Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T20:18:03.859Z Has data issue: false hasContentIssue false

7 - Dolphins and Whales – Taking Cognitive Research Out of the Tanks and into the Wild

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

Whales and dolphins have long life spans and many species live in complex social groups. Their sensory and cognitive systems are adapted to the underwater world, and they have convergently evolved complex acoustic processes to help negotiate social relationships. Despite being valuable study systems for studying cognition and its evolution, they are inherently difficult to study: only a few species are kept in captivity, captive animals may not always be reflective of their wild counterparts, field research is costly and wild animals typically spend the majority of their time out of the researchers’ view. In spite of these challenges, several long-term studies have yielded fascinating insights into the cognitive processes involved in social behaviour, foraging and orientation. In addition, recent advances in technology are beginning to provide valuable insights into the animals’ underwater behaviours and movements over larger temporal and spatial scales. While such studies have largely focused on ecological, physiological and behavioural aspects, their potential to study cognition is considerable. This chapter provides a summary of the cognitive research on cetaceans, and critically reviews the main methodologies used to study cognition in these animals, highlighting potential weaknesses and identifying best practice in study design and data analysis.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 146 - 176
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amici, F., Aureli, F., and Call, J. (2008). Fission–fusion dynamics, behavioral flexibility and inhibitory control in primates. Current Biology, 18, 14151419.CrossRefGoogle ScholarPubMed
Aureli, F., and Schaffner, C. M. (2002). Relationship assessment through emotional mediation. Behaviour, 139, 393420.CrossRefGoogle Scholar
Aureli, F., Schaffner, C. M., Boesch, C., et al. (2008). Fission–fusion dynamics: new research frameworks. Current Anthropology, 48, 627654.CrossRefGoogle Scholar
Busia, L., Schaffner, C. M., and Aureli, F. (2017). Relationship quality affects fission decisions in wild spider monkeys (Ateles geoffroyi). Ethology, 123, 405411.CrossRefGoogle Scholar
Grueter, C. C., Chapais, B., and Zinner, D. (2012). Evolution of multilevel social systems in nonhuman primates and humans. International Journal of Primatology, 33, 10021037.CrossRefGoogle ScholarPubMed
Kummer, H. (1971). Primate societies: group techniques of ecological adaptation. Chicago, IL: Aldine.Google Scholar
Ramos-Fernandez, G., and Aureli, F. (2018). Fission–fusion. In Encyclopedia of animal cognition and behavior. Berlin: Springer.Google Scholar
Rodseth, L., Wrangham, R. W., Harrigan, A. M., and Smuts, B. B. (1991). The human community as a primate society. Current Anthropology, 32, 221254.CrossRefGoogle Scholar
Zahavi, A. (1977). The testing of a bond. Animal Behaviour, 25, 246247.CrossRefGoogle Scholar

References

Alves, F., Quérouil, S. Dinis, A., et al. (2013). Population structure of short-finned pilot whales in the oceanic archipelago of Madeira based on photo-identification and genetic analyses: implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 23, 758776.CrossRefGoogle Scholar
Augusto, J. F., Frasier, T. R., and Whitehead, H. (2017). Social structure of long-finned pilot whales (Globicephala melas) off northern Cape Breton Island, Nova Scotia. Behaviour, 154, 509540.CrossRefGoogle Scholar
De Stephanis, R., Verborgh, P., Perez, S., Esteban, R., Minvielle-Sebastia, L., and Guinet, C. (2008). Long-term social structure of long-finned pilot whales (Globicephala melas) in the Strait of Gibraltar. Acta Ethologica, 11, 8194.CrossRefGoogle Scholar
Fais, A., Soto, N. A., Johnson, M., Perez-Gonzalez, C., Miller, P. J. O., and Madsen, P. T. (2015). Sperm whale echolocation behaviour reveals a directed, prior-based search strategy informed by prey distribution. Behavioral Ecology and Sociobiology, 69, 663674.CrossRefGoogle Scholar
Gero, S., Bøttcher, A., Whitehead, H., and Madsen, P. T. (2016). Socially segregated, sympatric sperm whale clans in the Atlantic Ocean. Royal Society Open Science, 3, 160061.CrossRefGoogle ScholarPubMed
Johnson, M., Madsen, P. T., Zimmer, W. M. X., De Soto, N. A., and Tyack, P. L. (2004). Beaked whales echolocate on prey. Proceedings of the Royal Society of London B: Biological Sciences, 271, 383386.CrossRefGoogle ScholarPubMed
Kasuya, T., and Marsh, H. (1984). Life history and reproductive biology of the short-finned pilot whale, Globicephala macrorhynchus, off the Pacific coast of Japan. IWC Special Issue, 6, 259310.Google Scholar
Madsen, P. T., De Soto, N. A., Arranz, P., and Johnson, M. (2013). Echolocation in Blainville’s beaked whales (Mesoplodon densirostris). Journal of Comparative Physiology A, 199, 451469.CrossRefGoogle ScholarPubMed
Mahaffy, S. D., Baird, R. W., Mcsweeney, D. J., Webster, D. L., and Schorr, G. S. (2015). High site fidelity, strong associations, and long-term bonds: short-finned pilot whales off the island of Hawai’i. Marine Mammal Science, 31, 14271451.CrossRefGoogle Scholar
Rendell, L. E., and Whitehead, H. (2003). Vocal clans in sperm whales (Physeter macrocephalus). Proceedings of the Royal Society of London B: Biological Sciences, 270, 225231.CrossRefGoogle ScholarPubMed
Verborgh, P., De Stephanis, R., Pérez, S., Jaget, Y., Barbraud, C., and Guinet, C. (2009). Survival rate, abundance, and residency of long-finned pilot whales in the Strait of Gibraltar. Marine Mammal Science, 25, 523536.CrossRefGoogle Scholar
Whitehead, H., Dillon, M., Dufault, S., Weilgart, L., and Wright, J. (1998). Non-geographically based population structure of South Pacific sperm whales: dialects, fluke-markings and genetics. Journal of Animal Ecology, 67, 253262.CrossRefGoogle Scholar

References

Agnarsson, I., and May-Collado, L. J. (2008). The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Molecular Phylogenetics and Evolution, 48, 964985.CrossRefGoogle ScholarPubMed
Allen, J., Weinrich, M., Hoppitt, W., and Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science, 340, 485488.CrossRefGoogle ScholarPubMed
Amos, B., Schlötterer, C., and Tautz, D. (1993). Social-structure of pilot whales revealed by analytical DNA profiling. Science, 260, 670672.CrossRefGoogle ScholarPubMed
Arrigoni, M., Manfredi, P., Panigada, S., Bramanti, L., and Santangelo, G. (2011). Life-history tables of the Mediterranean fin whale from stranding data. Marine Ecology, 32, 19.CrossRefGoogle Scholar
Au, W. W. L. (2000). Hearing in whales and dolphins: an overview. In Hearing by whales and dolphins (pp. 142). New York, NY: Springer.CrossRefGoogle Scholar
Au, W. W. L., Ford, J. K. B., Horne, J. K., and Allman, K. A. N. (2004). Echolocation signals of free-ranging killer whales (Orcinus orca) and modeling of foraging for Chinook salmon (Oncorhynchus tshawytscha). Journal of the Acoustical Society of America, 115, 901909.CrossRefGoogle ScholarPubMed
Au, W. W. L., Horne, J. K., and Jones, C. (2010). Basis of acoustic discrimination of chinook salmon from other salmons by echolocating Orcinus orca. Journal of the Acoustical Society of America, 28, 22252232.CrossRefGoogle Scholar
Bain, D. (1990). Examining the validity of inferences drawn from photo-identification data, with special reference to studies of the killer whale (Orcinus orca) in British Columbia. Report of the International Whaling Commission, 12, 93100.Google Scholar
Baird, R. W., and Whitehead, H. (2000). Social organization of mammal-eating killer whales: group stability and dispersal patterns. Canadian Journal of Zoology, 78(12), 20962105.CrossRefGoogle Scholar
Best, P. B., Canham, P. A. S., and Macleod, N. (1984). Patterns of reproduction in sperm whales, Physeter macrocephalus. Report of the International Whaling Commission, 6, 5179.Google Scholar
Bigg, M. A. (1982). An assessment of killer whale (Orcinus orca) stocks off Vancouver Island, British Columbia. Report of the International Whaling Commission, 32, 655666.Google Scholar
Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B., and Balcomb, K. C. (1990). Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Report of the International Whaling Commission, 12, 383405.Google Scholar
Bloodworth, B. E., and Odell, D. K. (2008). Kogia breviceps (Cetacea: Kogiidae). Mammalian Species, 1–12.CrossRefGoogle Scholar
Branstetter, B. K., Leger, J. S., Acton, D., et al. (2017). Killer whale (Orcinus orca) behavioral audiograms. Journal of the Acoustical Society of America, 141, 23872398.CrossRefGoogle ScholarPubMed
Brent, L. J., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., and Croft, D. P. (2015). Ecological knowledge, leadership, and the evolution of menopause in killer whales. Current Biology, 25, 746750.CrossRefGoogle ScholarPubMed
Bruck, J. N. (2013). Decades-long social memory in bottlenose dolphins. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20131726.Google ScholarPubMed
Caro, T., Beeman, K., Stankowich, T., and Whitehead, H. (2011). The functional significance of colouration in cetaceans. Evolutionary Ecology, 25, 1231.CrossRefGoogle Scholar
Cerchio, S., and Dahlheim, M. E. (2001). Variation in feeding vocalizations of humpback whales (Megaptera novaeangliae) from Southeast Alaska. Bioacoustics, 11, 277295.CrossRefGoogle Scholar
Cerchio, S., Jacobsen, J. K., and Norris, T. N. (2001). Temporal and geographical variation in songs of humpback whales, Megaptera novaeangliae: synchronous change in Hawaiian and Mexican breeding assemblages. Animal Behaviour, 62, 313329.CrossRefGoogle Scholar
Clapham, P. J. (2001). Why do baleen whales migrate? A response to Corkeron and Connor. Marine Mammal Science, 17, 432436.CrossRefGoogle Scholar
Connor, R. C., Mann, J., Tyack, P. L., and Whitehead, H. (1998). Social evolution in toothed whales. Trends in Ecology and Evolution, 13, 228232.CrossRefGoogle ScholarPubMed
Connor, R. C., Heithaus, M. R., and Barre, L. M. (2001). Complex social structure, alliance stability and mating access in a bottlenose dolphin ‘super-alliance’. Proceedings of the Royal Society of London B: Biological Sciences, 268, 263267.CrossRefGoogle Scholar
Connor, R. C., Watson-Capps, J. J., Sherwin, W. B., and Krützen, M. (2010). A new level of complexity in the male alliance networks of Indian Ocean bottlenose dolphins (Tursiops sp.). Biology Letters, 20100852.Google Scholar
Corkeron, P. J., and Connor, R. C. (1999). Why do baleen whale migrate? Marine Mammal Science, 15, 12281245.CrossRefGoogle Scholar
Crance, J. L., Bowles, A. E., and Garver, A. (2014). Evidence for vocal learning in juvenile male killer whales, Orcinus orca, from an adventitious cross-socializing experiment. Journal of Experimental Biology, 217, 12291237.Google ScholarPubMed
Cranford, T. W., Krysl, P., and Hildebrand, J. A. (2008). Acoustic pathways revealed: simulated sound transmission and reception in Cuvier’s beaked whale (Ziphius cavirostris). Bioinspiration and Biomimetics, 3, 016001.CrossRefGoogle ScholarPubMed
Cranford, T. W., Elsberry, W. R., Van Bonn, W. G., et al. (2011). Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): evidence for two sonar sources. Journal of Experimental Marine Biology and Ecology, 407, 8196.CrossRefGoogle Scholar
Curé, C., Antunes, R. N., Samarra, F. I. P., et al. (2012). Pilot whales attracted to killer whale sounds: acoustically-mediated interspecific interactions in cetaceans. PLoS ONE, 7(12), e52201.CrossRefGoogle ScholarPubMed
Curé, C., Antunes, R. N., Alves, A. C., Visser, F., Kvadsheim, P. H., and Miller, P. J. O. (2013). Responses of male sperm whales (Physeter macrocephalus) to killer whale sounds: implications for anti-predator strategies. Scientific Reports, 3, 1579.CrossRefGoogle ScholarPubMed
D’Vincent, C. G., Nilson, R. M., and Hanna, R. E. (1985). Vocalization and coordinated feeding behaviour of the humpback whale in southeastern Alaska. Scientific Reports of the Whales Research Institute, 36, 4147.Google Scholar
Dahlheim, M. E., and Ljungblad, D. K. (1990). Preliminary hearing study on gray whales Eschrichtius robustus in the field. In Sensory abilities of cetaceans (pp. 335346). New York, NY: Plenum Press.CrossRefGoogle Scholar
Deecke, V. B. (2006). Studying marine mammal cognition in the wild – a review of four decades of playback experiments. Aquatic Mammals, 32, 461482.CrossRefGoogle Scholar
Deecke, V. B., Ford, J. K. B., and Spong, P. (2000). Dialect change in resident killer whales (Orcinus orca): implications for vocal learning and cultural transmission. Animal Behaviour, 60, 629638.CrossRefGoogle ScholarPubMed
Deecke, V. B., Barrett-Lennard, L. G., Spong, P., and Ford, J. K. B. (2010). The structure of stereotyped calls reflects kinship and social affiliation in resident killer whales (Orcinus orca). Naturwissenschaften, 97, 513518.CrossRefGoogle ScholarPubMed
Deecke, V. B., Nykänen, M., Foote, A. D., and Janik, V. M. (2011). Vocal behaviour and feeding ecology of killer whales (Orcinus orca) around Shetland, UK. Aquatic Biology, 13, 7988.CrossRefGoogle Scholar
DeLong, C. M., Au, W. W., Lemonds, D. W., Harley, H. E., and Roitblat, H. L. (2006). Acoustic features of objects matched by an echolocating bottlenose dolphin. Journal of the Acoustical Society of America, 119, 18671879.CrossRefGoogle ScholarPubMed
Drake, S. E., Crish, S. D., George, J. C., Stimmelmayr, R., and Thewissen, J. (2015). Sensory hairs in the bowhead whale, Balaena mysticetus (Cetacea, Mammalia). Anatomical Record, 298, 13271335.CrossRefGoogle ScholarPubMed
Dunlop, R. A., Cato, D. H., and Noad, M. J. (2008). Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Marine Mammal Science, 24, 613629.CrossRefGoogle Scholar
Ford, J. K. B. (1991). Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia, Canada. Canadian Journal of Zoology, 69, 14541483.CrossRefGoogle Scholar
Ford, J. K. B., and Ellis, G. M. (2006). Selective foraging by fish-eating killer whales Orcinus orca in British Columbia. Marine Ecology Progress Series, 316, 185199.CrossRefGoogle Scholar
Ford, J. K. B., and Reeves, R. R. (2008). Fight or flight: antipredator strategies of baleen whales. Mammal Review, 38, 5086.CrossRefGoogle Scholar
Ford, J. K. B., Ellis, G. M., Olesiuk, P. F., and Balcomb, K. C. (2010). Linking killer whale survival and prey abundance: food limitation in the oceans’ apex predator? Biology Letters, 6, 139142.CrossRefGoogle ScholarPubMed
Foster, E. A., Franks, D. W., Mazzi, S., et al. (2012). Adaptive prolonged postreproductive life span in killer whales. Science, 337, 1313.CrossRefGoogle ScholarPubMed
Gannon, D. P., Barros, N. B., Nowacek, D. P., Read, A. J., Waples, D. M., and Wells, R. S. (2005). Prey detection by bottlenose dolphins, Tursiops truncatus: an experimental test of the passive listening hypothesis. Animal Behaviour, 69, 709720.CrossRefGoogle Scholar
Garde, E., Heide-Jørgensen, M. P., Hansen, S. H., Nachman, G., and Forchhammer, M. C. (2007). Age-specific growth and remarkable longevity in narwhals (Monodon monoceros) from West Greenland as estimated by aspartic acid racemization. Journal of Mammalogy, 88, 4958.CrossRefGoogle Scholar
Garland, E. C., Goldizen, A. W., Rekdahl, M. L., et al. (2011). Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Current Biology, 21, 687691.CrossRefGoogle Scholar
George, J. C., Bada, J., Zeh, J., et al. (1999). Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Canadian Journal of Zoology, 77, 571580.CrossRefGoogle Scholar
Götz, T., Verfuss, U. K., and Schnitzler, H.-U. (2006). ‘Eavesdropping’ in wild rough-toothed dolphins (Steno bredanensis)? Biology Letters, 2, 57.CrossRefGoogle ScholarPubMed
Guinet, C. (1991). Intentional stranding apprenticeship and social play in killer whales (Orcinus orca). Canadian Journal of Zoology, 69, 27122716.CrossRefGoogle Scholar
Guinet, C., and Bouvier, J. (1995). Development of intentional stranding hunting techniques in killer whale (Orcinus orca) calves at Crozet Archipelago. Canadian Journal of Zoology, 73, 2733.CrossRefGoogle Scholar
Hamilton, P. K., Knowlton, A. R., Marx, M. K., and Kraus, S. D. (1998). Age structure and longevity in North Atlantic right whales Eubalaena glacialis and their relation to reproduction. Marine Ecology Progress Series, 171, 285292.CrossRefGoogle Scholar
Hammond, P. S., Mizroch, S. A., and Donovan, G. P. (1982). Individual recognition of cetaceans: use of photo-identification and other techniques to estimate population parameters. International Whaling Commission.Google Scholar
Harley, H. E., Putman, E. A., and Roitblat, H. L. (2003). Bottlenose dolphins perceive object features through echolocation. Nature, 424, 667669.CrossRefGoogle ScholarPubMed
Harper, C., Mclellan, W. A., Rommel, S., Gay, D. M., Dillaman, R., and Pabst, D. A. (2008). Morphology of the melon and its tendinous connections to the facial muscles in bottlenose dolphins (Tursiops truncatus). Journal of Morphology, 269, 820839.CrossRefGoogle Scholar
Hartman, K. L., Visser, F., and Hendriks, A. J. E. (2008). Social structure of Risso’s dolphins (Grampus griseus) at the Azores: a stratified community based on highly associated social units. Canadian Journal of Zoology, 86, 294306.CrossRefGoogle Scholar
Helweg, D. A., Frankel, A. S., Mobley, J. R. Jr, and Herman, L. M. (1992). Humpback whale song: our current understanding. In Marine mammal sensory systems (pp. 459483). New York, NY: Springer.CrossRefGoogle Scholar
Hemilä, S., Nummela, S., and Reuter, T. (1999). A model of the odontocete middle ear. Hearing Research, 133, 8297.CrossRefGoogle Scholar
Herman, L. M., Pack, A. A., and Hoffmann-Kuhnt, M. (1998). Seeing through sound: dolphins (Tursiops truncatus) perceive the spatial structure of objects through echolocation. Journal of Comparative Psychology, 11, 292.CrossRefGoogle Scholar
Herzing, D. L. (2004). Social and nonsocial uses of echolocation in free-ranging Stenella frontalis and Tursiops truncatus. In Echolocation in bats and dolphins (pp. 404409). Chicago, IL: University of Chicago Press.Google Scholar
Heyning, J. E. (1997). Sperm whale phylogeny revisited: analysis of the morphological evidence. Marine Mammal Science, 13, 596613.CrossRefGoogle Scholar
Houser, D. S., Gomez-Rubio, A., and Finneran, J. J. (2008). Evoked potential audiometry of 13 Pacific bottlenose dolphins (Tursiops truncatus gilli). Marine Mammal Science, 24, 2841.CrossRefGoogle Scholar
Irvine, A. B., Wells, R. S., and Scott, M. D. (1982). An evaluation of techniques for tagging small odontocete cetaceans. Fishery Bulletin, 80, 135143.Google Scholar
Jaakkola, K. (2012). Cetacean cognitive specializations. In The Oxford handbook of comparative evolutionary psychology (pp. 144165). Oxford: Oxford University Press.CrossRefGoogle Scholar
Jaakkola, K., Fellner, W., Erb, L., Rodriguez, M., and Guarino, E. (2005). Understanding of the concept of numerically “less” by bottlenose dolphins (Tursiops truncatus). Journal of Comparative Psychology, 119, 296.CrossRefGoogle ScholarPubMed
Jaakkola, K., Guarino, E., Rodriguez, M., Erb, L., and Trone, M. (2010). What do dolphins (Tursiops truncatus) understand about hidden objects? Animal Cognition, 13, 103.CrossRefGoogle ScholarPubMed
Janik, V. M. (2005). Underwater acoustic communication networks in marine mammals. In Animal communication networks (pp. 390415). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Janik, V. M., and Slater, P. J. B. (1997). Vocal learning in mammals. Advances in the Study of Behavior, 26, 5999.CrossRefGoogle Scholar
Jensen, F. H., Bejder, L., Wahlberg, M., and Madsen, P. T. (2009). Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild. Journal of Experimental Biology, 212, 10781086.CrossRefGoogle ScholarPubMed
Johnson, M., Aguilar de Soto, N., and Madsen, P. T. (2009). Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Marine Ecology Progress Series, 395, 5573.CrossRefGoogle Scholar
Johnson, M. P., and Tyack, P. L. (2003). A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE Journal of Oceanic Engineering, 28, 312.CrossRefGoogle Scholar
Kastelein, R. A., Bunskoek, P., Hagedoorn, M., Au, W. W. L., and de Haan, D. (2002). Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals. Journal of the Acoustical Society of America, 112, 334344.CrossRefGoogle ScholarPubMed
Ketten, D. R. (1997). Structure and function in whale ears. Bioacoustics, 8, 103135.CrossRefGoogle Scholar
Ketten, D. R. (2000). Cetacean ears. In Hearing by whales and dolphins (pp. 43108). New York, NY: Springer.CrossRefGoogle Scholar
Kilian, A., Yaman, S., von Fersen, L., and Güntürkün, O. (2003). A bottlenose dolphin discriminates visual stimuli differing in numerosity. Animal Learning and Behavior, 31, 133142.CrossRefGoogle ScholarPubMed
King, S. L., and Janik, V. M. (2013). Bottlenose dolphins can use learned vocal labels to address each other. Proceedings of the National Academy of Sciences, 110, 1321613221.CrossRefGoogle ScholarPubMed
King, S. L., Sayigh, L. S., Wells, R. S., Fellner, W., and Janik, V. M. (2013). Vocal copying of individually distinctive signature whistles in bottlenose dolphins. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20130053.Google ScholarPubMed
King, S. L., Harley, H. E., and Janik, V. M. (2014). The role of signature whistle matching in bottlenose dolphins, Tursiops truncatus. Animal Behaviour, 96, 7986.CrossRefGoogle Scholar
Koschinski, S. (2001). Current knowledge on harbour porpoises (Phocoena phocoena) in the Baltic Sea. Ophelia, 55, 167197.CrossRefGoogle Scholar
Kremers, D., Célérier, A., Schaal, B., et al. (2016). Sensory perception in cetaceans: part I – current knowledge about dolphin senses as a representative species. Frontiers in Ecology and Evolution, 4, 49.CrossRefGoogle Scholar
Krützen, M., Sherwin, W. B., Connor, R. C., et al. (2003). Contrasting relatedness patterns in bottlenose dolphins (Tursiops sp.) with different alliance strategies. Proceedings of the Royal Society of London B: Biological Sciences, 270, 497502.CrossRefGoogle ScholarPubMed
Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., and Sherwin, W. B. (2005). Cultural transmission of tool use in bottlenose dolphins. Proceedings of the National Academy of Sciences, 102, 89398943.CrossRefGoogle ScholarPubMed
Lyamin, O., Pryaslova, J., Lance, V., and Siegel, J. (2005). Continuous activity in cetaceans after birth. Nature, 435, 1177.CrossRefGoogle ScholarPubMed
Lyrholm, T., and Gyllensten, U. (1998). Global matrilineal population structure in sperm whales as indicated by mitochondrial DNA sequences. Proceedings of the Royal Society of London B: Biological Sciences, 265, 16791684.CrossRefGoogle ScholarPubMed
Madsen, P., Wahlberg, M., and Møhl, B. (2002). Male sperm whale (Physeter macrocephalus) acoustics in a high-latitude habitat: implications for echolocation and communication. Behavioral Ecology and Sociobiology, 53, 3141.Google Scholar
Madsen, P. T., Johnson, M., Aguilar de Soto, N., Zimmer, W. M. X., and Tyack, P. L. (2005). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 208, 181194.CrossRefGoogle ScholarPubMed
Madsen, P. T., Lammers, M., Wisniewska, D., and Beedholm, K. (2013). Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side. Journal of Experimental Biology, 216, 40914102.CrossRefGoogle ScholarPubMed
Mass, A., and Supin, A. (1990). Best vision zones in the retinae of some cetaceans. In Sensory abilities of cetaceans (pp. 505517). New York, NY: Springer.CrossRefGoogle Scholar
Mass, A. M., and Supin, A. Y. (1999). Retinal topography and visual acuity in the riverine tucuxi (Sotalia fluviatilis). Marine Mammal Science, 15, 351365.CrossRefGoogle Scholar
Mate, B., Mesecar, R., and Lagerquist, B. (2007). The evolution of satellite-monitored radio tags for large whales: one laboratory’s experience. Deep Sea Research Part II: Topical Studies in Oceanography, 54, 224247.CrossRefGoogle Scholar
May-Collado, L. J., and Agnarsson, I. (2005). Cytochrome b and Bayesian inference of whale phylogeny. Molecular Phylogenetics and Evolution, 38, 344354.CrossRefGoogle ScholarPubMed
May-Collado, L. J., Agnarsson, I., and Wartzok, D. (2007). Phylogenetic review of tonal sound production in whales in relation to sociality. BMC Evolutionary Biology, 7, 136.CrossRefGoogle ScholarPubMed
Mercado, E. I., Murray, S. O., Uyeyama, R. K., Pack, A. A., and Herman, L. M. (1998). Memory for recent actions in the bottlenosed dolphin (Tursiops truncatus): repetition of arbitrary behaviors using an abstract rule. Learning and Behavior, 26, 210218.CrossRefGoogle Scholar
Mercado, E. I., Uyeyama, R. K., Pack, A. A., and Herman, L. M. (1999). Memory for action events in the bottlenosed dolphin. Animal Cognition, 2, 1725.Google Scholar
Mercado, E., Killebrew, D. A., Pack, A. A., Mácha, I. V., and Herman, L. M. (2000). Generalization of ‘same–different’classification abilities in bottlenosed dolphins. Behavioural Processes, 50, 7994.CrossRefGoogle ScholarPubMed
Miller, P. J. O. (2006). Diversity in sound pressure levels and estimated active space of resident killer whale vocalizations. Journal of Comparative Physiology A, 192, 449459.CrossRefGoogle ScholarPubMed
Mobley, J. R. Jr., and Helweg, D. A. (1990). Visual ecology and cognition in cetaceans. In Sensory abilities of cetaceans (pp. 519536). New York, NY: Springer.CrossRefGoogle Scholar
Mobley, J. R., Herman, L. M., and Frankel, A. S. (1988). Responses of wintering humpback whales (Megaptera novaeangliae) to playback of recordings of winter and summer vocalizations and of synthetic sound. Behavioral Ecology and Sociobiology, 23, 211223.CrossRefGoogle Scholar
Möller, L. M., Beheregaray, L. B., Harcourt, R. G., and Krützen, M. (2001). Alliance membership and kinship in wild male bottlenose dolphins (Tursiops aduncus) of southeastern Australia. Proceedings of the Royal Society of London B: Biological Sciences, 268, 19411947.CrossRefGoogle ScholarPubMed
Möller, L. M., Beheregaray, L. B., Allen, S. J., and Harcourt, R. G. (2006). Association patterns and kinship in female Indo-Pacific bottlenose dolphins (Tursiops aduncus) of southeastern Australia. Behavioral Ecology and Sociobiology, 61, 109117.CrossRefGoogle Scholar
Neil, D. T. (2002). Cooperative fishing interactions between Aboriginal Australians and dolphins in eastern Australia. Anthrozoos, 15, 318.CrossRefGoogle Scholar
Nikaido, M., Matsuno, F., Hamilton, H., et al. (2001). Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proceedings of the National Academy of Sciences, 98, 73847389.CrossRefGoogle ScholarPubMed
Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M. N., and Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408, 537.CrossRefGoogle ScholarPubMed
Olesiuk, P. F., Bigg, M. A., and Ellis, G. M. (1990). Life history and population dynamics of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Reports of the International Whaling Commission, 12, 209243.Google Scholar
Parsons, K. M., Durban, J. W., Claridge, D. E., Balcomb, K. C., Noble, L. R., and Thompson, P. M. (2003). Kinship as a basis for alliance formation between male bottlenose dolphins, Tursiops truncatus, in the Bahamas. Animal Behaviour, 66, 185194.CrossRefGoogle Scholar
Price, S. A., Bininda-Emonds, O. R. P., and Gittleman, J. L. (2005). A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biological Reviews, 80, 445473.CrossRefGoogle ScholarPubMed
Pryor, K., and Lindbergh, J. (1990). A dolphin–human fishing cooperative in Brazil. Marine Mammal Science, 6, 7782.CrossRefGoogle Scholar
Pyenson, N. D., Goldbogen, J. A., Vogl, A. W., Szathmary, G., Drake, R. L., and Shadwick, R. E. (2012). Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. Nature, 485, 498501.CrossRefGoogle ScholarPubMed
Quick, N. J., and Janik, V. M. (2012). Bottlenose dolphins exchange signature whistles when meeting at sea. Proceedings of the Royal Society of London B: Biological Sciences, 279, 25392545.Google ScholarPubMed
Ramp, C., Hagen, W., Palsbøll, P., Bérubé, M., and Sears, R. (2010). Age-related multi-year associations in female humpback whales (Megaptera novaeangliae). Behavioral Ecology and Sociobiology, 64, 15631576.CrossRefGoogle Scholar
Reidenberg, J. S., and Laitman, J. T. (2007). Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog. Anatomical Record, 290, 745759.CrossRefGoogle ScholarPubMed
Richard, K. R., Dillon, M. C., Whitehead, H., and Wright, J. M. (1996). Patterns of kinship in groups of free-living sperm whales (Physeter macrocephalus) revealed by multiple molecular genetic analyses. Proceedings of the National Academy of Sciences, 93, 87928795.CrossRefGoogle ScholarPubMed
Ridgway, S. H., and Carder, D. A. (1990). Tactile sensitivity, somatosensory responses, skin vibrations, and the skin surface ridges of the bottle-nose dolphin, Tursiops truncatus. In Sensory abilities of cetaceans (pp. 163179). New York, NY: Springer.CrossRefGoogle Scholar
Ridgway, S. H., and Carder, D. A. (2001). Assessing hearing and sound production in cetaceans not available for behavioral audiograms: experiences with sperm, pygmy sperm, and gray whales. Aquatic Mammals, 27, 267276.Google Scholar
Sauerland, M., and Dehnhardt, G. (1998). Underwater audiogram of a tucuxi (Sotalia fluviatilis guianensis). The Journal of the Acoustical Society of America, 103, 11991204.CrossRefGoogle ScholarPubMed
Sayigh, L. S., Tyack, P. L., Wells, R. S., Solow, A. R., Scott, M. D., and Irvine, A. B. (1999). Individual recognition in wild bottlenose dolphins: a field test using playback experiments. Animal Behaviour, 57, 4150.CrossRefGoogle ScholarPubMed
Schorr, G. S., Falcone, E. A., Moretti, D. J., and Andrews, R. D. (2014). First long-term behavioral records from Cuvier’s beaked whales (Ziphius cavirostris) reveal record-breaking dives. PLoS ONE, 9(3), e92633.CrossRefGoogle ScholarPubMed
Schusterman, R., Thomas, J. A., and Wood, F. G. (1986). Dolphin cognition and behavior: a comparative approach. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Seed, A., and Byrne, R. W. (2010). Animal tool-use. Current Biology, 20, 10321039.CrossRefGoogle ScholarPubMed
Similä, T., Holst, J. C., and Christensen, I. (1996). Occurrence and diet of killer whales in northern Norway: seasonal patterns relative to the distribution and abundance of Norwegian spring-spawning herring. Canadian Journal of Fisheries and Aquatic Sciences, 53, 769779.CrossRefGoogle Scholar
Simon, M., Ugarte, F., Wahlberg, M., and Miller, L. A. (2006). Icelandic killer whales Orcinus orca use a pulsed call suitable for manipulating the schooling behaviour of herring Clupea harengus. Bioacoustics, 26, 5774.CrossRefGoogle Scholar
Smolker, R. A., Richards, A. F., Connor, R. C., and Pepper, J. W. (1992). Sex-differences in patterns of association among Indian Ocean bottle-nosed dolphins. Behaviour, 123, 3869.CrossRefGoogle Scholar
Smolker, R., Richards, A., Connor, R., Mann, J., and Berggren, P. (1997). Sponge carrying by dolphins (Delphinidae, Tursiops sp.): a foraging specialization involving tool use? Ethology, 103, 454465.CrossRefGoogle Scholar
Stafford, K. M., Moore, S. E., Laidre, K. L., and Heide-Jørgensen, M. (2008). Bowhead whale springtime song off West Greenland. Journal of the Acoustical Society of America, 124, 33153323.CrossRefGoogle ScholarPubMed
Stevick, P. T., Palsbøll, P. J., Smith, T. D., Bravington, M. V., and Hammond, P. S. (2001). Errors in identification using natural markings: rates, sources and effects on capture–recapture estimates of abundance. Canadian Journal of Fisheries and Aquatic Sciences, 58, 18611870.Google Scholar
Stimpert, A. K., Wiley, D. N., Au, W. W. L., Johnson, M. P., and Arsenault, R. (2007). ‘Megapclicks’: acoustic click trains and buzzes produced during night-time foraging of humpback whales (Megaptera novaeangliae). Biology Letters, 3, 467470.CrossRefGoogle ScholarPubMed
Stolen, M. K., and Barlow, J. (2003). A model life table for bottlenose dolphins (Tursiops truncatus) from the Indian River Lagoon system, Florida, USA. Marine Mammal Science, 19, 630649.CrossRefGoogle Scholar
Szymanski, M. D., Bain, D. E., Kiehl, K., Pennington, S., Wong, S., and Henry, K. R. (1999). Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms. Journal of the Acoustical Society of America, 106, 11341141.CrossRefGoogle ScholarPubMed
Tavares, S. B., Samarra, F. I. P., and Miller, P. J. O. (2017). A multilevel society of herring-eating killer whales indicates adaptation to prey characteristics. Behavioral Ecology, 28, 500514.CrossRefGoogle Scholar
Thewissen, J. G. M. (1994). Phylogenetic aspects of cetacean origins: a morphological perspective. Journal of Mammalian Evolution, 2, 157184.CrossRefGoogle Scholar
Thomas, J., Chun, N., Au, W., and Pugh, K. (1988). Underwater audiogram of a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 84, 936940.CrossRefGoogle ScholarPubMed
Tyack, P. L. (1983). Differential response of humpback whales, Megaptera novaeangliae, to playback of song or social sounds. Behavioral Ecology and Sociobiology, 13, 4955.CrossRefGoogle Scholar
Tyack, P. L., Zimmer, W. M., Moretti, D., et al. (2011). Beaked whales respond to simulated and actual navy sonar. PLoS ONE, 6(3), e17009.CrossRefGoogle ScholarPubMed
Vergara, V., and Barrett-Lennard, L. (2017). Call usage learning by a beluga (Delphinapterus leucas) in a categorical matching task. International Journal of Comparative Psychology, 30.CrossRefGoogle Scholar
Watwood, S. L., Tyack, P. L., and Wells, R. S. (2004). Whistle sharing in paired male bottlenose dolphins, Tursiops truncatus. Behavioral Ecology and Sociobiology, 55, 531543.CrossRefGoogle Scholar
Weinrich, M. T. (1991). Stable social associations among humpback whales (Megaptera novaeangliae) in the southern Gulf of Maine. Canadian Journal of Zoology, 69, 30123019.CrossRefGoogle Scholar
Weiß, B. M., Ladich, F., Spong, P., and Symonds, H. K. (2006). Vocal behavior of resident killer whale matrilines with newborn calves: the role of family signatures. Journal of the Acoustical Society of America, 119, 627635.CrossRefGoogle ScholarPubMed
Weiß, B. M., Symonds, H. K., Spong, P., and Ladich, F. (2011). Call sharing across vocal clans of killer whales: evidence for vocal imitation? Marine Mammal Science, 27, 113.CrossRefGoogle Scholar
Wellings, C. E. (1944). The killer whales of Twofold Bay, N.S.W., Australia, Grampus orca. Australian Journal of Zoology, 10, 291293.Google Scholar
Wells, R. S. (1991). The role of long-term study in understanding the social structure of a bottlenose dolphin community. In Dolphin societies: discoveries and puzzles (pp. 199225). Berkeley, CA: University of California Press.Google Scholar
Whitehead, H., and Mann, J. (2000). Female reproductive strategies of cetaceans. In Cetacean societies: field studies of dolphins and whales (pp. 219246). Chicago, IL: University of Chicago Press.Google Scholar
Whitehead, H., Waters, S., and Lyrholm, T. (1991). Social organization of female sperm whales and their offspring: constant companions and casual acquaintances. Behavioral Ecology and Sociobiology, 29, 385389.CrossRefGoogle Scholar
Wilson, B., Thompson, P. M., and Hammond, P. S. (1997). Habitat use by bottlenose dolphins: seasonal distribution and stratified movement patterns in the Moray Firth, Scotland. Journal of Applied Ecology, 34, 13651374.CrossRefGoogle Scholar
Wilson, B., Hammond, P. S., and Thompson, P. M. (1999). Estimating size and assessing trends in a coastal bottlenose dolphin population. Ecological Applications, 9, 288300.CrossRefGoogle Scholar
Wisniewska, D. M., Johnson, M., Beedholm, K., Wahlberg, M., and Madsen, P. T. (2012). Acoustic gaze adjustments during active target selection in echolocating porpoises. Journal of Experimental Biology, 215, 43584373.CrossRefGoogle ScholarPubMed
Wright, B. M., Stredulinsky, E. H., Ellis, G. M., and Ford, J. K. B. (2016). Kin-directed food sharing promotes lifetime natal philopatry of both sexes in a population of fish-eating killer whales, Orcinus orca. Animal Behaviour, 115, 8195.CrossRefGoogle Scholar
Wright, B. M., Ford, J. K. B., Ellis, G. M., et al. (2017). Fine-scale foraging movements by fish-eating killer whales (Orcinus orca) relate to the vertical distributions and escape responses of salmonid prey (Oncorhynchus spp.). Movement Ecology, 5, 3.CrossRefGoogle Scholar
Yeater, D., Kuczaj, I., and Stan, A. (2010). Observational learning in wild and captive dolphins. International Journal of Comparative Psychology, 23, 379385.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×