Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T23:32:47.210Z Has data issue: false hasContentIssue false

6 - Estimation of spectra and frequency-response functions

Published online by Cambridge University Press:  14 January 2010

Michel Verhaegen
Affiliation:
Technische Universiteit Delft, The Netherlands
Vincent Verdult
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

After studying this chapter you will be able to

  • use the discrete Fourier transform to transform finite-length time signals to the frequency domain;

  • describe the properties of the discrete Fourier transform;

  • relate the discrete Fourier transform to the discrete-time Fourier transform;

  • efficiently compute the discrete Fourier transform using fast-Fourier-transform algorithms;

  • estimate spectra from finite-length data sequences;

  • reduce the variance of spectral estimates using blocked data processing and windowing techniques;

  • estimate the frequency-response function (FRF) and the disturbance spectrum from finite-length data sequences for an LTI system contaminated by output noise; and

  • reduce the variance of FRF estimates using windowing techniques.

Introduction

In this chapter the problem of determining a model from input and output measurements is treated using frequency-domain methods. In the previous chapter we studied the estimation of the state given the system and measurements of its inputs and outputs. In this chapter we do not bother about estimating the state. The models that will be estimated are input–output models, in which the state does not occur. More specifically, we investigate how to obtain in a simple and fast manner an estimate of the dynamic transfer function of an LTI system from recorded input and output data sequences taken from that system. We are interested in estimating the frequency-response function (FRF) that relates the measurable input to the measurable output sequence. The FRF has already been discussed briefly in Section 3.4.4 and its estimation is based on Lemma 4.3 via the estimation of the signal spectra of the recorded input and output data. Special attention is paid to the case of practical interest in which the data records have finite data length.

Type
Chapter
Information
Filtering and System Identification
A Least Squares Approach
, pp. 178 - 206
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×