Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Print publication year: 2014
  • Online publication date: June 2014

Chapter Four - Recent changes in tropical forest biomass and dynamics

Summary

Introduction

There is a major planet-wide experiment under way. Anthropogenic changes to the atmosphere–biosphere system mean that all ecosystems on Earth are now affected by our activities. While outright deforestation is physically obvious, other subtler processes, such as hunting and surface fires, also affect forests in ways that are less evident to the casual observer (cf. Estes et al. 2011; Lewis, Malhi & Phillips 2004a; Malhi & Phillips 2004). Similarly, anthropogenic atmospheric change is intensifying. By the end of the century, carbon dioxide concentrations may reach levels unprecedented for at least 20 million years (e.g. Retallack 2001) and climates may move beyond Quaternary envelopes (Meehl et al. 2007). Moreover, the rate of change in these basic ecological drivers may be unprecedented in the evolutionary span of most species on Earth today. Additionally, these atmospheric changes are coinciding with the greatest global upheaval in vegetation cover and species’ distributions since at least the last mass extinction at ~65 million years ago (Ellis et al. 2011). Collectively, the evidence points to conditions with no clear past analogue. We have entered the Anthropocene, a new geological epoch dominated by human action (Crutzen 2002; Steffen et al. 2011).

In this chapter we focus on the changes occurring within remaining tropical forests. Most forest vegetation carbon stocks lie within the tropics. Tropical forests store 460 billion tonnes of carbon in their biomass and soil (Pan et al. 2011), equivalent to more than half the total atmospheric stock, and annually process 40 billion tonnes (Beer et al. 2010). They have other planetary influences via the hydrological cycle, and emit aerosols and trace gases, and they are also characterised by their exceptional variety and diversity of life.

References
Aidar, M. P. M., Martinez, C. A.Costa, A. C. et al. (2002) Effect of atmospheric CO2 enrichment on the establishment of seedlings of Jatobá, Hymenaea courabil L. (Leguminosae, Caesalpinioideae). Biota Neotropica 2, BN01602012002.
Aragao, L. E. O. C., Malhi, Y., Roman-Cuesta, R. M. et al. (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters, 34.
Baker, T. R., Phillips, O. L., Malhi, Y. et al. (2004a) Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society, Series B, 359, 353–365.
Baker, T. R., Phillips, O. L., Malhi, Y. et al. (2004b) Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10, 545–562.
Beer, C., Reichstein, M., Tomelleri, E. et al. (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329, 834–838.
Bonal, D., Ponton, S., Le Thiec, D. et al. (2011) Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: a historical delta 13C and delta 18O approach using herbarium samples. Plant, Cell and Environment, 34, 1332–1344.
Bunker, D., De Clerck, F., Bradford, J. et al. (2005) Carbon sequestration and biodiversity loss in a tropical forest. Science, 310, 1029–1031.
Chambers, J. Q., Santos, J., Ribeiro, R. J. & Higuchi, N. (2001a) Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management, 152, 73–84.
Chambers, J. Q., Higuchi, N., Tribuzy, E. S. & Trumbore, S. E. (2001b) Carbon sink for a century. Nature, 410, 429.
Chao, K.-J., Phillips, O. L., Gloor, E. et al. (2008) Growth and wood density predicts tree mortality in Amazon forests. Journal of Ecology, 96, 281–292.
Chave, J., Condit, R., Aguilar, S. et al. (2004) Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society, Series B, 359, 409–420.
Chave, J., Andalo, C., Brown, S. et al. (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.
Chave, J., Condit, R., Muller-Landau, H. C. et al. (2008a) Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biology, 6, e45.
Chave, J., Olivier, J., Bongers, F. et al. (2008b) Above-ground biomass and productivity in a rain forest of eastern South America. Journal of Tropical Ecology, 24, 355–366.
Clark, D. A. (2002) Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecological Applications, 12, 3–7.
Clark, D. B., Clark, D. A. & Oberbauer, S. F. (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Global Change Biology 16, 747–759.
Clark, D. A., Piper, S. C., Keeling, C. D. & Clark, D. B. (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences USA, 100, 5852–5857.
Coomes, D. A. & Allen, R. B. (2007) Mortality and tree-size distributions in natural mixed-age forests. Journal of Ecology, 95, 27–40.
Coomes, D. A. & Grubb, P. J. (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecological Monographs, 200, 171–207.
Cox, P. M., Betts, R. A., Collins, M. et al. (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137–156.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.
Cox, P. M., Harris, P. P., Huntingford, C. et al. (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212–215.
Cramer, W., Bondeau, A., Woodward, F. I. et al. (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biology, 7, 357–373.
Crutzen, P. J. (2002) Geology of mankind. Nature, 415, 23.
Denman, K. L., Brasseur, G., Chidthaisong, A. et al. (2007) Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.), Cambridge, United Kingdom and New York: Cambridge University Press.
Doughty, C. E. & Goulden, M. L. (2008) Are tropical forests near a high temperature threshold?Journal of Geophysical Research-Biogeosciences, 113, G00B07.
Ellis, E. C. (2011) Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society, Series A, 369, 1010–1035.
Engelstaedter, S., Tegen, I. & Washington, R. (2006). North African dust emissions and transport. Earth-Science Reviews, 79, 73–100.
Enquist, B. J. & Niklas, K. J. (2001) Invariant scaling relations across tree-dominated communities. Nature, 410, 655–660.
Espirito-Santo, F. D. B., Keller, M., Braswell, B. et al. (2010) Storm intensity and old-growth forest disturbances in the Amazon region. Geophysical Research Letters, 37, L11403.
Estes, J. A., Terborgh, J., Brashares, J. S. et al. (2011) Trophic downgrading of Planet Earth. Science, 333, 301–306.
Fauset, S., Baker, T. R, Lewis, S. L. et al. (2012) Drought induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters, 15, 1120–1129.
Feeley, K. J., Wright, S. J., Supardi, M. N. N., Kassim, A. R. & Davies, S. J. (2007) Decelerating growth in tropical forest trees. Ecology Letters, 10, 461–469.
Feldpausch, T. R., Lloyd, J., Lewis, S. L. et al. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9, 3381–3403.
Fisher, J. I., Hurtt, G. C., Thomas, R. Q. & Chambers, J. Q. (2008) Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecology Letters, 11, 554–563.
Friedlingstein, P., Cox, P., Betts, R. et al. (2006) Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. Journal of Climate, 19, 3337–3353.
Galbraith, D., Levy, P. E., Sitch, S. et al. (2010) Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytologist, 187, 647–665.
Gentry, A. H. (1988a) Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Sciences USA, 85, 156–159.
Gentry, A. H. (1988b) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1–34.
Gloor, M., Phillips, O. L., Lloyd, J. et al. (2009) Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data?Global Change Biology, 15, 2418–2430.
Granados, J. & Körner, C. (2002) In deep shade, elevated CO2 increases the vigour of tropical climbing plants. Global Change Biology, 8, 1109–1117.
Groombridge, B. & Jenkins, M. D. (2003) World Atlas of Biodiversity. University of California Press.
Hamilton, J. G., DeLucia, E. H., George, K. et al. (2002) Forest carbon balance under elevated CO2. Oecologia, 131, 250–260.
Haxeltine, A. & Prentice, I. C. (1996) A general model for the light-use efficiency of primary production. Functional Ecology, 10, 551–561.
Hember, R. A., Kurz, W. A., Metsaranta, J. M. et al. (2012) Accelerating regrowth of temperate-maritime forests due to environmental change. Global Change Biology, 18, 2026–2040.
Higuchi, N., dos Santos, J., Ribeiro, J. R., Minette, L. & Biot, Y. (1998) Biomassa da parte aérea da floresta tropical úmida de terra firme da Amazônia Brasileira. Acta Amazonica, 28, 153–166.
Ichii, K., Hashimoto, H., Nemani, R. & White, M. (2005) Modeling the interannual variability and trends in gross and net primary productivity of tropical forests from 1982 to 1999. Global and Planetary Change, 48, 274–286.
Kerstiens, G. (2001) Meta-analysis of the interaction between shade-tolerance, light environment and growth response of woody species to elevated CO2. Acta Oecologica, 22, 61–69.
Körner, C. (2003) Slow in, rapid out – carbon flux studies and Kyoto targets. Science, 300, 1242–1243.
Körner, C. (2004) Through enhanced tree dynamics carbon dioxide enrichment may cause tropical forests to lose carbon. Philosophical Transactions of the Royal Society, Series B, 359, 493–498.
Laurance, W. F. (2004) Forest–climate interactions in fragmented tropical landscapes. Philosophical Transactions of the Royal Society, Series B, 359, 345–352.
Laurance, W. F., Oliveira, A. A., Laurance, S. G. et al. (2004) Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature, 428, 171–174.
Le Quéré, C., Raupach, M. R., Canadell, J. G. et al. (2009) Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–836.
Lewis, S. L. (2006) Tropical forests and the changing earth system. Philosophical Transactions of the Royal Society of London, Series B, 361, 195–210.
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. (2011) The 2010 Amazon drought. Science, 331, 554–555.
Lewis, S. L., Lloyd, J., Sitch, S., Mitchard, E. T. A. & Laurance, W. F. (2009b) Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology Evolution and Systematics, 40, 529–549.
Lewis, S. L., Lopez-Gonzalez, G.Sonké, B. et al. (2009a) Increasing carbon storage in intact African tropical forests. Nature, 477, 1003–1006.
Lewis, S. L., Malhi, Y. & Phillips, O. L. (2004a) Fingerprinting the impacts of global change on tropical forests. Philosophical Transactions of the Royal Society, Series B, 359, 437–462.
Lewis, S. L., Phillips, O. L. & Baker, T. R. (2006) Impacts of global atmospheric change on tropical forests. Trends in Ecology & Evolution, 21, 173–174.
Lewis, S. L., Phillips, O. L., Baker, T. R. et al. (2004b) Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Philosophical Transactions of the Royal Society, Series B, 359, 421–436.
Lloyd, J. & Farquhar, G. D. (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with plant nutrient status. Functional Ecology, 10, 4–32.
Lloyd, J. & Farquhar, G. D. (2008) Effects of rising temperatures and (CO2) on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society, Series B, 363, 1811–1817.
Lloyd, J., Gloor, M. & Lewis, S. L. (2009) Are the dynamics of tropical forests dominated by large and rare disturbance events?Ecology Letters, 12, E19–21.
Lloyd, J., Grace, J., Miranda, A. C. et al. (1995) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant Cell & Environment, 18, 1129–1145.
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. (2011) ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science, 22, 610–613.
Luyssaert, S., Schulze, E.-D., Börner, A. et al. (2008) Old-growth forests as global carbon sinks. Nature, 455, 213–215.
Malhi, Y., Baker, T. R., Phillips, O. L. et al. (2004) The above-ground coarse woody productivity of 104 neotropical forest plots. Global Change Biology, 10, 563–591.
Malhi, Y. & Phillips, O. L. (2004) Tropical forests and global atmospheric change: a synthesis. Philosophical Transactions of the Royal Society, Series B, 359, 549–555.
Malhi, Y. & Phillips, O. L. (2005) Tropical Forests and Global Atmospheric Change. Oxford University Press.
Malhi, Y., Phillips, O. L., Baker, T. R. et al. (2002) An international network to understand the biomass and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 13, 439–450.
Meehl, G. A., Stocker, T. F.Collins, W. D. et al. (2007) Global Climate Projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.), Cambridge and New York: Cambridge University Press.
Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H. et al. (2009) Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36, L23401.
Nelson, B. W., Kapos, V., Adams, J. B., Oliveira, W. J. & Braun, O. P. (1994) Forest disturbance by large blowdowns in the Brazilian Amazon. Ecology, 75, 853–858.
Nemani, R. R., Keeling, C. D.Hashimoto, H. et al. (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563.
Norby, R. J., Hanson, P. J., O’Neill, E. G. et al. (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecological Applications, 12, 1261–1266.
Norby, R. J. & Zak, D. R. (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annual Review of Ecology, Evolution and Systematics, 42, 181–203.
Oliveira, P. H. F., Artaxo, P., Pires, C. et al. (2007) The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus, 59B, 338–349.
Paeth, H., Born, K., Girmes, R., Podzun, R. & Jacob, D. (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land use changes. Journal of Climate, 22, 114–132.
Pan, Y., Birdsey, R., Fang, J. et al. (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.
Peacock, J., Baker, T., Lewis, S. L. et al. (2007) The RAINFOR database: Monitoring forest biomass and dynamics. Journal of Vegetation Science, 18, 535–542.
Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L. et al. (2009) Drought sensitivity of the Amazon rainforest. Science, 323, 1344–1347.
Phillips, O. L., Baker, T. R.Arroyo, L. et al. (2004) Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society, Series B, 359, 381–407.
Phillips, O. L. & Gentry, A. H. (1994) Increasing turnover through time in tropical forests. Science, 263, 954–958.
Phillips, O. L., Hall, P.Gentry, A. H., Sawyer, S. A. & Vásquez, R. (1994) Dynamics and species richness of tropical forests. Proceedings of the National Academy of Sciences USA, 91, 2805–2809.
Phillips, O. L., Malhi, Y., Higuchi, N. et al. (1998) Changes in the carbon balance of tropical forest: evidence from long-term plots. Science, 282, 439–442.
Phillips, O. L., Malhi, Y., Vinceti, B. et al. (2002a) Changes in the biomass of tropical forests: evaluating potential biases. Ecological Applications, 12, 576–587.
Phillips, O. L., Martínez, R. V., Arroyo, L. et al. (2002b) Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770–774.
Phillips, O. L., Vásquez Martínez, R., Monteagudo, A., Baker, T. & Núñez, P. (2005) Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology, 86, 1250–1258.
Phillips, O. L., van der Heijden, G., López-González, G. et al. (2010) Drought mortality relationships for tropical forests. New Phytologist, 187, 631–646.
Purves, D. & Pacala, S. (2008) Predictive models of forest dynamics. Science, 320, 1452–1453.
Quesada, C. A., Phillips, O. L., Schwarz, M. et al. (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246.
Rammig, A., Jupp, T., Thonicke, K. et al. (2010) Estimating the risk of Amazonian forest dieback. New Phytologist, 187, 694–706.
Retallack, G. J. (2001) A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 411, 287–290.
Salzmann, U. & Hoelzmann, P. (2005) The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene, 15, 190–199.
Schnitzer, S. A. & Bongers, F. (2002) The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 17, 223–230.
Schnitzer, S. A. & Bongers, F. (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecology Letters, 14, 397–406.
ter Steege, H., Pitman, N. C. A., Phillips, O. L. et al. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443, 444–447.
Staver, A. C., Archibald, S. & Levin., S. A. (2011) The global extent and determinants of savanna and forest as alternative states. Science, 334, 230–232.
Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. (2011) The Anthropocene: conceptual and historical perspectives. Philosophical Transactions of the Royal Society, Series A, 369, 842–867.
Stephens, B. B., Gurney, K. R., Tans, P. P. et al. (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316, 1732–1735.
Trenberth, K. E., Jones, P. D., Ambenje, P. et al. (2007) Observations: surface and atmospheric climate change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D., Manning, M. et al.). Cambridge and New York: Cambridge University Press.
Van der Heijden, G., Healey, J. & Phillips, O. L. (2008) Infestation of trees by lianas in a tropical forest in Amazonian Peru. Journal of Vegetation Science, 19, 747–756.
Vieira, S., Trumbore, S., Camargo, P. B. et al. (2005) Slow growth rates of Amazonian trees: consequences for carbon cycling. Proceedings of the National Academy of Sciences USA, 102, 18502–18507.
West, G. B., Brown, J. H. & Enquist, B. J. (1999) A general model for the structure and allometry of vascular plant systems. Nature, 400, 664–667.
Wong, T., Wielicki, B. A., Lee, R. B. III et al. (2006) Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. Journal of Climate, 19, 4028–4040.
Worbes, M. (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. Journal of Ecology, 87, 391–403.
Wright, S. J. (2005) Tropical forests in a changing environment. Trends in Ecology & Evolution, 20, 553–560.
Zelazowski, P., Malhi, Y., Huntingford, C.Sitch, S. & Fisher, J. B. (2011) Changes in the potential distribution of humid tropical forests on a warmer planet. Philosophical Transactions of the Royal Society, Series A, 369, 137–160.