Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T12:08:14.253Z Has data issue: false hasContentIssue false

CHAPTER 12 - Molecularly Thin Films

Published online by Cambridge University Press:  05 June 2012

Andras Z. Szeri
Affiliation:
University of Delaware
Get access

Summary

Although the lubrication approximation has been derived for thin films, there is, nevertheless, a thin film limit to its validity. When the characteristic dimensions of the fluid-containing device approach the mean free path (for gases) or the dimension of the molecules (for liquids) the continuum assumption, one of the basic assumptions of the approximation, breaks down. In such cases the Reynolds equation must be amended or replaced by other mathematical systems.

We have two distinct models at our disposal for representing fluids, continuum and particle. While the latter is valid under the whole range of conditions, though its use is limited by practical considerations, the continuum model applies only with restrictions. The equations that are available for fluid characterization, and how they relate to the two models, are shown in Table 12.1 (Gad-el-Hak, 1999).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, F. F. 1978 The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: A Monte Carlo simulationJ. Chem. Phys 68 3713CrossRefGoogle Scholar
Albertoni, S.Cercignani, C.Gotusso, L. 1963 Numerical evaluation of the slip coefficientPhys. Fluids 6 993CrossRefGoogle Scholar
Alexander, F. J.Garcia, A. L.Alder, B. J. 1994 Direct simulation Monte Carlo for thin film bearingsPhys. Fluids 6 3854CrossRefGoogle Scholar
Anaya-Dufresne, M. 1966 On the Development of a Reynolds Equation for Air Bearings with ContactPh.D. Dissertation, Carnegie Mellon UniversityGoogle Scholar
Bahukudumbi, P.Beskok, A. 2003 A phenomological lubrication model for the entire Knudsen regimeJ. Micromech. Microeng 13 873CrossRefGoogle Scholar
Becker, T.Mugele, F. 2005 Nanofluidics: molecularly thin lubricant film under confinementMolecular Simulation 31 489CrossRefGoogle Scholar
Beskok, A.Karniadakis, G. E. 1999 A model for flows in channels, pipes, and ducts at micro and nano scalesMicroscale Thermophys. Eng 3 43Google Scholar
Beskok, A.Karniadakis, G. E.Trimmer, W. 1996 Rarefaction and compressibility in gas microflowsJ. Fluids Eng 118 448CrossRefGoogle Scholar
Bhatnagar, P. L.Gross, E. P.Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systemsPhys. Rev 94 511CrossRefGoogle Scholar
Bird, G. A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas FlowsClarendon PressOxfordGoogle Scholar
Bird, R. B.Stewart, W. E.Lightfoot, E. N. 2002 Transport PhenomenaJohn Wiley & Sons, IncNew YorkGoogle Scholar
Bonaccurso, E.Kappl, M.Butt, H. J. 2002 Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effectsPhys. Rev. Letts 88 076103CrossRefGoogle ScholarPubMed
Burgdorfer, A. 1959 The influence of molecular mean free path on the performance of hydrodynamic gas lubricated bearingsJ. Basic Eng 81 94Google Scholar
Cercignani, C. 1988 The Boltzmann Equation and its ApplicationSpringer-VerlagNew YorkCrossRefGoogle Scholar
Cercignani, C.Daneri, A. 1963 Flow of a rarefied gas between two parallel platesJ. Appl. Phys 34 3509CrossRefGoogle Scholar
Cercignani, C.Pagani, C. D. 1966 Phys. Fluids 6 1167CrossRef
Cercignani, C.Frangi, A.Frezotti, A.Ghiroldi, G. P.Gibelli, L.Lorenzani, S. 2008 On the application of the Boltzmann equation to the simulation of fluid structure interaction in micro-electro-mechanical-systemsSensor Lett 6 121CrossRefGoogle Scholar
Cercignani, C.Lampis, M.Lorenzani, S. 2007 On the Reynolds equation for linearized models of the Boltzmann operatorTransport Theory Stat. Phys 36 257CrossRefGoogle Scholar
Chan, D. Y. C.Horn, R. G. 1985 The drainage of thin liquid films between solid surfacesJ. Chem. Phys 83 5311CrossRefGoogle Scholar
Chuarev, N. V.Sobolev, V. D.Somov, A. N. 1984 Slippage of liquids over liophobic solid surfacesJ. Colloid Interface Sci 97 574CrossRefGoogle Scholar
Debye, P.Cleland, R. L. 1959 Flow of liquid hydrocarbons in porous vycorJ. Appl. Phys 30 843CrossRefGoogle Scholar
Din, X. D.Michaelides, E. E. 1997 Kinetic theory and molecular dynamic simulations of microscopic flowsPhys. Fluids 9 3915CrossRefGoogle Scholar
Du, B.Goubaidoulline, I.Johannsmann, D. 2004 Effect of lateral heterogeneous slip on the resonance properties of quartz crystals immersed in liquidsLangmuir 20 10617CrossRefGoogle Scholar
Fukui, S.Kaneko, R. 1988 Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equationJ. Tribology 110 253CrossRefGoogle Scholar
Fukui, S.Kaneko, R. 1990 A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problemsJ. Tribology 112 78CrossRefGoogle Scholar
Furuta, T.Samatey, F. A.Matsunami, H.Imada, K.Namba, K.Kitao, A. 2007 Gap compression / extension mechanism of bacterial flagellar hook as the molecular universal jointJ. Struct. Biol 157 481CrossRefGoogle ScholarPubMed
Gad-el-Hak, M. 1999 The fluid mechanics of micro devices – The Freeman Scholar LectureJ. Fluids Eng 121 5CrossRefGoogle Scholar
Gao, J. P.Luedtke, W. D.Landman, U. 1997 Layering transitions and dynamics of confined liquid filmsPhys. Rev. Lett 4 705CrossRefGoogle Scholar
Gao, J. P.Luedtke, W. D.Landman, U. 1997 Structure and Solvation forces in confined films: Linear and branched alkanesJ. Chem. Phys 106 4309CrossRefGoogle Scholar
Gee, M. L.Israelachvili, J. N. 1990 Interactions of surfactant monolayers across hydrocarbon liquidsJ. Chem. Soc. Faraday Trans 86 4049CrossRefGoogle Scholar
Germann, T. C.Kadau, K. 2008 Trillion atom molecular dynamics becomes a realityInt. J. Mod. Phys 19 1315CrossRefGoogle Scholar
Goldstein, S. 1938 Modern Developments in Fluid Dynamics, Vols. 1 and 2Oxford University Press, OxfordGoogle Scholar
Gourdon, D.Israelachvili, J. 2006 Comment on “Superlubricity: a paradox about confined fluids resolved”Phys. Rev. Lett 96 099601CrossRefGoogle Scholar
Granick, S.Zhu, Y.Lin, Z.Bae, S. C.Janet, S.Wong, J.Turner, J. 2006 Reply to Comment on reassessment of solidification in fluids confined between mica sheetsLangmuir 22 2399CrossRefGoogle Scholar
Gross, F. P.Jackson, E. A.Ziering, S. 1957 Boundary Value Problems in Kinetic Theory of GasesAnn. Phys 1 141CrossRefGoogle Scholar
Henderson, D.Lozada-Cassou, M. 1986 A simple theory for the force between spheres immersed in liquidJ. Colloid and Interface Sci 114 180CrossRefGoogle Scholar
Ho, C. M.Tai, Y. C. 1998 Micro-electro-mechanical systems (MEMS) and fluid flowsAnnu. Rev. Fluid Mech 30 579CrossRefGoogle Scholar
Horn, R. G.Israelachvili, 1981 Direct measurement of structural forces between two surfaces in a nonpolar liquidJ. Chem. Phys 75 1400CrossRefGoogle Scholar
Hsia, Y. T.Domoto, G. A. 1983 An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearancesASME Journal of Tribology 105 120Google Scholar
Hu, Y. Z.Granick, S. 1998 Microscopic study of thin film lubrication and its contribution to macroscopic tribologyTribol. Lett 5 81CrossRefGoogle Scholar
Huang, W.Bogy, D. B. 2000 The effect of accommodation coefficient on slider air bearing simulationASME Journal of Tribology 122 427CrossRefGoogle Scholar
Huang, W.Bogy, D. B.Garcia, A. L. 1997 Three-dimensional direct simulation Monte Carlo method for slider air bearingPhys. Fluids 9 1764CrossRefGoogle Scholar
Ishida, N.Inoue, T.Miyahara, M.Higashitani, 2000 Langmuir 16 6377CrossRef
Israelachvili, J. N.Adams, G. E. 1978 Measurement of force between two mica surfaces in aqueous electrolyte solution in the range of 1–100 nmJ. Chem. Soc. Faraday Trans. 1 74 1400Google Scholar
Israelachvili, J. N. 1986 Measurement of the viscosity of liquids in very thin filmsJ. Coll. Interface Sci 110 263CrossRefGoogle Scholar
Israelachvili, J. N. 1992 Intermolecular and Surface ForcesAcademic PressSan DiegoGoogle Scholar
Israelachvili, J. N.Maeda, N.Akbulut, M. 2006 Comment on Reassessment of solidification in fluids confined between mica sheetsLangmuir 22 2397CrossRefGoogle ScholarPubMed
Jang, S.Tichy, J. A. 1995 Rheological models for thin film EHL contactsASME Journal of Tribology 117 22CrossRefGoogle Scholar
Jiang, J. Z.Shen, C.Fan, J. 2005 Statistical simulation of thin-film bearingsRarefied Gas DynamicsCapitelli, M.SpringerNew York180Google Scholar
John, B.Damodaran, M. 2009 Computation of head-disk interface gap micro flow fields using DSMC and continuum-atomistic hybrid methodsInt. J. Numer. Meths. Fluids 61 1273CrossRefGoogle Scholar
Kadau, K.Barber, J. L.Timothy, C.Germann, T. C.Alder, B. J. 2008 Scaling of atomistic fluid dynamics simulationsPhys. Rev. E 78 045301CrossRefGoogle ScholarPubMed
Kang, S. C.Crone, R. M.John, M. S. 1999 A new molecular gas lubrication theory suitable for head-disk interface modelingJ. Appl. Phys 85 5594CrossRefGoogle Scholar
Kantorovich, L. V.Krylov, V. I. 1964 Approximate Methods of Higher AnalysisInterscienceNew YorkGoogle Scholar
Kato, T.Matsuoka, H. 1999 Molecular layering in thin-film elastohydrodynamicsProc. Instn. Mech. Engrs 213 363Google Scholar
Klein, J. 2006 Forces between mica surfaces, prepared in different ways, across aqueous and nonaqueous liquids confined to molecularly thin filmsLangmuir 22 6142Google Scholar
Klein, J.Kumacheva, E. 1998 Liquid-to-solid transition in thin liquid films induced by confinementPhysica A 249 206CrossRefGoogle Scholar
Kogan, M. N. 1969 Rarefied Gas DynamicsPlenum PressNew YorkCrossRefGoogle Scholar
Koplik, J.Banavar, J. R. 1995 Continuum Deductions from Molecular HydrodynamicsAnnual Rev. Fluid Mech 27 957CrossRefGoogle Scholar
Koplik, J.Banavar, J. R. 1998 Physics of Fluids at Low Reynolds Numbers – a Molecular ApproachComput. Phys 12 424CrossRefGoogle Scholar
Koplik, J.Banavar, J. R. 1998 Molecular Simulation of Viscous FlowJSME Int. J., B 41 53CrossRefGoogle Scholar
Koplik, J.Banavar, J. R. 1995 Continuum deductions from molecular hydrodynamics. Annual RevFluid Mech 27 957CrossRefGoogle Scholar
Langlois, W. E. 1964 Slow Viscous FlowMacmillanNew YorkGoogle Scholar
Lauga, E.Brenner, M. P. 2004 Dynamic mechanism for apparent slip on hydrophobic surfacesPhys. Rev. E 70 026311CrossRefGoogle Scholar
Loyalka, S. K. 1971 Kinetic theory of thermal transpiration and mechanocaloric effectInt. J. Chem. Phys 55 4497CrossRefGoogle Scholar
Luo, J.Huang, P.Li, L. K. 1999 Characteristics of liquid lubricant films at the nano-scaleASME Journal of Tribology 121 872CrossRefGoogle Scholar
Maali, A.Bhushan, B. 2008 Nanorheology and boundary slip in confined liquids using atomic force microscopyJ. Phys.: Condense Matter 20 315201Google Scholar
Matsuoka, H.Kato, T. 1997 An Ultrathin Liquid Film Lubrication Theory – Calculation Method of Solvation Pressure and its Application to the EHL ProblemASMS J. Tribol 119 217CrossRefGoogle Scholar
Maxwell, J. C. 1879
McHale, G.Newton, M. 2004 Surface roughness and interfacial slip boundary condition for quartz crystal microbalancesJ. Appl. Phys 95 373CrossRefGoogle Scholar
Migun, N. P.Prokhorenko, P. P. 1987 849
Mitsuya, Y. 1993 Modified Reynolds equation for ultra-thin film gas lubrication using 1.5 order slip flow model and considering surface accommodation coefficientASME Journal of Tribology 115 289CrossRefGoogle Scholar
Neto, C.Evans, D. R.Bonaccurso, E.Butt, H. J.Craig, V. S. J. 2005 Boundary slip in Newtonian liquids: a review of experimental studiesRep. Prog. Phys 68 2859CrossRefGoogle Scholar
Niavarani, A.Priezjev, N. V. 2008 Rheological study of polymer flow past rough surfaces with slip boundary conditionsJ. Chem. Phys 129 144902CrossRefGoogle ScholarPubMed
Oran, E. S.Oh, C. K.Cybyk, B. Z. 1998 Direct Simulation Monte Carlo: Recent Advances and ApplicationsAnnu. Rev. Fluid Mech 30 403CrossRefGoogle Scholar
Pashley, R. M. 1981 Hydration forces between mica surfaces in aqueous electrolyte solutionsJ. Coll. Interface Sci 80 153CrossRefGoogle Scholar
Perkin, S.Chai, L.Kampf, N.Raviv, U.Briscoe, W.Dunlop, I.Titmuss, S.Seo, M.Kumacheva, E.Klein, J. 2006 Forces between mica surfaces, prepared in different ways, across aqueous and nonaqueous liquids confined to molecularly thin filmsLangmuir 22 6142CrossRefGoogle ScholarPubMed
Pfahler, J.Harley, J.Bau, H.Zemel, J. N. 1991 Cho, D.49
Prieve, D. C.Russel, W. B. 1988 Simplified predictions of Hamaker constants from Lifshitz theoryJ. Colloid and Interface Sci 125 1CrossRefGoogle Scholar
Raviv, U.Perkin, S.Laurat, P.Klein, J. 2004 Fluidity of water confined down to subnanometer filmsLangmuir 20 5322CrossRefGoogle ScholarPubMed
Rettner, C. T. 1997 Determination of accommodation coefficients for N2 at disk-drive air-bearing surfacesJ. Tribology 119 588CrossRefGoogle Scholar
Sanbonmatsu, K. YTung, C. S. 2006 High performance computing in biology: Multimillion atom simulations of nanoscale systemsJ. Struct. Biol 157 470CrossRefGoogle ScholarPubMed
Schaaf, S. A.Sherman, F. S. 1954 Skin friction in slip flowJ. Aero. Sci 21 85CrossRefGoogle Scholar
Shen, S.Chen, G.Crone, R. M.Anaya-Dufresne, M. 2007 A kinetic-theory based first order slip boundary condition for gas flowPhys. Fluids 19 086101CrossRefGoogle Scholar
Stokes, G. G. 1845 On the theories of internal friction of fluids in motion, and of equilibrium and motion of elastic solidsTrans. Camb. Phil. Soc 8 287Google Scholar
Sun, Y. H.Chan, W. K.Liu, N. Y. 2003 A slip model for gas lubrication based on an effective viscosity conceptProc IMechE J 217 187CrossRefGoogle Scholar
Szeri, A. Z.Phillips, C. 1974 Hydrodynamic effects in a hydrostatic bearing: an application of the method of SchwartzTrans. ASLE 18 116CrossRefGoogle Scholar
Thompson, P. A.Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfacesNature 389 360CrossRefGoogle Scholar
Ungerer, P.Nieto-Draghi, C.Rousseau, B.Ahunbay, G.Lachet, V. 2007 Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictionsJ. Molecular Liquids 134 71CrossRefGoogle Scholar
Van Odyck, D. E. A.Venner, C. H. 2003 Compressible Stokes flow in thin filmsJ. Tribology 125 543CrossRefGoogle Scholar
Veijola, T.Turowski, M. 2000
Vincenti, W. G.Kruger, C. H. 1965 Introduction to Physical Gas DynamicsJohn Wiley & SonsNew YorkGoogle Scholar
Vinogradova, O. I. 1995 Drainage of a thin liquid film confined between hydrophobic surfacesLangmuir 11 2213CrossRefGoogle Scholar
Willis, D. R. 1962 Comparison of kinetic theory analyses of linearized Couette flowPhys. Fluids 5 127CrossRefGoogle Scholar
Wu, L.Bogy, D. B. 2003 New first and second order slip models for the compressible Reynolds equationJ. Tribology 125 558CrossRefGoogle Scholar
Zhu, Y.Granick, S. 2001 Rate-dependent slip of Newtonian liquid at smooth surfacesPhys. Rev. Letts 87 096105CrossRefGoogle ScholarPubMed
Zhu, Y.Granick, S. 2003 Reassessment of solidification in fluids confined between mica sheetsLangmuir 19 8148CrossRefGoogle Scholar
Zhu, Y.Granick, S. 2004 Superlubricity: A Paradox about Confined Fluids ResolvedPhys. Rev. Letts 93 096101CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×