Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T16:50:52.567Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  06 April 2017

Jon Larsen
Affiliation:
Cascade Applied Sciences Inc., Colorado
Get access
Type
Chapter
Information
Foundations of High-Energy-Density Physics
Physical Processes of Matter at Extreme Conditions
, pp. 726 - 732
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., and Stegun, I. A. (1964). Handbook of Mathematical Functions (Washington, DC: National Bureau of Standards)Google Scholar
Alder, B. J., and Wainwright, T. E. (1959). Studies in molecular dynamics. I. General method. J. Chem. Phys., 31, 459CrossRefGoogle Scholar
Argaman, N., and Makov, G. (2000). Density functional theory: an introduction. Am. J. Phys., 68, 69CrossRefGoogle Scholar
Armstrong, B. H., Sokoloff, J., Nicholls, R. W., Holland, D. H., and Meyerott, R. E. (1961). Radiative properties of high temperature air. J. Quant. Spectr. Rad. Trans., 1, 143CrossRefGoogle Scholar
Ashcroft, N. W., and Sturm, K. (1971). Interband absorption and the optical properties of polyvalent metals. Phys. Rev. B, 3, 1898CrossRefGoogle Scholar
Barnes, J. F. (1967). Statistical atom theory and the equation of state of solids. Phys. Rev., 153, 269CrossRefGoogle Scholar
Bernstein, J., and Dyson, F. J. (1959). The Continuous Opacity and Equations of State of Light Elements at Low Densities, GA-848 (San Diego, CA: General Atomic)Google Scholar
Bethe, H. A., and Salpeter, E. E. (1977). Quantum Mechanics of One- and Two-electron Atoms (New York, NY: Plenum)CrossRefGoogle Scholar
Biermann, L. (1950). Über den Ursprung der Magnetfelder auf Sternen unt im interstellern Raum. Zeitschrift Naturforschung Teil A 5, 65Google Scholar
Bohm, D. (1949). The Characteristics of Electrical Discharges in Magnetic Fields; ed. Guthrie, A. and Wakerling, R. K. (New York, NY: McGraw-Hill)Google Scholar
Born, M. (1962). Atomic Physics, 7th edn. (New York, NY: Hafner)Google Scholar
Brackbill, J. U., and Goldman, S. R. (1983). Magnetohydrodynamics in laser fusion: fluid modeling of energy transport in laser targets. Comm. Pure App. Math. 36, 415CrossRefGoogle Scholar
Braginski, S. I. (1965). Transport processes in a plasma. In Review of Plasma Physics, Vol. 1, 205. (New York, NY: Consultants Bureau)Google Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52CrossRefGoogle ScholarPubMed
Brush, S. G., Sahlin, H. L., and Teller, E. (1966). Monte Carlo study of a one-component plasma. I. J. Chem. Phys., 45, 2102CrossRefGoogle Scholar
Brysk, H. (1974). Electron–ion equilibration in a partially degenerate plasma. Plasma Phys., 16, 927CrossRefGoogle Scholar
Buchler, J.-R. (1979). Radiation hydrodynamics in the fluid frame. J. Quant. Spectr. Rad. Transfer, 22, 293CrossRefGoogle Scholar
Buchler, J.-R. (1983). Radiation transfer in the fluid frame. J. Quant. Spectr. Rad. Transfer, 30, 395CrossRefGoogle Scholar
Bulanov, S. V., Naumova, N. M., and Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745CrossRefGoogle Scholar
Burgess, A. (1965). A general formula for the estimation of dielectronic recombination co-efficients in low-density plasmas. Ap. J., 141, 1588CrossRefGoogle Scholar
Campbell, P. M. (1984). Transport phenomena in a completely ionized gas with large temperature gradients. Phys. Rev., A30, 365CrossRefGoogle Scholar
Campbell, P. M., and Nelson, R. G. (1964). Methods for Nonlinear Radiation Transport, UCRL-7838 (Livermore, CA: Lawrence Radiation Laboratory)Google Scholar
Castor, J. I. (2004). Radiation Hydrodynamics (Cambridge, UK: Cambridge University Press)CrossRefGoogle Scholar
Chandrasekhar, S. (1939). An Introduction to the Study of Stellar Structure (Chicago, IL: University of Chicago Press)Google Scholar
Chandrasekhar, S. (1942). Principles of Stellar Dynamics (Chicago, IL: University of Chicago Press)Google Scholar
Chandrasekhar, S. (1943a). Dynamical friction I. General considerations: the coefficient of dynamical friction. Astrophys. J., 97, 255CrossRefGoogle Scholar
Chandrasekhar, S. (1943b). Dynamical friction II. The rate of escape of stars from clusters and the evidence for the operation of dynamical friction. Astrophys. J., 97, 263CrossRefGoogle Scholar
Chandrasekhar, S. (1960). Radiative Transfer (New York, NY: Dover)Google Scholar
Chapman, S., and Cowling, T. G. (1953). The Mathematical Theory of Non-Uniform Gases (Cambridge, UK: Cambridge University Press)Google Scholar
Chen, F. F. (1974). Introduction to Plasma Physics (New York, NY: Plenum)Google Scholar
Chung, H.-K., Chen, M. H., Morgan, W. L., Ralchenko, Yu., and Lee, R. W. (2005). High Energy Density Physics, 1, 3CrossRefGoogle Scholar
Cody, J. W., and Thatcher, H. C. (1967). Rational Chebyshev approximations for Fermi-Dirac integrals of orders -1/2, 1/2, and 3/2. Math. Comp., 21, 30Google Scholar
Cohen, S. R., Spitzer, L. Jr., and Routly, P. McR. (1950). The electrical conductivity of an ionized gas. Phys. Rev., 80, 230CrossRefGoogle Scholar
Colvin, J., and Larsen, J. (2014). Extreme Physics (Cambridge, UK: Cambridge University Press)Google Scholar
Courant, R., and Friedrichs, K. O. (1948). Supersonic Flow and Shock Waves (New York, NY: Wiley-Interscience)Google Scholar
Cowan, R. D., and Ashkin, J. (1957). Extension of the Thomas-Fermi-Dirac statistical theory of the atom to finite temperatures. Phys. Rev., 105, 144CrossRefGoogle Scholar
Cox, J. P. and Giuli, R. T. (1968). Principles of Stellar Structure (New York, NY: Gordon and Breach)Google Scholar
Debye, P. (1912). Zur Theorie der spezifischen Waerme. Ann. Physik, 39, 789CrossRefGoogle Scholar
Denisov, N. B. (1957). On a singularity of the field of an electromagnetic wave propagated in an inhomogeneous plasma. Sov. Phys. – JETP, 4, 544Google Scholar
Drake, R. P. (2006). High-Energy-Density Physics (New York, NY: Springer)CrossRefGoogle Scholar
Dreicer, H. (1960). Electron velocity distributions in a partially ionized gas. Phys. Rev., 117, 343CrossRefGoogle Scholar
Ecker, G., and Kröll, W. (1963). Lowering of the ionization energy for a plasma in thermodynamic equilibrium. Phys. Fluids, 6, 62CrossRefGoogle Scholar
Eddington, A. S. (1926). The Internal Constitution of the Stars (Cambridge, UK: Cambridge University Press)Google Scholar
Estabrook, K. G., Valeo, E. J., and Kruer, W. L. (1975). Two-dimensional relativistic simulations of resonance absorption. Phys. Fluids, 18, 1151CrossRefGoogle Scholar
Feynman, R. P., Leighton, R. B., and Sands, M. (1966). The Feyman Lectures on Physics (Reading, MA: Addison-Wesley)Google Scholar
Feynmann, R. P., Metropolis, N., and Teller, E. (1949). Equations of state of elements based on the generalized Fermi-Thomas theory. Phys. Rev., 75, 1561CrossRefGoogle Scholar
Foord, M. E., Glenzer, S. H., Those, R. S., Wong, K. L., Fournier, K. B., Wilson, B. G., and Springer, P. T. (2000). Ionization processes and charge-state distribution in a highly ionized high-Z laser-produced plasma. Phys. Rev. Lett., 85, 992CrossRefGoogle Scholar
Garnier, J., Malinié, G., Saillar, Y., and Cherfils-Clérouin, C. (2006). Self-similar solutions for a nonlinear diffusion equation. Phys. Plasmas 13, 092703CrossRefGoogle Scholar
Ginzburg, V. I. (1970). The Propagation of Electromagnetic Waves in Plasmas (New York, NY: Pergamon Press)Google Scholar
Goldstein, H. (1965). Classical Mechanics (Reading, MA: Addison-Wesley)Google Scholar
Griem, H. R. (1960). The escape factor in plasma spectroscopy – I. The escape factor defined and evaluated. Ap. J., 132, 883CrossRefGoogle Scholar
Griem, H. R. (1964). Plasma Spectroscopy (New York, NY: McGraw-Hill)Google Scholar
Haines, M. G. (2011). A review of the dense Z-pinch. Plasma Phys. Control. Fusion 53, 093001CrossRefGoogle Scholar
Hammer, J. H., and Rosen, M. D. (2003). A consistent approach to solving the radiation diffusion equation. Phys. Plasmas 10, 1829CrossRefGoogle Scholar
Hansen, J.-P. (1973). Statistical mechanics of dense ionized matter. I. Equilibrium properties of the classical one-component plasma. Phys. Rev., A8, 3096CrossRefGoogle Scholar
Hansen, J.-P., and McDonald, I. R. (1976). Theory of Simple Liquids (New York, NY: Academic Press)Google Scholar
Heitler, W. (1954). Quantum Theory of Radiation (Oxford, UK: Clarendon Press)Google Scholar
Hochstim, A. R., and Massel, G. A. (1969). Transport Coefficients in Ionized Gases in Kinetic Processes in Gases and Plasmas, ed. Hochstim, A. R. (New York, NY: Academic Press)Google Scholar
Hoge, K. G., and Murkherjee, A. K. (1977). The temperature and strain rate dependence of the flow stress of tantalum. Jour. Mat. Sci., 12, 1666CrossRefGoogle Scholar
Hohenberg, P., and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev., 136, B 864CrossRefGoogle Scholar
Huang, K. (1963). Statistical Mechanics (New York, NY: Wiley)Google Scholar
Imshenik, V. S. (1962). Shock wave structure in a dense high-temperature plasma. Soviet Phys. – JETP, 15, 167Google Scholar
Inglis, D. R., and Teller, E. (1939). Ionic depression of series limits in one-electron spectra. Ap. J., 90, 439CrossRefGoogle Scholar
Jackson, J. D. (1999). Classical Electrodynamics, 3rd edn. (New York, NY: John Wiley & Sons)Google Scholar
Ji, H., and Daughton, W. (2011). Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasma 18, 111207CrossRefGoogle Scholar
Johnson, G. R., and Cook, W. H. (1983). A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperature. Proc. 7th Intern. Symp. Ballistics, Am. Def. Prep. Org., NetherlandsGoogle Scholar
Karzas, W. J., and Latter, R. (1961). Electron radiative transitions in a Coulomb field. Ap. J. Suppl., 6, 167CrossRefGoogle Scholar
Keller, G., and Fenwick, M. (1953). Tabulation of the incomplete Fermi-Dirac functions. Ap. J., 117, 437CrossRefGoogle Scholar
Kelvin, Lord (William Thomson) (1871). Hydrokinetic solutions and observations. Phil. Mag., 42, 362Google Scholar
Kirzhnits, D. (1959). The limits of applicability of the quasi-classical equation of state of matter. Soviet Physics JETP, 35, 1081Google Scholar
Kittel, C. (1958). Elementary Statistical Physics (New York, NY: John Wiley & Sons)Google Scholar
Kittel, C. (2005). Introduction to Solid State Physics (New York, NY: John Wiley & Sons)Google Scholar
Krall, N. A., and Trivelpiece, A. W. (1973). Principles of Plasma Physics (New York, NY: John Wiley & Sons)CrossRefGoogle Scholar
Kramers, H. A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag., 46, 836CrossRefGoogle Scholar
Kruer, W. L. (1988). The Physics of Laser Plasma Interactions (Redwood City, CA: Addison-Wesley)Google Scholar
Kulsrud, R. M. (2001). Magnetic reconnection: Sweet-Parker versus Petschek. Earth Planets Space, 53, 417CrossRefGoogle Scholar
Lampe, M. (1968). Transport theory of a partially degenerate plasma. Phys. Rev., 174, 276CrossRefGoogle Scholar
Landau, L. D., and Lifshitz, E. M. (1958). Statistical Physics (Reading, MA: Addison-Wesley)Google Scholar
Landau, L. D., and Lifshitz, E. M. (1959). Fluid Mechanics (Reading, MA: Addison-Wesley)Google Scholar
Landau, L. D., and Lifshitz, E. M. (1960a). Mechanics (Oxford, UK: Pergamon Press)Google Scholar
Landau, L. D., and Lifshitz, E. M. (1960b). Electrodynamics of Continuous Media (Oxford, UK: Pergamon Press)Google Scholar
Langdon, A. B. (1980). Non-linear inverse bremsstrahlung and heated electron distributions. Phys. Rev. Lett., 44, 575CrossRefGoogle Scholar
Latter, R. (1955). Temperature behavior of the Thomas-Fermi statistical model for atoms. Phys. Rev., 99, 1854CrossRefGoogle Scholar
Lee, Y. T. (1987). A model for ionization balance and L-shell spectroscopy of non-LTE plasmas. J. Quant. Spectr. Rad. Trans., 38, 131CrossRefGoogle Scholar
Lee, Y. T., and More, R. M. (1984). An electron conductivity model for dense plasmas. Phys. Fluids 27, 1273CrossRefGoogle Scholar
Leighton, R. B. (1959). Principles of Modern Physics (New York, NY: McGraw-Hill)Google Scholar
Liberman, D. A. (1979). Self-consistent field model for condensed matter. Phys. Rev. B, 20, 4981CrossRefGoogle Scholar
Lindemann, F. A. (1910). The calculation of molecular vibration frequencies. Z. Phys., 11, 609Google Scholar
Lindl, J. D., and Kaw, P. W. (1971). Ponderomotive force on laser-produced plasmas. Phys. Fluids, 14, 371CrossRefGoogle Scholar
Lokke, W. A., and Grasberger, S. H. (1977). XSNQ-U: A Non-LTE Emission and Absorption Coefficient Subroutine, UCRL-52276 (Livermore, CA: Lawrence Livermore National Laboratory)CrossRefGoogle Scholar
Luciani, J. F., Mora, P., and Virmont, J. (1983). Nonlocal heat transport due to steep temperature gradients. Phys. Rev. Lett., 51, 1664CrossRefGoogle Scholar
Lyon, S. P., and Johnson, J. D. (1992). SESAME: The Los Alamos National Laboratory Equation of State Database, LA-UR-92-3407 (Los Alamos, NM : Los Alamos National Laboratory)Google Scholar
Marshak, R. E. (1958). Effects of radiation on shock wave behavior. Phys. Fluids, 1, 24CrossRefGoogle Scholar
Mayer, H. (1948). Methods of Opacity Calculations, LA-647 (Los Alamos, NM : Los Alamos Scientific Laboratory)Google Scholar
Menzel, D. H., and Pekeris, C. L. (1935). Absorption coefficients and hydrogen line intensities. Mon. Not. R. Astron Soc., 96, 77Google Scholar
Meshkov, E. E. (1969). Instability of a shock wave accelerated interface between two gases. Mekh. Zhidk. Gaz., 5, 151Google Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. N., and Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087CrossRefGoogle Scholar
Mihalas, D. (1978). Stellar Atmospheres, 2nd edn. (San Francisco, CA: Freeman)Google Scholar
Mihalas, D., and Mihalas, B. W. (1984). Foundations of Radiation Hydrodynamics (Oxford, UK: Oxford University Press)Google Scholar
Milne, E. (1924). XVIII. Statistical equilibrium in relation to the photo-electric effect, and its application to the determination of absorption coefficients. Phil. Mag., 47, 209CrossRefGoogle Scholar
Milne, E. A. (1966). In Selected Papers on Physical Processes in Ionized Plasmas, ed. Menzel, D. H., p. 77 (New York, NY: Dover)Google Scholar
More, R. M. (1982). Applied Atomic Collision Physics, Vol. 2 (New York, NY: Academic Press)Google Scholar
More, R. M., Warren, K. H., Young, D. A., and Zimmerman, G. B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids, 31, 3059CrossRefGoogle Scholar
Onsager, L. (1931). Reciprocal relations in irreversible processes, I. Phys. Rev., 37, 405; 38, 2265CrossRefGoogle Scholar
Őzişik, M. N. (1973). Radiative Transfer (New York, NY: John Wiley & Sons)Google Scholar
Parker, E. N. (1957). Acceleration of cosmic rays in solar flares. Phys. Rev, 107, 830; Geophys. Res. 26, 509CrossRefGoogle Scholar
Perrot, F., and Dharma-wardana, M. W. C. (1995). Equation of state and transport properties of an interacting multispecies plasma: application to a multiply ionized Al plasma. Phys. Rev. E, 52, 5352CrossRefGoogle ScholarPubMed
Petschek, H. E. (1964). Magnetic field annihilation. In Physics of Solar Flares, Proceedings of the AAS-NASA Symposium, held 28–30 October, 1963 at the Goddard Space Flight Center, Greenbelt, MD. Edited by Hess, Wilmot N. (Washington, DC: National Aeronautics and Space Administration, Science and Technical Information Division), p. 425Google Scholar
Pollock, A., and Barraclough, S. (1905). Note on a hollow lightning conductor crushed by the discharge. J. Proc. R. Soc. New South Wales, 39, 131CrossRefGoogle Scholar
Pomraning, G. C. (1973). The Equations of Radiation Hydrodynamics (Oxford, UK: Pergamon Press)Google Scholar
Potter, D. (1978). The formation of high-density Z-pinches. Nucl. Fusion 18, 813CrossRefGoogle Scholar
Prasad, M. K., and Kershaw, D. S. (1989). Nonviability of some nonlocal electron heat transport modeling. Phys. Fluids, B1, 2430CrossRefGoogle Scholar
Preston, D. L., Tonks, D. L., and Wallace, D. C. (2003). Model of plastic deformation for extreme loading conditions. J. Appl. Phys., 93, 211CrossRefGoogle Scholar
Rayleigh, Lord (John William Strutt) (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14, 170Google Scholar
Reed, W., and Lathrop, K. D. (1970). Truncation error analysis of finite difference approximations to the transport equation. Nucl. Sci. Eng., 41, 237CrossRefGoogle Scholar
Richtmyer, R. D. (1960). Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 13, 297CrossRefGoogle Scholar
Rose, S. J. (1997). Council for the Central Laboratory of the Research Councils, Technical Report No. RAL-TR-97-020Google Scholar
Rosen, M. D., and Hammer, J. H. (2005). Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss. Phys. Rev. E, 72, 056403CrossRefGoogle ScholarPubMed
Rosenbluth, M. N. (1954). Infinite Conductivity Theory of the Pinch, LA-1850 (Los Alamos, NM : Los Alamos Scientific Laboratory)Google Scholar
Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. (1957). Fokker-Planck equation for an inverse-square force. Phys. Rev., 107, 1CrossRefGoogle Scholar
Rybicki, G. B., and Lightman, A. P. (1979). Radiative Processes in Astrophysics (New York, NY: John Wiley & Sons)Google Scholar
Ryutov, D. D., Derzon, M. S., and Matzen, M. K. (2000b). The physics of fast Z-pinches. Rev. Mod. Phys., 72, 167CrossRefGoogle Scholar
Ryutov, D. D., Drake, R. P., Kane, J., Liang, E., Remington, B. A., and Wood-Vasey, W. M. (1999). Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J., 518, 821CrossRefGoogle Scholar
Ryutov, D. D., Drake, R. P., and Remington, B. A. (2000a). Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astrophys. J. Suppl., 127, 465CrossRefGoogle Scholar
Ryutov, D. D., Remington, B. A., and Robey, H. F. (2001). Magnetohydrodynamic scaling: From astrophysics to the laboratory. Phys. Plasmas, 8, 1804CrossRefGoogle Scholar
Salpeter, E. E. (1963). Density fluctuations in a nonequilibrium plasma. J. Geo. Res., 68, 1321CrossRefGoogle Scholar
Salpeter, E. E., and Van Horn, H. M. (1969). Nuclear reaction rates at high densities. Astrophys. J., 155, 183CrossRefGoogle Scholar
Sampson, D. H., and Golden, L. B. (1971). Semiempirical cross-sections and rates for excitation and for ionization of hydrogenic ions by electron impact. Astrophys. J., 170, 169CrossRefGoogle Scholar
Scofield, J. H. (1975). Energies of Hydrogen- and Helium-Like Ions for Z’s from 6 to 54. Lawrence Livermore Laboratory Internal Document, UCID-16848 (Livermore, CA: Lawrence Radiation Laboratory)Google Scholar
Scott, H. A., and Hansen, S. B. (2010). Advances in NLTE modeling for integrated simulations. High Energy Density Physics, 6, 39CrossRefGoogle Scholar
Seaton, M. (1962). The theory of excitation and ionization by electron impact. In Atomic and Molecular Processes, ed. Bates, D. R. (New York, NY: Academic Press), 375Google Scholar
Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics, trans. Friedman, M. (New York, NY: Academic Press)Google Scholar
Shafranov, V. D. (1966). Equilibrium in a magnetic field. In Reviews of Plasma Physics, Vol. 2, 103. (New York, NY: Consultants Bureau)Google Scholar
Shepherd, L. S., and Cassak, P. A. (2010). Comparison of secondary islands in collisional reconnection to Hall reconnection. Phys. Rev. Lett. 105, 015004CrossRefGoogle ScholarPubMed
Shkarofsky, I. P., Johnston, T. W., and Bachynski, M. P. (1966). The Particle Kinetics of the Plasmas (Reading, MA: Addison-Wesley)Google Scholar
Smith, D. Y., and Segall, B. (1986). Intraband and interband processes in the infrared spectrum of metallic aluminum. Phys. Rev. B, 34, 5191CrossRefGoogle ScholarPubMed
Sod, G. A. (1978). A survey of several finite difference methods of nonlinear hyperbolic conservation laws. J. Comp. Phys., 27, 1CrossRefGoogle Scholar
Sommerfeld, A. (1934). Atomic Structure and Spectral Lines, 3rd edn. (London, UK: Methuen)Google Scholar
Spitzer, L. Jr., and Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev., 89, 977CrossRefGoogle Scholar
Spitzer, L. (1967). Physics of Fully Ionized Gases (New York, NY: Interscience)Google Scholar
Steinberg, D. J., Cochran, S. G., and Guinan, M. W. (1980). A constitutive model for metals applicable at high strain rate. J. Appl. Phys., 51, 1498CrossRefGoogle Scholar
Steinberg, D. J., and Lund, C. M. (1989). A constitutive model for strain rates from 10-4 to 106 s-1. J. Appl. Phys., 65, 1528CrossRefGoogle Scholar
Stewart, J. C., and Pyatt, K. D. Jr., (1966). Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203CrossRefGoogle Scholar
Sweeney, M. A. (1978). Thermodynamic inconsistency of the modified Saha equation at high pressures. Astrophys. J., 220, 335CrossRefGoogle Scholar
Sweet, P. A. (1958). The Neutral Point Theory of Solar Flares. (Stockholm: IAU Symposium No. 6 Electromagnetic Phenomena in Ionized Gases), 123Google Scholar
Taylor, G. I. (1950). The instability of liquid survaces when accelerated in a direction perpendicular to their planes. Prod. Roy. Soc., A201, 192Google Scholar
Thomson, J. J., Max, C. E., and Estabrook, K. (1975). Magnetic field due to resonance absorption of laser light. Phys Rev. Lett., 35, 663CrossRefGoogle Scholar
Van Regemorter, H. (1962). Rate of collisional excitation in stellar atmospheres. Astrophys. J., 136, 906CrossRefGoogle Scholar
von Helmholtz, H. (1868). Über discontinuierliche Flüssigkeits-Bewegungen [On the discontinuous movements of fluids]. Rep. Roy. Prussian Academy, 23, 215Google Scholar
von Mises, R. (1913). Mechanik der festen Köper im plastisch deformablen Zustand. Nachr. Akad. Wiss. Goett II, Math-Phys., 1, 582Google Scholar
Weir, S. T., Mitchell, A. C., and Nellis, W. J. (1996). Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76, 1860CrossRefGoogle ScholarPubMed
Whitham, G. B. (1974). Linear and Nonlinear Waves (New York, NY: Wiley)Google Scholar
Wilkins, M. L. (1999). Computer Simulation of Dynamic Phenomena (Berlin: Springer-Verlag)CrossRefGoogle Scholar
Wilmot-Smith, A. L., Priest, E. R., and Hornig, G. (2005). Magnetic diffusion and the motion of field lines. Geophys. Astrophys. Fluid Dyn. 99, 177CrossRefGoogle Scholar
Wilson, B., Sonnad, V., Sterne, P., and Isaacs, W. (2006). Purgatorio – a new implementation of the Inferno algorithm. JQSRT, 99, 658CrossRefGoogle Scholar
Zel’dovich, Ya. B. (1957). Shock waves of large amplitude in air. Soviet Physic. JETP 5, 919Google Scholar
Zel’dovich, Ya. B., and Kompaneets, A. S. (1959). On the propagation of heat for nonlinear heat conduction. Collection Dedicated to the Seventieth Birthday of Academician A. F. Ioffe, ed Lukirskii, P. I., 61 (Moscow, Russia: Izdat. Akad. Nauk SSSR)Google Scholar
Zel’dovich, Ya. B., and Raizer, Yu. P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 1st edn. (New York, NY: Academic Press)Google Scholar
Zerilli, F. J., and Armstrong, R. W. (1987). Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys., 61, 1896CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jon Larsen
  • Book: Foundations of High-Energy-Density Physics
  • Online publication: 06 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316403891.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jon Larsen
  • Book: Foundations of High-Energy-Density Physics
  • Online publication: 06 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316403891.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jon Larsen
  • Book: Foundations of High-Energy-Density Physics
  • Online publication: 06 April 2017
  • Chapter DOI: https://doi.org/10.1017/9781316403891.014
Available formats
×