Skip to main content Accessibility help
×
Home
Foundations of High-Energy-Density Physics
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Jon Larsen, Cascade Applied Sciences Inc., Colorado
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, this book is a valuable resource for research scientists and graduate students in physics and astrophysics.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Abramowitz, M., and Stegun, I. A. (1964). Handbook of Mathematical Functions (Washington, DC: National Bureau of Standards)
Alder, B. J., and Wainwright, T. E. (1959). Studies in molecular dynamics. I. General method. J. Chem. Phys., 31, 459
Argaman, N., and Makov, G. (2000). Density functional theory: an introduction. Am. J. Phys., 68, 69
Armstrong, B. H., Sokoloff, J., Nicholls, R. W., Holland, D. H., and Meyerott, R. E. (1961). Radiative properties of high temperature air. J. Quant. Spectr. Rad. Trans., 1, 143
Ashcroft, N. W., and Sturm, K. (1971). Interband absorption and the optical properties of polyvalent metals. Phys. Rev. B, 3, 1898
Barnes, J. F. (1967). Statistical atom theory and the equation of state of solids. Phys. Rev., 153, 269
Bernstein, J., and Dyson, F. J. (1959). The Continuous Opacity and Equations of State of Light Elements at Low Densities, GA-848 (San Diego, CA: General Atomic)
Bethe, H. A., and Salpeter, E. E. (1977). Quantum Mechanics of One- and Two-electron Atoms (New York, NY: Plenum)
Biermann, L. (1950). Über den Ursprung der Magnetfelder auf Sternen unt im interstellern Raum. Zeitschrift Naturforschung Teil A 5, 65
Bohm, D. (1949). The Characteristics of Electrical Discharges in Magnetic Fields; ed. Guthrie, A. and Wakerling, R. K. (New York, NY: McGraw-Hill)
Born, M. (1962). Atomic Physics, 7th edn. (New York, NY: Hafner)
Brackbill, J. U., and Goldman, S. R. (1983). Magnetohydrodynamics in laser fusion: fluid modeling of energy transport in laser targets. Comm. Pure App. Math. 36, 415
Braginski, S. I. (1965). Transport processes in a plasma. In Review of Plasma Physics, Vol. 1, 205. (New York, NY: Consultants Bureau)
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 52
Brush, S. G., Sahlin, H. L., and Teller, E. (1966). Monte Carlo study of a one-component plasma. I. J. Chem. Phys., 45, 2102
Brysk, H. (1974). Electron–ion equilibration in a partially degenerate plasma. Plasma Phys., 16, 927
Buchler, J.-R. (1979). Radiation hydrodynamics in the fluid frame. J. Quant. Spectr. Rad. Transfer, 22, 293
Buchler, J.-R. (1983). Radiation transfer in the fluid frame. J. Quant. Spectr. Rad. Transfer, 30, 395
Bulanov, S. V., Naumova, N. M., and Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745
Burgess, A. (1965). A general formula for the estimation of dielectronic recombination co-efficients in low-density plasmas. Ap. J., 141, 1588
Campbell, P. M. (1984). Transport phenomena in a completely ionized gas with large temperature gradients. Phys. Rev., A30, 365
Campbell, P. M., and Nelson, R. G. (1964). Methods for Nonlinear Radiation Transport, UCRL-7838 (Livermore, CA: Lawrence Radiation Laboratory)
Castor, J. I. (2004). Radiation Hydrodynamics (Cambridge, UK: Cambridge University Press)
Chandrasekhar, S. (1939). An Introduction to the Study of Stellar Structure (Chicago, IL: University of Chicago Press)
Chandrasekhar, S. (1942). Principles of Stellar Dynamics (Chicago, IL: University of Chicago Press)
Chandrasekhar, S. (1943a). Dynamical friction I. General considerations: the coefficient of dynamical friction. Astrophys. J., 97, 255
Chandrasekhar, S. (1943b). Dynamical friction II. The rate of escape of stars from clusters and the evidence for the operation of dynamical friction. Astrophys. J., 97, 263
Chandrasekhar, S. (1960). Radiative Transfer (New York, NY: Dover)
Chapman, S., and Cowling, T. G. (1953). The Mathematical Theory of Non-Uniform Gases (Cambridge, UK: Cambridge University Press)
Chen, F. F. (1974). Introduction to Plasma Physics (New York, NY: Plenum)
Chung, H.-K., Chen, M. H., Morgan, W. L., Ralchenko, Yu., and Lee, R. W. (2005). High Energy Density Physics, 1, 3
Cody, J. W., and Thatcher, H. C. (1967). Rational Chebyshev approximations for Fermi-Dirac integrals of orders -1/2, 1/2, and 3/2. Math. Comp., 21, 30
Cohen, S. R., Spitzer, L. Jr., and Routly, P. McR. (1950). The electrical conductivity of an ionized gas. Phys. Rev., 80, 230
Colvin, J., and Larsen, J. (2014). Extreme Physics (Cambridge, UK: Cambridge University Press)
Courant, R., and Friedrichs, K. O. (1948). Supersonic Flow and Shock Waves (New York, NY: Wiley-Interscience)
Cowan, R. D., and Ashkin, J. (1957). Extension of the Thomas-Fermi-Dirac statistical theory of the atom to finite temperatures. Phys. Rev., 105, 144
Cox, J. P. and Giuli, R. T. (1968). Principles of Stellar Structure (New York, NY: Gordon and Breach)
Debye, P. (1912). Zur Theorie der spezifischen Waerme. Ann. Physik, 39, 789
Denisov, N. B. (1957). On a singularity of the field of an electromagnetic wave propagated in an inhomogeneous plasma. Sov. Phys. – JETP, 4, 544
Drake, R. P. (2006). High-Energy-Density Physics (New York, NY: Springer)
Dreicer, H. (1960). Electron velocity distributions in a partially ionized gas. Phys. Rev., 117, 343
Ecker, G., and Kröll, W. (1963). Lowering of the ionization energy for a plasma in thermodynamic equilibrium. Phys. Fluids, 6, 62
Eddington, A. S. (1926). The Internal Constitution of the Stars (Cambridge, UK: Cambridge University Press)
Estabrook, K. G., Valeo, E. J., and Kruer, W. L. (1975). Two-dimensional relativistic simulations of resonance absorption. Phys. Fluids, 18, 1151
Feynman, R. P., Leighton, R. B., and Sands, M. (1966). The Feyman Lectures on Physics (Reading, MA: Addison-Wesley)
Feynmann, R. P., Metropolis, N., and Teller, E. (1949). Equations of state of elements based on the generalized Fermi-Thomas theory. Phys. Rev., 75, 1561
Foord, M. E., Glenzer, S. H., Those, R. S., Wong, K. L., Fournier, K. B., Wilson, B. G., and Springer, P. T. (2000). Ionization processes and charge-state distribution in a highly ionized high-Z laser-produced plasma. Phys. Rev. Lett., 85, 992
Garnier, J., Malinié, G., Saillar, Y., and Cherfils-Clérouin, C. (2006). Self-similar solutions for a nonlinear diffusion equation. Phys. Plasmas 13, 092703
Ginzburg, V. I. (1970). The Propagation of Electromagnetic Waves in Plasmas (New York, NY: Pergamon Press)
Goldstein, H. (1965). Classical Mechanics (Reading, MA: Addison-Wesley)
Griem, H. R. (1960). The escape factor in plasma spectroscopy – I. The escape factor defined and evaluated. Ap. J., 132, 883
Griem, H. R. (1964). Plasma Spectroscopy (New York, NY: McGraw-Hill)
Haines, M. G. (2011). A review of the dense Z-pinch. Plasma Phys. Control. Fusion 53, 093001
Hammer, J. H., and Rosen, M. D. (2003). A consistent approach to solving the radiation diffusion equation. Phys. Plasmas 10, 1829
Hansen, J.-P. (1973). Statistical mechanics of dense ionized matter. I. Equilibrium properties of the classical one-component plasma. Phys. Rev., A8, 3096
Hansen, J.-P., and McDonald, I. R. (1976). Theory of Simple Liquids (New York, NY: Academic Press)
Heitler, W. (1954). Quantum Theory of Radiation (Oxford, UK: Clarendon Press)
Hochstim, A. R., and Massel, G. A. (1969). Transport Coefficients in Ionized Gases in Kinetic Processes in Gases and Plasmas, ed. Hochstim, A. R. (New York, NY: Academic Press)
Hoge, K. G., and Murkherjee, A. K. (1977). The temperature and strain rate dependence of the flow stress of tantalum. Jour. Mat. Sci., 12, 1666
Hohenberg, P., and Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev., 136, B 864
Huang, K. (1963). Statistical Mechanics (New York, NY: Wiley)
Imshenik, V. S. (1962). Shock wave structure in a dense high-temperature plasma. Soviet Phys. – JETP, 15, 167
Inglis, D. R., and Teller, E. (1939). Ionic depression of series limits in one-electron spectra. Ap. J., 90, 439
Jackson, J. D. (1999). Classical Electrodynamics, 3rd edn. (New York, NY: John Wiley & Sons)
Ji, H., and Daughton, W. (2011). Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasma 18, 111207
Johnson, G. R., and Cook, W. H. (1983). A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperature. Proc. 7th Intern. Symp. Ballistics, Am. Def. Prep. Org., Netherlands
Karzas, W. J., and Latter, R. (1961). Electron radiative transitions in a Coulomb field. Ap. J. Suppl., 6, 167
Keller, G., and Fenwick, M. (1953). Tabulation of the incomplete Fermi-Dirac functions. Ap. J., 117, 437
Kelvin, Lord (William Thomson) (1871). Hydrokinetic solutions and observations. Phil. Mag., 42, 362
Kirzhnits, D. (1959). The limits of applicability of the quasi-classical equation of state of matter. Soviet Physics JETP, 35, 1081
Kittel, C. (1958). Elementary Statistical Physics (New York, NY: John Wiley & Sons)
Kittel, C. (2005). Introduction to Solid State Physics (New York, NY: John Wiley & Sons)
Krall, N. A., and Trivelpiece, A. W. (1973). Principles of Plasma Physics (New York, NY: John Wiley & Sons)
Kramers, H. A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag., 46, 836
Kruer, W. L. (1988). The Physics of Laser Plasma Interactions (Redwood City, CA: Addison-Wesley)
Kulsrud, R. M. (2001). Magnetic reconnection: Sweet-Parker versus Petschek. Earth Planets Space, 53, 417
Lampe, M. (1968). Transport theory of a partially degenerate plasma. Phys. Rev., 174, 276
Landau, L. D., and Lifshitz, E. M. (1958). Statistical Physics (Reading, MA: Addison-Wesley)
Landau, L. D., and Lifshitz, E. M. (1959). Fluid Mechanics (Reading, MA: Addison-Wesley)
Landau, L. D., and Lifshitz, E. M. (1960a). Mechanics (Oxford, UK: Pergamon Press)
Landau, L. D., and Lifshitz, E. M. (1960b). Electrodynamics of Continuous Media (Oxford, UK: Pergamon Press)
Langdon, A. B. (1980). Non-linear inverse bremsstrahlung and heated electron distributions. Phys. Rev. Lett., 44, 575
Latter, R. (1955). Temperature behavior of the Thomas-Fermi statistical model for atoms. Phys. Rev., 99, 1854
Lee, Y. T. (1987). A model for ionization balance and L-shell spectroscopy of non-LTE plasmas. J. Quant. Spectr. Rad. Trans., 38, 131
Lee, Y. T., and More, R. M. (1984). An electron conductivity model for dense plasmas. Phys. Fluids 27, 1273
Leighton, R. B. (1959). Principles of Modern Physics (New York, NY: McGraw-Hill)
Liberman, D. A. (1979). Self-consistent field model for condensed matter. Phys. Rev. B, 20, 4981
Lindemann, F. A. (1910). The calculation of molecular vibration frequencies. Z. Phys., 11, 609
Lindl, J. D., and Kaw, P. W. (1971). Ponderomotive force on laser-produced plasmas. Phys. Fluids, 14, 371
Lokke, W. A., and Grasberger, S. H. (1977). XSNQ-U: A Non-LTE Emission and Absorption Coefficient Subroutine, UCRL-52276 (Livermore, CA: Lawrence Livermore National Laboratory)
Luciani, J. F., Mora, P., and Virmont, J. (1983). Nonlocal heat transport due to steep temperature gradients. Phys. Rev. Lett., 51, 1664
Lyon, S. P., and Johnson, J. D. (1992). SESAME: The Los Alamos National Laboratory Equation of State Database, LA-UR-92-3407 (Los Alamos, NM : Los Alamos National Laboratory)
Marshak, R. E. (1958). Effects of radiation on shock wave behavior. Phys. Fluids, 1, 24
Mayer, H. (1948). Methods of Opacity Calculations, LA-647 (Los Alamos, NM : Los Alamos Scientific Laboratory)
Menzel, D. H., and Pekeris, C. L. (1935). Absorption coefficients and hydrogen line intensities. Mon. Not. R. Astron Soc., 96, 77
Meshkov, E. E. (1969). Instability of a shock wave accelerated interface between two gases. Mekh. Zhidk. Gaz., 5, 151
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. N., and Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087
Mihalas, D. (1978). Stellar Atmospheres, 2nd edn. (San Francisco, CA: Freeman)
Mihalas, D., and Mihalas, B. W. (1984). Foundations of Radiation Hydrodynamics (Oxford, UK: Oxford University Press)
Milne, E. (1924). XVIII. Statistical equilibrium in relation to the photo-electric effect, and its application to the determination of absorption coefficients. Phil. Mag., 47, 209
Milne, E. A. (1966). In Selected Papers on Physical Processes in Ionized Plasmas, ed. Menzel, D. H., p. 77 (New York, NY: Dover)
More, R. M. (1982). Applied Atomic Collision Physics, Vol. 2 (New York, NY: Academic Press)
More, R. M., Warren, K. H., Young, D. A., and Zimmerman, G. B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids, 31, 3059
Onsager, L. (1931). Reciprocal relations in irreversible processes, I. Phys. Rev., 37, 405; 38, 2265
Őzişik, M. N. (1973). Radiative Transfer (New York, NY: John Wiley & Sons)
Parker, E. N. (1957). Acceleration of cosmic rays in solar flares. Phys. Rev, 107, 830; Geophys. Res. 26, 509
Perrot, F., and Dharma-wardana, M. W. C. (1995). Equation of state and transport properties of an interacting multispecies plasma: application to a multiply ionized Al plasma. Phys. Rev. E, 52, 5352
Petschek, H. E. (1964). Magnetic field annihilation. In Physics of Solar Flares, Proceedings of the AAS-NASA Symposium, held 28–30 October, 1963 at the Goddard Space Flight Center, Greenbelt, MD. Edited by Hess, Wilmot N. (Washington, DC: National Aeronautics and Space Administration, Science and Technical Information Division), p. 425
Pollock, A., and Barraclough, S. (1905). Note on a hollow lightning conductor crushed by the discharge. J. Proc. R. Soc. New South Wales, 39, 131
Pomraning, G. C. (1973). The Equations of Radiation Hydrodynamics (Oxford, UK: Pergamon Press)
Potter, D. (1978). The formation of high-density Z-pinches. Nucl. Fusion 18, 813
Prasad, M. K., and Kershaw, D. S. (1989). Nonviability of some nonlocal electron heat transport modeling. Phys. Fluids, B1, 2430
Preston, D. L., Tonks, D. L., and Wallace, D. C. (2003). Model of plastic deformation for extreme loading conditions. J. Appl. Phys., 93, 211
Rayleigh, Lord (John William Strutt) (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. London Math. Soc., 14, 170
Reed, W., and Lathrop, K. D. (1970). Truncation error analysis of finite difference approximations to the transport equation. Nucl. Sci. Eng., 41, 237
Richtmyer, R. D. (1960). Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 13, 297
Rose, S. J. (1997). Council for the Central Laboratory of the Research Councils, Technical Report No. RAL-TR-97-020
Rosen, M. D., and Hammer, J. H. (2005). Analytic expressions for optimal inertial-confinement-fusion hohlraum wall density and wall loss. Phys. Rev. E, 72, 056403
Rosenbluth, M. N. (1954). Infinite Conductivity Theory of the Pinch, LA-1850 (Los Alamos, NM : Los Alamos Scientific Laboratory)
Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. (1957). Fokker-Planck equation for an inverse-square force. Phys. Rev., 107, 1
Rybicki, G. B., and Lightman, A. P. (1979). Radiative Processes in Astrophysics (New York, NY: John Wiley & Sons)
Ryutov, D. D., Derzon, M. S., and Matzen, M. K. (2000b). The physics of fast Z-pinches. Rev. Mod. Phys., 72, 167
Ryutov, D. D., Drake, R. P., Kane, J., Liang, E., Remington, B. A., and Wood-Vasey, W. M. (1999). Similarity criteria for the laboratory simulation of supernova hydrodynamics. Astrophys. J., 518, 821
Ryutov, D. D., Drake, R. P., and Remington, B. A. (2000a). Criteria for scaled laboratory simulations of astrophysical MHD phenomena. Astrophys. J. Suppl., 127, 465
Ryutov, D. D., Remington, B. A., and Robey, H. F. (2001). Magnetohydrodynamic scaling: From astrophysics to the laboratory. Phys. Plasmas, 8, 1804
Salpeter, E. E. (1963). Density fluctuations in a nonequilibrium plasma. J. Geo. Res., 68, 1321
Salpeter, E. E., and Van Horn, H. M. (1969). Nuclear reaction rates at high densities. Astrophys. J., 155, 183
Sampson, D. H., and Golden, L. B. (1971). Semiempirical cross-sections and rates for excitation and for ionization of hydrogenic ions by electron impact. Astrophys. J., 170, 169
Scofield, J. H. (1975). Energies of Hydrogen- and Helium-Like Ions for Z’s from 6 to 54. Lawrence Livermore Laboratory Internal Document, UCID-16848 (Livermore, CA: Lawrence Radiation Laboratory)
Scott, H. A., and Hansen, S. B. (2010). Advances in NLTE modeling for integrated simulations. High Energy Density Physics, 6, 39
Seaton, M. (1962). The theory of excitation and ionization by electron impact. In Atomic and Molecular Processes, ed. Bates, D. R. (New York, NY: Academic Press), 375
Sedov, L. I. (1959). Similarity and Dimensional Methods in Mechanics, trans. Friedman, M. (New York, NY: Academic Press)
Shafranov, V. D. (1966). Equilibrium in a magnetic field. In Reviews of Plasma Physics, Vol. 2, 103. (New York, NY: Consultants Bureau)
Shepherd, L. S., and Cassak, P. A. (2010). Comparison of secondary islands in collisional reconnection to Hall reconnection. Phys. Rev. Lett. 105, 015004
Shkarofsky, I. P., Johnston, T. W., and Bachynski, M. P. (1966). The Particle Kinetics of the Plasmas (Reading, MA: Addison-Wesley)
Smith, D. Y., and Segall, B. (1986). Intraband and interband processes in the infrared spectrum of metallic aluminum. Phys. Rev. B, 34, 5191
Sod, G. A. (1978). A survey of several finite difference methods of nonlinear hyperbolic conservation laws. J. Comp. Phys., 27, 1
Sommerfeld, A. (1934). Atomic Structure and Spectral Lines, 3rd edn. (London, UK: Methuen)
Spitzer, L. Jr., and Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev., 89, 977
Spitzer, L. (1967). Physics of Fully Ionized Gases (New York, NY: Interscience)
Steinberg, D. J., Cochran, S. G., and Guinan, M. W. (1980). A constitutive model for metals applicable at high strain rate. J. Appl. Phys., 51, 1498
Steinberg, D. J., and Lund, C. M. (1989). A constitutive model for strain rates from 10-4 to 106 s-1. J. Appl. Phys., 65, 1528
Stewart, J. C., and Pyatt, K. D. Jr., (1966). Lowering of ionization potentials in plasmas. Astrophys. J., 144, 1203
Sweeney, M. A. (1978). Thermodynamic inconsistency of the modified Saha equation at high pressures. Astrophys. J., 220, 335
Sweet, P. A. (1958). The Neutral Point Theory of Solar Flares. (Stockholm: IAU Symposium No. 6 Electromagnetic Phenomena in Ionized Gases), 123
Taylor, G. I. (1950). The instability of liquid survaces when accelerated in a direction perpendicular to their planes. Prod. Roy. Soc., A201, 192
Thomson, J. J., Max, C. E., and Estabrook, K. (1975). Magnetic field due to resonance absorption of laser light. Phys Rev. Lett., 35, 663
Van Regemorter, H. (1962). Rate of collisional excitation in stellar atmospheres. Astrophys. J., 136, 906
von Helmholtz, H. (1868). Über discontinuierliche Flüssigkeits-Bewegungen [On the discontinuous movements of fluids]. Rep. Roy. Prussian Academy, 23, 215
von Mises, R. (1913). Mechanik der festen Köper im plastisch deformablen Zustand. Nachr. Akad. Wiss. Goett II, Math-Phys., 1, 582
Weir, S. T., Mitchell, A. C., and Nellis, W. J. (1996). Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76, 1860
Whitham, G. B. (1974). Linear and Nonlinear Waves (New York, NY: Wiley)
Wilkins, M. L. (1999). Computer Simulation of Dynamic Phenomena (Berlin: Springer-Verlag)
Wilmot-Smith, A. L., Priest, E. R., and Hornig, G. (2005). Magnetic diffusion and the motion of field lines. Geophys. Astrophys. Fluid Dyn. 99, 177
Wilson, B., Sonnad, V., Sterne, P., and Isaacs, W. (2006). Purgatorio – a new implementation of the Inferno algorithm. JQSRT, 99, 658
Zel’dovich, Ya. B. (1957). Shock waves of large amplitude in air. Soviet Physic. JETP 5, 919
Zel’dovich, Ya. B., and Kompaneets, A. S. (1959). On the propagation of heat for nonlinear heat conduction. Collection Dedicated to the Seventieth Birthday of Academician A. F. Ioffe, ed Lukirskii, P. I., 61 (Moscow, Russia: Izdat. Akad. Nauk SSSR)
Zel’dovich, Ya. B., and Raizer, Yu. P. (1966). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 1st edn. (New York, NY: Academic Press)
Zerilli, F. J., and Armstrong, R. W. (1987). Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys., 61, 1896

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.