Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: February 2016

7 - Fatigue Crack Growth

7.1 Anderson, T.L. 2005. Fracture Mechanics – Fundamentals and Applications, 3rd edn. London: Taylor and Francis.
7.2 ASTM (American Society for Testing and Materials) E 1049-85 (Reapproved 2005). Standard Practices for Cycle Counting in Fatigue Analysis. Philadelphia: ASTM International.
7.3 Barsom, J.M. 1971. ‘Fatigue-crack Propagation in Steels of Various Yield Streng- ths.’ Journal of Engineering for Industry, Transactions of ASME, Series B 93 (4).
7.4 Barsom, J.M. 1974. Fatigue Behavior of Pressure-vessel Steels, WRC Bulletin, No. 194. New York: Welding Research Council.
7.5 Barsom, J.M. and S.T., Rolfe. 1999. Fracture and Fatigue Control in Structures: Application of Fracture Mechanics, 3rd edn., 194–236. Philadelphia: American Society for Testing and Materials.
7.6 Biell IV, A.J. and F.V., Lawrence Jr. 1989. The Effect of Casting Porosity on the Fatigue Life of Lost-foam CI and Al–Si 319, Report No. 150, UILU-ENG-89- 3604. Department of Material Science and Engineering, University of Illinois at Urban-Champaign, USA.
7.7 Broek, D. 1984. Elementary Engineering Fracture Mechanics. The Hague: Martinus Nijhoff Publishers.
7.8 Broek, D. and J., Schijve. 1963. The Influence of the Mean Stress on the Propagation of Fatigue Cracks in Aluminium Alloy Sheets. Report No. TR-M-2111 Amsterdam: National Aerospace Institute.
7.9 Dieter, G.E. 1988. Mechanical Metallurgy. London: McGraw-Hill.
7.10 Donahue, R.J., H.M., Clark, P., Atanmo, R., Kumble and A.J., McEvily. 1972. ‘Crack Opening Displacement and Rate of Fatigue Crack Growth.’ International Journal of Fracture Mechanics 8: 209–19.
7.11 Downing, S.D. and D.F., Socie. 1982. ‘Simple Rainflow Counting Algorithms.’ International Journal of Fatigue 4(1): 31–40.
7.12 Elber, W. 1970. ‘Fatigue Crack Closure under Cyclic Tension.’ Engineering Fracture Mechanics 2: 37–45.
7.13 Endo, T., K., Mitsunaga, K., Takahashi, K., Kobayashi and M., Matsuishi. 1974. ’Damage Evaluation of Metals for Random or Varying Load. Three Aspects of Rainflow Method’. Proceedings of Symposium, Mechanical Behaviour of Materials, 21–24 August, Kyoto, Japan. Kyoto: Published by Society of Material Science.
7.14 Fleck, N.A. 1985. ‘Fatigue Crack Growth Due to Periodic Underloads and Overloads.’ Acta Metallurgica 33 (7): 1339–54.
7.15 Fleck, N.A. and R.A., Smith. 1984. ‘Fatigue Life Prediction of a Structural Steel under Service Loading.’ International Journal of Fatigue 6(4): 203–10.
7.16 Fleck, N.A., I.F.C., Smith and R.A., Smith. 1983. ‘Closure Behavior of Surface Cracks.’ Fatigue of Engineering Materials and Structures 6(3): 225–239.
7.17 Kikukawa, M., M., Jono and Y., Kondo. 1981. ‘An Estimation Method of Fatigue Crack Propagation Rate under Varying Loading Conditions of Low Stress Intensity Level.’ In Advances in Fracture Research, ed. Francois, D., 1799–1806, Vol. 4. Proceedings of Fifth International Conference on Fracture, 29 March–3 April 1981, Cannes, France. Oxford: Pergamon Press.
7.18 Larsson, L.H., ed. 1983. Subcritical Crack Growth due to Fatigue, Stress Corrosion and Creep. London: Elsevier Applied Science Publishing. https://www.efatigue.com/variable/background/rainflow.html
7.19 Paris, P.C. and F., Erdogan. 1963. ‘A Critical Analysis of Crack Propagation Laws.’ Journal of Basic Engineering, Transactions of ASME 85: 528–34.
7.20 Pook, L.P. 1975. ‘Analysis and application of fatigue crack growth data.’ Journal of Strain Analysis 10(4): 242–50.
7.21 Schijve, J. 1980. ‘Prediction Methods for Fatigue Crack Growth in Aircraft Material’, 3–34. In Fracture Mechanics: Twelfth Conference. Philadelphia: American Society for Testing Materials [ASTM STP 700].
7.22 Schijve, J. 1981. ‘Some Formulas for the Crack Opening Stress Level.’ Engineering Fracture Mechanics 14: 461–65.
7.23 Shin, C.S. and N.A., Fleck. 1987.‘Overload Retardation in a Structural Steel.’ Fatigue & Fracture of Engineering Materials and Structures 9(5): 379–93.
7.24 Smith, R.A. 1983. ‘Short Fatigue Cracks.’ In Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, eds. Lankford, J., D.L., Davidson, W.L., Morris and R.P., Wei, 264–79. Philadelphia: American Society for Testing Materials [ASTM STP 811].
7.25 Socie, D.F. 1977. ‘Prediction of Fatigue Crack Growth in Notched Members under Variable AmplitudeLoading Histories.’ Engineering Fracture Mechanics 9: 849–65.
7.26 Suresh, S. 1998. Fatigue of Materials, 2nd edn. Cambridge: Cambridge University Press.
7.27 Suresh, S. and R.O., Ritchie. 1984. ‘Propagation of Short Cracks.’ International Metal Reviews 29(1): 445–75.
7.28 Tanaka, K. and Y., Nakai. 1983. ‘Propagation and Non-propagation of Short Fatigue Cracks at a SharpNotch.’ Fatigue and Fracture of Engineering Materials and Structures 6(4): 315–27.
7.29 Walker, E.K. 1970. ‘An Effective Strain Concept for Crack Propagation and Fatigue with Specific Application to Biaxial Stress Fatigue’, 225–33. Air Force Conference on Fracture and Fatigue (1969), AFFDL-TR-70-144.
7.30 Wheeler, O.E. 1972. ‘Spectrum Loading and Crack Growth.’ Journal of Basic Engineering, Transactions of ASME 94: 181–86.
7.31 Willenborg, J., R.M., Engle Jr. and R.A., Wood. 1971. A Crack Growth Retardation Model Using an Effective Stress Concept. Report No. AFFL-TM-71-1-FBR Air Force Flight Dynamics Laboratory.
7.32 Zhao, T., J., Zhang and Y., Jiang, 2008. ‘A Study of Fatigue Crack Growth of 7075 T651 Al Alloy.’ International Journal of Fatigue 30: 1169–80.