Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2012
  • Online publication date: December 2012

4 - On the Complexity of Computing Quadrature Formulas for SDEs

References
[1] V., Bally and D., Talay, The law of the Euler scheme for stochastic differential equations (I): convergence rate of the distribution function. Prob. Theory and Related Fields, 104, 43–60, 1995.
[2] J., Creutzig, S., Dereich, T., Müller-Gronbach and K., Ritter, Infinite-dimensional quadrature and approximation of distributions. Found. Comput. Math., 9, 391–429, 2009.
[3] D., Crisan and S., Ghazali, On the convergence rates of a general class of weak approximation of SDEs. in: Stochastic Differential Equations, Theory and Applications, P., Baxendale, S. V., Lototsky, eds., 221–249, World Scientific, Singapore, 2007.
[4] S., Dereich, High resolution coding of stochastic processes and small ball probabilities. Ph. D. Thesis, Department of Mathematics, 2003, FU Berlin.
[5] S., Dereich, The coding complexity of diffusion processes under supremum norm distortion. Stochastic Processes Appl., 118, 917–937, 2008.
[6] S., Dereich, The coding complexity of diffusion processes under Lp [0, 1]-norm distortion. Stochastic Processes Appl., 118, 938–951, 2008.
[7] S., Dereich, Asymptotic formulae for coding problems and intermediate optimization problems: a review. in: Trends in Stochastic Analysis, J., Blath, P., Moerters, M., Scheutzow, eds., 187–232, Cambridge Univ. Press, Cambridge, 2009.
[8] S., Dereich and M., Scheutzow, High-resolution quantization and entropy coding for fractional Brownian motion. Electron. J. Probab., 11, 700–722, 2006.
[9] S., Dereich, M., Scheutzow and R., Schottstedt, Constructive quantization: approximation by empirical measures. Preprint, arXiv:1108.5346, 2011.
[10] S., Graf and H., Luschgy, Foundations of Quantization for Probability Distributions. Lect. Notes in Math. 1730, Springer-Verlag, Berlin, 2000.
[11] N., Hofmann, T., Müller-Gronbach and K., Ritter, The optimal discretization of stochastic differential equations. J. Complexity, 17, 117–153, 2001.
[12] N., Hofmann, T., Müller-Gronbach and K., Ritter, Linear vs. standard information for scalar stochastic differential equations. J. Complexity, 18, 394–414, 2002.
[13] F. Y., Kuo, I. H., Sloan, G. W., Wasilkowski and H., Woźniakowski, Liberating the dimension. J. Complexity, 26, 422–454, 2010.
[14] S., Kusuoka, Approximation of expectation of diffusion process and mathematical finance. Adv. Stud. Pure Math., 31, 147–165, 2001.
[15] S., Kusuoka, Approximation of expectation of diffusion processes based on Lie algebra and Malliavin calculus. Adv. Math. Econ., 6, 69–83, 2004.
[16] C., Litterer and T., Lyons, High order recombination and an application to cubature on the Wiener space. Preprint. http://arxiv.org/pdf/1008.4942v1, 2010.
[17] H., Luschgy and G., Pagès, Sharp asymptotics of the functional quantization problem for Gaussian processes. Ann. Appl. Prob., 32, 1574–1599, 2004.
[18] H., Luschgy and G., Pagès, Functional quantization of a class of Brownian diffusion: a constructive approach. Stochastic Processes Appl., 116, 310–336, 2006.
[19] H., Luschgy and G., Pagès, Functional quantization rate and mean regularity of processes with an application to Lévy processes. Ann. Appl. Prob., 18, 427–469, 2008.
[20] H., Luschgy, G., Pagès and B., Wilbertz, Asymptotically optimal quantization schemes for Gaussian processes. ESAIM Probab. Stat., 14, 93–116, 2008.
[21] T., Lyons and N., Victoir, Cubature on Wiener space. Proc. Royal Soc. Lond., 460, 169–198, 2004.
[22] T., Müller-Gronbach, Optimal uniform approximation of systems of stochastic differential equations. Ann. Appl. Prob., 12, 664–690, 2002.
[23] T., Müller-Gronbach, Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Prob., 14, 1605–1642, 2004.
[24] T., Müller-Gronbach and K., Ritter, A local refinement strategy for constructive quantization of scalar SDEs. Preprint 72, DFG SPP 1324, 2010.
[25] T., Müller-Gronbach, K., Ritter and L., Yaroslavtseva, A derandomization of the Euler scheme for scalar stochastic differential equations. To appear in J. Complexity.
[26] E., Novak, The real number model in numerical analysis. J. Complexity, 11, 57–73, 1995.
[27] G., Pagès and J., Printems, http://www.quantize.maths-fi.co m/, 2005.
[28] G., Pagès and J., Printems, Optimal quantization for finance: from random vectors to stochastic processes. in: Mathematical Modelling and Numerical Methods in Finance, Handbook of Numerical Analysis, Vol. XV, A., Benoussan, Q., Zhang, eds., 595–648, North-Holland, Amsterdam, 2008.
[29] G., Pagès and A., Sellami, Convergence of multi-dimensional quantized SDE's. Preprint, 2010.
[30] K., Petras and K., Ritter, On the complexity of parabolic initial value problems with variable drift. J. Complexity, 22, 118–145, 2006.
[31] S. T., Rachev, Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester, 1991.
[32] S., Toussaint, Konstruktive Quantisierung skalarer Diffusionsprozesse. Diploma Thesis, Department of Mathematics, 2008, TU Darmstadt.
[33] J. F., Traub, G. W., Wasilkowski and H., Woźniakowski, Information-Based Complexity. Academic Press, New York, 1988.
[34] G. W., Wasilkowski and H., Woźniakowski, Complexity of weighted approximation over ℝ. J. Approx. Theory, 103, 223–251, 2000.
[35] G. W., Wasilkowski and H., Woźniakowski, Complexity of weighted approximation over ℝd. J. Complexity, 17, 722–740, 2001.
[36] M., Wiktorsson, Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions. Ann. Appl. Prob., 11, 470–487, 2001.