nucleotide sequence from the coat protein cistron of R17 bacteriophage RNA. Nature 223: 1009–1014 (1969).CrossRefGoogle ScholarPubMed
Labrie, F, Sanger, F. 32P-labelling of haemoglobin messenger and other reticulocyte ribonucleic acids with polynucleotide phosphokinase in vitro. Biochem. J. 114: 29P (1969).CrossRefGoogle Scholar
Székely, M, Sanger, F. Use of polynucleotide kinase in fingerprinting non-radioactive nucleic acids. J. Mol. Biol. 43: 607–617 (1969).CrossRefGoogle ScholarPubMed
Adams, JM, Jeppesen, PG, Sanger, F, Barrell, BG. Nucleotide sequences from fragments of R17 bacterophage RNA. Cold Spring Harb. Symp. Quant. Biol. 34: 611–620 (1969).CrossRefGoogle ScholarPubMed
Barrell, BG, Sanger, F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 3: 275–278 (1969).CrossRefGoogle ScholarPubMed
Fellner, P, Sanger, F. Sequence analysis of specific areas of the 16S and 23S ribosomal RNAs. Nature 219: 236–238 (1968).CrossRefGoogle ScholarPubMed
Brownlee, GG, Sanger, F, Barrell, BG. The sequence of 5S ribosomal ribonucleic acid. J. Mol. Biol. 34: 379–412 (1968).CrossRefGoogle Scholar
Brownlee, GG, Sanger, F, Barrell, BG. Nucleotide sequence of 5S ribosomal RNA from Escherichia coli. Nature 215: 735–736 (1967).CrossRefGoogle ScholarPubMed
Brownlee, GG, Sanger, F. Nucleotide sequences from the low molecular weight ribosomal RNA of Escherichia coli. J. Mol. Biol. 23: 337–353 (1967).CrossRefGoogle ScholarPubMed
Sanger, F, Brownlee, GG. A two-dimensional fractionation method for radioactive nucleotides. In Grossman, L, Moldave, K, eds., Methods in Enzymology, vol. XII, Part A, New York: Academic Press, pp. 361–363 (1967).Google Scholar
Sanger, F, Brownlee, GG, Barrell, BG. A two-dimensional fractionation procedure for radioactive nucleotides. J. Mol. Biol. 13: 373–398 (1965).CrossRefGoogle ScholarPubMed
Larner, J, Sanger, F. The amino acid sequence of the phosphorylation site of muscle uridine diphosphoglucose alpha-1,4-glucan α-4-glucosyl transferase. J. Mol. Biol. 11: 491–500 (1965).CrossRefGoogle ScholarPubMed
Marcker, K, Sanger, F. N-formyl-methionyl-s-RNA. J. Mol. Biol. 8: 835–840 (1964).CrossRefGoogle ScholarPubMed
Sanger, F, Bretscher, MS, Hocquard, EJ. A study of the products from a polynucleotide-directed cell-free protein synthesizing system. J. Mol. Biol. 8: 38–45 (1964).CrossRefGoogle ScholarPubMed
Glazer, AN, Sanger, F. The iodination of chymotrypsinogen. Biochem. J. 90: 92–98 (1964).CrossRefGoogle ScholarPubMed
Glazer, AN, Sanger, F. Effect of fatty acid on the iodination of bovine serum albumin. J. Mol. Biol. 7: 452–453 (1963).CrossRefGoogle ScholarPubMed
Sanger, F, Thompson, EO. Halogenation of tyrosine during acid hydrolysis. Biochim. Biophys. Acta 71: 468–471 (1963).CrossRefGoogle ScholarPubMed
Sanger, F, Hocquard, E. Formation of dephospho-ovalbumin as an intermediate in the biosynthesis of ovalbumin. Biochim. Biophys. Acta 62: 606–607 (1962).CrossRefGoogle ScholarPubMed
Milstein, C, Sanger, F. An amino acid sequence in the active centre of phosphoglucomutase. Biochem. J. 79: 456–469 (1961).CrossRefGoogle ScholarPubMed
Naughton, MA, Sanger, F. Purification and specificity of pancreatic elastase. Biochem. J. 78: 156–163 (1961).CrossRefGoogle ScholarPubMed
Naughton, MA, Sanger, F, Hartley, BS, Shaw, DC. The amino acid sequence around the reactive serine residue of some proteolytic enzymes. Biochem. J. 77: 149–163 (1960).CrossRefGoogle ScholarPubMed
Sanger, F, Shaw, DC. Amino-acid sequence about the reactive serine of a proteolytic enzyme from Bacillus subtilis. Nature 187: 872–873 (1960).CrossRefGoogle ScholarPubMed
Sanger, F. Chemistry of insulin. Br. Med. Bull. 16: 183–188 (1960).CrossRefGoogle ScholarPubMed
Milstein, C, Sanger, F. The amino acid sequence around the serine phosphate in phosphoglucomutase. Biochim. Biophys. Acta 42: 173–174 (1960).CrossRefGoogle ScholarPubMed
Hartley, BS, Naughton, MA, Sanger, F. The amino acid sequence around the reactive serine of elastase. Biochim. Biophys. Acta 34: 243–244 (1959).CrossRefGoogle ScholarPubMed
Sanger, F. Nobel Lecture, 1958: The chemistry of insulin. In Nobel Lectures, Chemistry 1942–1962. Amsterdam: Elsevier, pp. 134–146 (1964).Google Scholar
Sanger, F. Chemistry of insulin: determination of the structure of insulin opens the way to greater understanding of life processes. Science 129: 1340–1344 (1959).CrossRefGoogle ScholarPubMed
Williams, J, Sanger, F. The grouping of serine phosphate residues in phosvitin and casein. Biochim. Biophys. Acta 33: 294–296 (1959).CrossRefGoogle ScholarPubMed
Harris, JI, Naughton, MA, Sanger, F. Species differences in insulin. Arch. Biochem. Biophys. 65: 427–438 (1956).CrossRefGoogle ScholarPubMed
Brown, H, Sanger, F, Kitai, R. The structure of pig and sheep insulins. Biochem. J. 60: 556–565 (1955).CrossRefGoogle ScholarPubMed
Ryle, AP, Sanger, F, Smith, LF, Kitai, R. The disulphide bonds of insulin. Biochem. J. 60: 541–556 (1955).CrossRefGoogle ScholarPubMed
Ryle, AP, Sanger, F. Disulphide interchange reactions. Biochem. J. 60: 535–540 (1955).CrossRefGoogle ScholarPubMed
Sanger, F, Thompson, EO, Kitai, R. The amide groups of insulin. Biochem. J. 59: 509–518 (1955).CrossRefGoogle ScholarPubMed
Sanger, F, Smith, LF, Kitai, R. The disulphide bridges of insulin. Biochem. J. 58: vi–vii (1954).Google ScholarPubMed
Ryle, AP, Sanger, F. Disulphide interchange reactions. Biochem. J. 58:v–vi (1954).Google ScholarPubMed
Sanger, F. A disulphide interchange reaction. Nature 171: 1025–1026 (1953).CrossRefGoogle ScholarPubMed
Sanger, F, Thompson, EO. The amino-acid sequence in the glycyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 53: 366–374 (1953).CrossRefGoogle Scholar
Sanger, F, Thompson, EO. The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 53: 353–366 (1953).CrossRefGoogle Scholar
Sanger, F, Thompson, EO. The amino-acid sequence in the glycyl chain of insulin. Biochem. J. 52: iii (1952).Google ScholarPubMed
Sanger, F. The arrangement of amino acids in proteins. Adv. Protein Chem. 7: 1–67 (1952).CrossRefGoogle ScholarPubMed
Sanger, F, Thompson, EO. The inversion of a dipeptide sequence during hydrolysis in dilute acid. Biochim. Biophys. Acta 9: 225–226 (1952).CrossRefGoogle ScholarPubMed
Sanger, F, Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 49: 481–490 (1951).CrossRefGoogle ScholarPubMed
Sanger, F, Tuppy, H. The amino-acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochem. J. 49: 463–481 (1951).CrossRefGoogle Scholar
Bailey, K, Sanger, F. The chemistry of amino acids and proteins. Ann. Rev. Biochem. 20: 103–130 (1951).CrossRefGoogle ScholarPubMed
Sanger, F. Some chemical investigations on the structure of insulin. Cold Spring Harb. Symp. Quant. Biol. 14: 153–160 (1950).CrossRefGoogle ScholarPubMed
Sanger, F. The chemistry of insulin. Annu. Rep. Prog. Chem. 45: 283–292 (1949).Google Scholar
Sanger, F. Application of partition chromatography to the study of protein structure. Biochem. Soc. Symp. 3: 21 (1949).Google Scholar
Sanger, F. Species differences in insulins. Nature 164: 529 (1949).CrossRefGoogle ScholarPubMed
Sanger, F. The terminal peptides of insulin. Biochem. J. 45: 563–574 (1949).CrossRefGoogle ScholarPubMed
Sanger, F. Fractionation of oxidized insulin. Biochem. J. 44: 126–128 (1949).CrossRefGoogle ScholarPubMed
Sanger, F. Some peptides from insulin. Nature 162: 49 (1948).CrossRefGoogle ScholarPubMed
Porter, RR, Sanger, F. The free amino groups of haemoglobins. Biochem. J. 42: 287–294 (1948).CrossRefGoogle ScholarPubMed
Tiselius, A, Sanger, F. Adsorption analysis of oxidized insulin. Nature 160: 433 (1947).CrossRefGoogle ScholarPubMed
Sanger, F. Oxidation of insulin by performic acid. Nature 160: 295 (1947).CrossRefGoogle ScholarPubMed
Sanger, F. The free amino group of gramicidin S. Biochem. J. 40: 261–262 (1946).CrossRefGoogle ScholarPubMed
Sanger, F. The free amino groups of insulin. Biochem. J. 39: 507–515 (1945).CrossRefGoogle ScholarPubMed
Neuberger, A, Sanger, F. The availability of ε-acetyl-d-lysine and ε-methyl-dl-lysine for growth. Biochem. J. 38: 125–129 (1944).CrossRefGoogle ScholarPubMed
Neuberger, A, Sanger, F. The metabolism of lysine. Biochem. J. 38: 119–125 (1944).CrossRefGoogle Scholar
Neuberger, A, Sanger, F. The availability of the acetyl derivatives of lysine for growth. Biochem. J. 37: 515–518 (1943).CrossRefGoogle ScholarPubMed
Harris, HA, Neuberger, A, Sanger, F. Lysine deficiency in young rats. Biochem. J. 37: 508–513 (1943).CrossRefGoogle ScholarPubMed
Sanger, F. The metabolism of the amino-acid lysine in the animal body. PhD thesis, Cambridge University (1943).Google Scholar
Neuberger, A, Sanger, F. The nitrogen of the potato. Biochem. J. 36: 662 (1942).CrossRefGoogle ScholarPubMed
Smith, AJ. The use of exonuclease III for preparing single stranded DNA for use as a template in the chain terminator sequencing method. Nucl. Acids Res. 6: 831–848 (1979).CrossRefGoogle ScholarPubMed
Barrell, BG, Bankier, AT, Drouin, J. A different genetic code in human mitochondria. Nature 282: 189–194 (1979).CrossRefGoogle ScholarPubMed
Friedmann, T, Brown, DM. Base-specific reactions useful for DNA sequencing: methylene blue-sensitized photooxidation of guanine and osmium tetraoxide modification of thymine. Nucl. Acids Res. 5: 615–622 (1978).CrossRefGoogle ScholarPubMed
Barrell, BG, Air, GM, Hutchison, CA. Overlapping genes in bacteriophage φX174. Nature 264: 34–41 (1976).CrossRefGoogle ScholarPubMed
Blackburn, EH. Transcription and sequence analysis of a fragment of bacteriophage φX174 DNA. J. Mol. Biol. 107: 417–431 (1976).CrossRefGoogle ScholarPubMed
Sedat, J, Ziff, E, Galibert, F. Direct determination of DNA nucleotide sequences: structure of large specific fragments of bacteriophage φX174 DNA. J. Mol. Biol. 107: 391–416 (1976).CrossRefGoogle ScholarPubMed
Blackburn, EH. Transcription by Escherichia coli RNA polymerase of a single-stranded fragment by bacteriophage φX174 DNA 48 residues in length. J. Mol. Biol. 93: 367–374 (1975).CrossRefGoogle ScholarPubMed
Galibert, F, Sedat, J, Ziff, E. Direct determination of DNA nucleotide sequences: structure of a fragment of bacteriophage φX174 DNA. J. Mol. Biol. 87: 377–407 (1974).CrossRefGoogle Scholar
Ziff, EB, Sedat, JW, Galibert, F. Determination of the nucleotide sequence of a fragment of bacteriophage φX174 DNA. Nat. New Biol. 241: 34–37 (1973).CrossRefGoogle Scholar
Ling, V. Pyrimidine sequences from the DNA of bacteriophages fd, f1, and φX174. Proc. Natl Acad. Sci. USA 69: 742–746 (1972).CrossRefGoogle Scholar
Ling, V. Fractionation and sequences of the large pyrimidine oligonucleotides from bacteriophage fd DNA. J. Mol. Biol. 64: 87–102 (1972).CrossRefGoogle ScholarPubMed
Dahlberg, JE. Terminal sequences of bacteriophage RNAs. Nature 220: 548–552 (1968).CrossRefGoogle ScholarPubMed
Dube, SK, Marcker, KA, Clark, BF, Cory, S. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature 218: 232–233 (1968).CrossRefGoogle ScholarPubMed
Murray, K, Offord, RE. Use of neutron activation in the characterization of small quantities of nucleic acids. Nature 211: 376–378 (1966).CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×