Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T01:51:01.544Z Has data issue: false hasContentIssue false

2 - Bats – Using Sound to Reveal Cognition

Published online by Cambridge University Press:  30 July 2018

Nereida Bueno-Guerra
Affiliation:
Comillas Pontifical University
Federica Amici
Affiliation:
Universität Leipzig
Get access

Summary

With almost 1300 species all around the globe, bats are probably the most diverse group within the mammalian order, exhibiting an immense range of foraging strategies, social behaviours and navigation skills. The reliance of many bats on echolocation to perceive the world makes them especially useful for cognitive studies. By recording bats' sound emissions, researchers can gain access to the sensory world of the bat, documenting how it allocates sensory attention in space and detects the presence of new stimuli. Moreover, bats rely on a range of sensory modalities including vision, passive audition, olfaction and even magnetic and thermal sensing. Beyond sensing, bats' movement in three dimensions over very large environmental scales, their often complex social life style and their unique longevity (relative to body size) make them intriguing models for studying cognition. However, studies of bat cognition are still sparse, mostly focusing on the psychophysics of echolocation. In this chapter, we highlight many of the advantages and difficulties of studying bat cognition. We point to some of the interesting open questions in the field, offering practical advice for the researcher who has never worked with bats before.
Type
Chapter
Information
Field and Laboratory Methods in Animal Cognition
A Comparative Guide
, pp. 31 - 59
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anisimov, V. N., Herbst, J. A., Abramchuk, A. N., Latanov, A.V., Hahnloser, R. H., and Vyssotski, A. L. (2014). Reconstruction of vocal interactions in a group of small songbirds. Nature Methods, 11, 11351137.CrossRefGoogle Scholar
Cvikel, N., Berg, K. E., Levin, E., et al. (2015). Bats aggregate to improve prey search but might be impaired when their density becomes too high. Current Biology, 25, 206211.CrossRefGoogle ScholarPubMed
D’Amelio, P. B., Trost, L., and ter Maat, A. (2017). Vocal exchanges during pair formation and maintenance in the zebra finch (Taeniopygia guttata). Frontiers in Zoology, 14, 13.CrossRefGoogle ScholarPubMed
Geva-Sagiv, M., Romani, S., Las, L., and Ulanovsky, N. (2016). Hippocampal global remapping for different sensory modalities in flying bats. Nature Neuroscience, 19, 952958.CrossRefGoogle ScholarPubMed
Gill, L. F., D’Amelio, P. B., Adreani, N. M., Sagunsky, H., Gahr, M., and ter Maat, A. (2016). A minimum-impact, flexible tool to study vocal communication of small animals with precise individual-level resolution. Methods in Ecology and Evolution, 7, 13491358.CrossRefGoogle Scholar
Gill, L. F., Goymann, W., ter Maat, A., and Gahr, M. (2015). Patterns of call communication between group-housed zebra finches change during the breeding cycle. eLife, 4, 07770.CrossRefGoogle ScholarPubMed
Hiryu, S., Hagino, T., Riquimaroux, H., and Watanabe, Y. (2007). Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by telemetry microphone. Journal of the Acoustical Society of America, 121, 17491757.CrossRefGoogle ScholarPubMed
Ma, S., Maat, A. T., and Gahr, M. (2017). Power-law scaling of calling dynamics in zebra finches. Scientific Reports, 7, 8397.CrossRefGoogle ScholarPubMed
ter Maat, A., Trost, L., Sagunsky, H., Seltmann, S., and Gahr, M. (2014). Zebra finch mates use their forebrain song system in unlearned call communication. PLoS ONE, 9(10), e109334.CrossRefGoogle ScholarPubMed

References

Ammersdörfer, S., Galinski, S., and Esser, K. H. (2012). Effects of aversive experience on the behavior within a custom-made plus maze in the short-tailed fruit bat, Carollia perspicillata. Journal of Comparative Physiology A, 198, 733739.CrossRefGoogle ScholarPubMed
Clarin, T. M. A., Ruczyński, I., Page, R. A., and Siemers, B. M. (2013). Foraging ecology predicts learning performance in insectivorous bats. PLoS ONE, 8, e64823.CrossRefGoogle ScholarPubMed
Geipel, I., Jung, K., and Kalko, E. K. V. (2013). Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20122830.Google ScholarPubMed
Ortega, J. (2016). Sociality in bats. Berlin: Springer.CrossRefGoogle Scholar
Page, R. A., and Jones, P. L. (2016). Overcoming sensory uncertainty: factors affecting foraging decisions in frog-eating bats. In Perception and cognition in animal communication (pp. 285312). New York, NY: Springer.Google Scholar
Page, R. A., and Ryan, M. J. (2005). Flexibility in assessment of prey cues: frog-eating bats and frog calls. Proceedings of the Royal Society of London B: Biological Sciences, 272, 841847.Google ScholarPubMed
Parolin, L. C., Mikich, S. B., and Bianconi, G. V. (2015). Olfaction in the fruit-eating bats Artibeus lituratus and Carollia perspicillata: an experimental analysis. Anais da Academia Brasileira de Ciências, 87, 20472053.CrossRefGoogle ScholarPubMed
Siemers, B. M., and Page, R. A. (2009). Behavioral studies of bats in captivity: methodology, training, and experimental design. In Ecological and behavioral methods for the study of bats (pp. 373392). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Simmons, N. B. (2005). Chiroptera. In Mammal species of the world: a taxonomic and geographic reference (pp. 312529). Baltimore, MD: Johns Hopkins University Press.Google Scholar
Stockwell, E. F. (2001). Morphology and flight manoeuvrability in New World leaf-nosed bats (Chiroptera: Phyllostomidae). Journal of Zoology, 254, 505514.CrossRefGoogle Scholar
Tuttle, M. D., and Ryan, M. J. (1981). Bat predation and the evolution of frog vocalizations in the Neotropics. Science, 214, 677678.CrossRefGoogle ScholarPubMed
Übernickel, K., Tschapka, M. T., and Kalko, E. K. V. (2013). Flexible echolocation behavior of trawling bats during approach of continuous or transient prey cues. Frontiers in Physiology, 4, 96.CrossRefGoogle ScholarPubMed
Winter, Y., von Merten, S., and Kleindienst, H. U. (2005). Visual landmark orientation by flying bats at a large-scale touch and walk screen for bats, birds and rodents. Journal of Neuroscience Methods, 141, 283290.CrossRefGoogle Scholar

References

Adams, R. A., and Pedersen, S. C. (eds.) (2013). Bat evolution, ecology, and conservation. New York, NY: Springer.CrossRefGoogle Scholar
Altringham, J. D. (2011). Bats – from evolution to conservation. Oxford: Oxford University Press.CrossRefGoogle Scholar
Altringham, J. D., and Fenton, M. B. (2003). Sensory ecology and communication in the Chiroptera. In Bat ecology (pp. 90127). Chicago, IL: The John Hopkins University Press.Google Scholar
American Society of Mammalogists. Mammalian species. Available from https://academic.oup.com/mspecies.Google Scholar
ATLAS – High-throughput wildlife tracking. Available from www.tau.ac.il/~stoledo/tags.Google Scholar
Aytekin, M., Mao, B., and Moss, C. F. (2010). Spatial perception and adaptive sonar behavior. The Journal of the Acoustical Society of America, 128, 37883798.CrossRefGoogle ScholarPubMed
Barber, J. R., Leavell, B. C., Keener, A. L., et al. (2015). Moth tails divert bat attack: evolution of acoustic deflection. Proceedings of the National Academy of Sciences, 112, 28122816.CrossRefGoogle ScholarPubMed
Barchi, J. R., Knowles, J. M., and Simmons, J. A. (2013). Spatial memory and stereotypy of flight paths by big brown bats in cluttered surroundings. Journal of Experimental Biology, 216, 10531063.CrossRefGoogle ScholarPubMed
Boonman, A., Bar-On, Y., Cvikel, N., and Yovel, Y. (2013). It’s not black or white – on the range of vision and echolocation in echolocating bats. Frontiers in Physiology, 4, 248.CrossRefGoogle ScholarPubMed
Carter, G. G., Ratcliffe, J. M., and Galef, B. G. (2010). Flower bats (Glossophaga soricina) and fruit bats (Carollia perspicillata) rely on spatial cues over shapes and scents when relocating food. PLoS ONE, 5(5), 16.CrossRefGoogle ScholarPubMed
Chrichton, E. G., and Krutzsch, P. H. (2000). Reproductive biology of bats. London: Academic Press.Google Scholar
Clarin, T. M. A., Ruczyński, I., Page, R. A., and Siemers, B. M. (2013). Foraging ecology predicts learning performance in insectivorous bats. PLoS ONE, 8(6), e64823.CrossRefGoogle ScholarPubMed
Clarin, T. M. A., Borissov, I., Page, R. A., Ratcliffe, J. M., and Siemers, B. M. (2014). Social learning within and across species: information transfer in mouse-eared bats. Canadian Journal of Zoology, 92, 129139.CrossRefGoogle Scholar
Corcoran, A. J., and Conner, W. E. (2014). Bats jamming bats: food competition through sonar interference. Science, 346, 745747.CrossRefGoogle ScholarPubMed
Cvikel, N., Egert Berg, K., Levin, E., et al. (2015). Bats aggregate to improve prey search but might be impaired when their density becomes too high. Current Biology, 25, 206211.CrossRefGoogle ScholarPubMed
Danilovich, S., Krishnan, A., Lee, W. J., et al. (2015). Bats regulate biosonar based on the availability of visual information. Current Biology, 25, 11241125.CrossRefGoogle ScholarPubMed
Dechmann, D. K. N., Heucke, S. L., Giuggioli, L., Safi, K., Voigt, C. C., and Wikelski, M. (2009). Experimental evidence for group hunting via eavesdropping in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences, 276, 27212728.Google Scholar
Denzinger, A., and Schnitzler, H. U. (2013). Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Frontiers in Physiology, 4, 164.CrossRefGoogle ScholarPubMed
Dorado-Correa, A. M., Goerlitz, H. R., and Siemers, B. M. (2013). Interspecific acoustic recognition in two European bat communities. Frontiers in Physiology, 4, 192.CrossRefGoogle ScholarPubMed
Eklöf, J., Šuba, J., Petersons, G., and Rydell, J. (2014). Visual acuity and eye size in five European bat species in relation to foraging and migration strategies. Environmental and Experimental Biology, 12, 16.Google Scholar
Fenton, M. B., and Simmons, N. B. (2014). Bats – A world of science and mystery. Chicago, IL: The University of Chicago Press.Google Scholar
Fenton, M. B., Grinnell, D. A., Popper, N. A., and Fay, R. R. (2016). Bat bioacoustics. New York, NY: Springer.CrossRefGoogle Scholar
Finkelstein, A., Derdikman, D., Rubin, A., Foerster, J. N., Las, L., and Ulanovsky, N. (2014). Three-dimensional head-direction coding in the bat brain. Nature, 517, 159164.CrossRefGoogle ScholarPubMed
Firzlaff, U., Schuchmann, M., Grunwald, J. E., Schuller, G., and Wiegrebe, L. (2007). Object-oriented echo perception and cortical representation in echolocating bats. PLoS Biology, 5, 11741183.CrossRefGoogle ScholarPubMed
Fleischmann, D., and Kerth, G. (2014). Roosting behavior and group decision making in 2 syntopic bat species with fission-fusion societies. Behavioral Ecology, 25, 12401247.CrossRefGoogle Scholar
Fujioka, E., Mantani, S., Hiryu, S., Riquimaroux, H., and Watanabe, Y. (2011). Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system. The Journal of the Acoustical Society of America, 129, 10811088.CrossRefGoogle ScholarPubMed
Fujioka, E., Aihara, I., Sumiya, M., Aihara, K., and Hiryu, S. (2016). Echolocating bats use future-target information for optimal foraging. Proceedings of the National Academy of Sciences, 113, 48484852.CrossRefGoogle ScholarPubMed
Gaudette, J. E., Kloepper, L. N., Warnecke, M., and Simmons, J. A. (2014). High resolution acoustic measurement system and beam pattern reconstruction method for bat echolocation emissions. The Journal of the Acoustical Society of America, 135, 513520.CrossRefGoogle ScholarPubMed
Geberl, C., Brinkløv, S., Wiegrebe, L., and Surlykke, A. (2015). Fast sensory–motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept. Proceedings of the National Academy of Sciences, 112, 41224127.CrossRefGoogle ScholarPubMed
Geipel, I., Kalko, E. K. V., Wallmeyer, K., and Knörnschild, M. (2013). Postweaning maternal food provisioning in a bat with a complex hunting strategy. Animal Behaviour, 85, 14351441.CrossRefGoogle Scholar
Genzel, D., and Wiegrebe, L. (2013). Size does not matter: size-invariant echo-acoustic object classification. Journal of Comparative Physiology A, 199, 159168.CrossRefGoogle Scholar
Genzel, D., Gebert, C., Dera, T., and Wiegrebe, L. (2012). Coordination of bat sonar activity and flight for the exploitation of three-dimensional objects. Journal of Experimental Biology, 215, 22262235.CrossRefGoogle Scholar
Geva-Sagiv, M., Las, L., Yovel, Y., and Ulanovsky, N. (2015). Spatial cognition in bats and rats: from sensory acquisition to multiscale maps and navigation. Nature Reviews Neuroscience, 16, 94108.CrossRefGoogle ScholarPubMed
Geva-Sagiv, M., Romani, S., Las, L., and Ulanovsky, N. (2016). Hippocampal global remapping for different sensory modalities in flying bats. Nature Neuroscience, 19, 952958.CrossRefGoogle ScholarPubMed
Ghose, K., Horiuchi, T. K., Krishnaprasad, P. S., and Moss, C. F. (2006). Echolocating bats use a nearly time-optimal strategy to intercept prey. PLoS Biology, 4, 865873.CrossRefGoogle ScholarPubMed
Ghose, K., Triblehorn, J. D., Bohn, K., Yager, D. D., and Moss, C. F. (2009). Behavioral responses of big brown bats to dives by praying mantises. Journal of Experimental Biology, 212, 693703.CrossRefGoogle ScholarPubMed
Goerlitz, H. R., Greif, S., and Siemers, B. M. (2008). Cues for acoustic detection of prey: insect rustling sounds and the influence of walking substrate. Journal of Experimental Biology, 211, 27992806.CrossRefGoogle ScholarPubMed
Goerlitz, H. R., ter Hofstede, H. M., Zeale, M. R. K., Jones, G., and Holderied, M. W. (2010). An aerial-hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20, 15681572.CrossRefGoogle ScholarPubMed
Goerlitz, H. R., Genzel, D., and Wiegrebe, L. (2012). Bats’ avoidance of real and virtual objects: implications for the sonar coding of object size. Behavioural Processes, 89, 6167.CrossRefGoogle ScholarPubMed
Greif, S., and Siemers, B. M. (2010). Innate recognition of water bodies in echolocating bats. Nature Communications, 1, 107.CrossRefGoogle ScholarPubMed
Greif, S., Borissov, I., Yovel, Y., and Holland, R. A. (2014). A functional role of the sky’s polarization pattern for orientation in the greater mouse-eared bat. Nature Communications, 5, 5488.CrossRefGoogle ScholarPubMed
Greif, S., Zsebők, S., Schmieder, D., and Siemens, B. M. (2017). Acoustic mirrors as sensory traps for bats. Science, 1047, 10451047.CrossRefGoogle Scholar
Griffin, D. R. (1988). Cognitive aspects of echolocation. In Animal sonar (pp. 683690). New York, NY: Plenum Press.CrossRefGoogle Scholar
Guilbert, J. M., Walker, M. M., Greif, S., and Parsons, S. (2007). Evidence of homing following translocation of long-tailed bats (Chalinolobus tuberculatus) at Grand Canyon Cave, New Zealand. New Zealand Journal of Zoology, 34, 239.CrossRefGoogle Scholar
Hage, S. R., Jiang, T., Berquist, S. W., Feng, J., and Metzner, W. (2013). Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proceedings of the National Academy of Sciences, 110, 40634068.CrossRefGoogle ScholarPubMed
Harten, L., Matalon, Y., Galli, N., Navon, H., Dor, R., and Yovel, Y. (2018). Persistent producer-scrounger relationships in bats. Science Advances, 4, e1603293.CrossRefGoogle ScholarPubMed
Hedenström, A., and Johansson, L. C. (2015). Bat flight: aerodynamics, kinematics and flight morphology. Journal of Experimental Biology, 218, 653663.CrossRefGoogle ScholarPubMed
Hiryu, S., and Riquimaroux, H. (2011). Developmental changes in ultrasonic vocalizations by infant Japanese echolocating bats, Pipistrellus abramus. The Journal of the Acoustical Society of America, 130, 147153.CrossRefGoogle ScholarPubMed
Hiryu, S., Shiori, Y., Hosokawa, T., Riquimaroux, H., and Watanabe, Y. (2008). On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. Journal of Comparative Physiology A, 194, 841851.CrossRefGoogle ScholarPubMed
Hoffmann, S., Vega-Zuniga, T., Greiter, W., et al. (2016). Congruent representation of visual and acoustic space in the superior colliculus of the echolocating bat phyllostomus discolor. European Journal of Neuroscience, 44, 26852697.CrossRefGoogle ScholarPubMed
ter Hofstede, H. M., and Ratcliffe, J. M. (2016). Evolutionary escalation: the bat–moth arms race. The Journal of Experimental Biology, 219, 15891602.CrossRefGoogle ScholarPubMed
Holderied, M. W., and von Helversen, O. (2003). Echolocation range and wingbeat period match in aerial-hawking bats. Proceedings of the Royal Society of London B: Biological Sciences, 270, 22932299.CrossRefGoogle ScholarPubMed
Holland, R. A. (2007). Orientation and navigation in bats: known unknowns or unknown unknowns? Behavioral Ecology and Sociobiology, 61, 653660.CrossRefGoogle Scholar
Holland, R. A., Thorup, K., Vonhof, M. J., Cochran, W. W., and Wikelski, M. (2006). Bat orientation using earth’s magnetic field. Nature, 444, 702.CrossRefGoogle ScholarPubMed
Holland, R. A., Borissov, I., and Siemers, B. M. (2010). A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proceedings of the National Academy of Sciences, 107, 69416945.CrossRefGoogle ScholarPubMed
Hulgard, K., and Ratcliffe, J. M. (2014). Niche-specific cognitive strategies: object memory interferes with spatial memory in the predatory bat Myotis nattereri. Journal of Experimental Biology, 217, 32933300.Google ScholarPubMed
Hutterer, R., Ivanova, T., Meyer-Cords, C., and Rodrigues, L. (2005). Bat migrations in Europe – a review of banding data and literature. Bonn: Federal Agency for Nature Conservation.Google Scholar
ICARUS Initiative – International Cooperation for Animal Research Using Space. Available from http://icarusinitiative.orgGoogle Scholar
Istvanko, D. R., Risch, T. S., and Rolland, V. (2016). Sex-specific foraging habits and roost characteristics of Nycticeius humeralis in North-Central Arkansas. Journal of Mammalogy, 97, 13361344.CrossRefGoogle Scholar
Jakobsen, L., and Surlykke, A. (2010). Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit. Proceedings of the National Academy of Sciences, 107, 1393013935.CrossRefGoogle ScholarPubMed
Jakobsen, L., Olsen, M. N., and Surlykke, A. (2015). Dynamics of the echolocation beam during prey pursuit in aerial hawking bats. Proceedings of the National Academy of Sciences, 112, 81188123.CrossRefGoogle ScholarPubMed
Jensen, M. E., Moss, C. F., and Surlykke, A. (2005). Echolocating bats can use acoustic landmarks for spatial orientation. Journal of Experimental Biology, 208, 43994410.CrossRefGoogle ScholarPubMed
Jones, G., and Ransome, R. (1993). Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Proceedings of the Royal Society of London B: Biological Sciences, 252, 125128.Google ScholarPubMed
Jones, P. L., Ryan, M. J., Flores, V., and Page, R. A. (2013). When to approach novel prey cues? Social learning strategies in frog-eating bats. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20132330.Google ScholarPubMed
Kenward, R. E. (2001). A manual for wildlife radio tagging. San Diego, CA: Academic Press.Google Scholar
Kerth, G. (2008). Causes and consequences of sociality in bats. BioScience, 58, 737746.CrossRefGoogle Scholar
Kerth, G., and Dechmann, D. K. N. (2009). Field-based observations and experimental studies of bat behavior. In Ecological and behavioral methods for the study of bats (pp. 393406). Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Kerth, G., Ebert, C., and Schmidtke, C. (2006). Group decision making in fission-fusion societies: evidence from two-field experiments in Bechstein’s bats. Proceedings of the Royal Society of London B: Biological Sciences, 273, 27852790.Google ScholarPubMed
Kerth, G., Wagner, M., and König, B. (2001). Roosting together, foraging apart: information transfer about food is unlikely to explain sociality in female Bechstein’s bats (Myotis bechsteinii). Behavioral Ecology and Sociobiology, 50, 283291.CrossRefGoogle Scholar
Kerth, G., Perony, N., and Schweitzer, F. (2011). Bats are able to maintain long-term social relationships despite the high fission–fusion dynamics of their groups. Proceedings of the Royal Society of London B: Biological Sciences, 278, 27612767.Google ScholarPubMed
Knörnschild, M. (2014). Vocal production learning in bats. Current Opinion in Neurobiology, 28, 8085.CrossRefGoogle ScholarPubMed
Knörnschild, M., Nagy, M., Metz, M., Mayer, F., and von Helversen, O. (2010). Complex vocal imitation during ontogeny in a bat. Biology Letters, 6, 156159.CrossRefGoogle ScholarPubMed
Koblitz, J. C., Stilz, P., and Schnitzler, H. V. (2010). Source levels of echolocation signals vary in correlation with wingbeat cycle in landing big brown bats (Eptesicus fuscus). Journal of Experimental Biology, 213, 32633268.CrossRefGoogle ScholarPubMed
Kong, Z., Fuller, N., Wang, S., et al. (2016). Perceptual modalities guiding bat flight in a native habitat. Scientific Reports, 6, 27252.CrossRefGoogle Scholar
Koselj, K., Schnitzler, H. U., and Siemers, B. M. (2011). Horseshoe bats make adaptive prey-selection decisions, informed by echo cues. Proceedings of the Royal Society of London B: Biological Sciences, 278, 30343041.Google ScholarPubMed
Kounitsky, P., Rydell, J., Amichai, E., et al. (2015). Bats adjust their mouth gape to zoom their biosonar field of view. Proceedings of the National Academy of Sciences, 112, 67246729.CrossRefGoogle ScholarPubMed
Krishna, A., and Bhatnagar, K. P. (2011). Hormones and reproductive cycles in bats. In Hormones and reproduction of vertebrates (pp. 241289). London: Elsevier.Google Scholar
Kunz, T. H., and Fenton, M. B. (2003). Bat ecology. Chicago, IL: The University of Chicago Press.Google Scholar
Kunz, T. H., and Parsons, S. (2009). Ecological and behavioral methods for the study of bats. Baltimore, MD: The Johns Hopkins University Press.CrossRefGoogle Scholar
Kürten, L., and Schmidt, U. (1982). Thermoperception in the common vampire bat (Desmodus rotundus). Journal of Comparative Physiology A, 146, 223228.CrossRefGoogle Scholar
Luo, J., Goerlitz, H. R., Brumm, H., and Wiegrebe, L. (2016). Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise. Scientific Reports, 5, 18556.CrossRefGoogle Scholar
Luo, J., Kothari, N. B., and Moss, C. F. (2017). Sensorimotor integration on a rapid time scale. Proceedings of the National Academy of Sciences, 114, 66056610.CrossRefGoogle ScholarPubMed
Moss, C. F., and Schnitzler, H. U. (1989). Accuracy of target ranging in echolocating bats: acoustic information processing. Journal of Comparative Physiology A, 165, 383393.CrossRefGoogle Scholar
Moss, C. F., and Surlykke, A. (2010). Probing the natural scene by echolocation in bats. Frontiers in Behavioral Neuroscience, 4, 33.Google ScholarPubMed
Moss, C. F., Redish, D., Gounden, C., and Kunz, T. H. (1997). Ontogeny of vocal signals in the little brown bat, Myotis lucifugus. Animal Behaviour, 54, 131141.CrossRefGoogle ScholarPubMed
MOTUS – Wildlife Tracking System. Available from https://motus.org.Google Scholar
Neuweiler, G. (2000). The biology of bats. Oxford: Oxford University Press.Google Scholar
Neuweiler, G. (2003). Evolutionary aspects of bat echolocation. Journal of Comparative Physiology A, 189, 245256.CrossRefGoogle ScholarPubMed
Norberg, U. M., and Rayner, J. M. V. (1987). Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society B, 316, 335427.Google Scholar
O’Mara, T. M., Dechmann, D. K. N., and Page, R. A. (2014a). Frugivorous bats evaluate the quality of social information when choosing novel foods. Behavioral Ecology, 25, 12331239.CrossRefGoogle Scholar
O’Mara, T. M., Wikelski, M., and Dechmann, D. K. N. (2014b). 50 years of bat tracking: device attachment and future directions. Methods in Ecology and Evolution, 5, 311319.CrossRefGoogle Scholar
Ortega, J. (ed.) (2016). Sociality in bats. Berlin: Springer.CrossRefGoogle Scholar
Page, R. A., and Ryan, M. J. (2006). Social transmission of novel foraging behavior in bats: frog calls and their referents. Current Biology, 16, 12011205.CrossRefGoogle ScholarPubMed
Page, R. A., von Merten, S., and Siemers, B. M. (2012). Associative memory or algorithmic search: a comparative study on learning strategies of bats and shrews. Animal Cognition, 15, 495504.CrossRefGoogle ScholarPubMed
Podlutsky, A. J., Khritankov, A. M., Ovodov, N. D., and Austad, S. N. (2005). A new field record for bat longevity. The Journals of Gerontology Series A, 60, 13661368.CrossRefGoogle ScholarPubMed
Popa-Lisseanu, A. G., and Voigt, C. C. (2009). Bats on the move. Journal of Mammalogy, 90, 12831289.CrossRefGoogle Scholar
Prat, Y., Taub, M., and Yovel, Y. (2015). Vocal learning in a social mammal: demonstrated by isolation and playback experiments in bats. Science Advances, 1, e1500019.CrossRefGoogle Scholar
Prat, Y., Taub, M., and Yovel, Y. (2016). Everyday bat vocalizations contain information about emitter, addressee, context, and behavior. Scientific Reports, 6, 39419.CrossRefGoogle ScholarPubMed
Prat, Y., Azoulay, L., Dor, R., and Yovel, Y. (2017). Crowd vocal learning induces vocal dialects in bats: playback of conspecifics shapes fundamental frequency usage by pups. PLoS Biology, 15, e2002556.CrossRefGoogle ScholarPubMed
Ramakers, J. J. C., Dechmann, D. K. N., Page, R. A., and O’Mara, M. T. (2016). Frugivorous bats prefer information from novel social partners. Animal Behaviour, 116, 8387.CrossRefGoogle Scholar
Ratcliffe, J. M., Raghuram, H., Marimuthu, G., Fullard, J. H., and Fenton, M. B. (2005). Hunting in unfamiliar space: echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behavioral Ecology and Sociobiology, 58, 157164.CrossRefGoogle Scholar
Ripperger, S., Josic, D., Hierold, M., et al. (2016). Automated proximity sensing in small vertebrates: design of miniaturized sensor nodes and first field tests in bats. Ecology and Evolution, 6, 21792189.CrossRefGoogle ScholarPubMed
Roeleke, M., Blohm, T., Kramer-Schadt, S., Yovel, Y., and Voigt, C. C. (2016). Habitat use of bats in relation to wind turbines revealed by GPS tracking. Scientific Reports, 6, 28961.CrossRefGoogle ScholarPubMed
Rose, A., Kolar, M., Tschapka, M., and Knörnschild, M. (2016). Learning where to feed: the use of social information in flower-visiting Pallas’ long-tongued bats (Glossophaga soricina). Animal Cognition, 19, 251262.CrossRefGoogle ScholarPubMed
Ruczynski, I., and Siemers, B. M. (2011). Hibernation does not affect memory retention in bats. Biology Letters, 7, 153155.CrossRefGoogle Scholar
Schaub, A., Ostwald, J., and Siemers, B. M. (2008). Foraging bats avoid noise. Journal of Experimental Biology, 211, 31743180.CrossRefGoogle ScholarPubMed
Schnitzler, H. U., and Kalko, E. K. V. (2001). Echolocation by insect-eating bats. BioScience, 51, 557569.CrossRefGoogle Scholar
Schnitzler, H. U., Moss, C. F., and Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18, 386394.CrossRefGoogle Scholar
Seibert, A. M., Koblitz, J. C., Denzinger, A., and Schnitzler, H. U. (2013). Scanning behavior in echolocating common pipistrelle bats (Pipistrellus pipistrellus). PLoS ONE, 8(4), e60752.CrossRefGoogle ScholarPubMed
Senior, P., Butlin, R. K., and Altringham, J. D. (2005). Sex and segregation in temperate bats. Proceedings of the Royal Society of London B: Biological Sciences, 272, 24672473.Google ScholarPubMed
Siemers, B. M., and Güttinger, R. (2006). Prey conspicuousness can explain apparent prey selectivity. Current Biology, 16, 157159.CrossRefGoogle ScholarPubMed
Siemers, B. M., and Page, R. A. (2009). Behavioral studies of bats in captivity: methodology, training, and experimental design. In Ecological and behavioral methods for the study of bats (pp. 373392). Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Siemers, B. M., and Schnitzler, H. U. (2004). Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429, 657661.CrossRefGoogle ScholarPubMed
Siemers, B. M., Kriner, E., Kaipf, I., Simon, M., and Greif, S. (2012). Bats eavesdrop on the sound of copulating flies. Current Biology, 22, 563564.CrossRefGoogle ScholarPubMed
Simmons, J. A. (1989). A view of the world through the bat’s ear: the formation of acoustic images in echolocation. Cognition, 33, 155199.CrossRefGoogle ScholarPubMed
Smotherman, M., Knörnschild, M., Smarsh, G., and Bohn, K. (2016). The origins and diversity of bat songs. Journal of Comparative Physiology A, 202, 535554.CrossRefGoogle ScholarPubMed
Stilz, W. P., and Schnitzler, H. U. (2012). Estimation of the acoustic range of bat echolocation for extended targets. The Journal of the Acoustical Society of America, 132, 17651775.CrossRefGoogle ScholarPubMed
Surlykke, A., Boel Pedersen, S., and Jakobsen, L. (2009a). Echolocating bats emit a highly directional sonar sound beam in the field. Proceedings of the Royal Society of London B: Biological Sciences, 276, 853860.Google Scholar
Surlykke, A., Ghose, K., and Moss, C. F. (2009b). Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. Journal of Experimental Biology, 212, 10111020.CrossRefGoogle ScholarPubMed
Surlykke, A., Jakobsen, L., Kalko, E. K. V., and Page, R. A. (2013). Echolocation intensity and directionality of perching and flying fringe-lipped bats, Trachops cirrhosus (Phyllostomidae). Frontiers in Physiology, 4, 143.CrossRefGoogle ScholarPubMed
Surlykke, A., Nachtigall, E. P., Fay, R. R., and Popper, N. A. (2014). Biosonar. New York, NY: Springer.CrossRefGoogle Scholar
Tsang, S. M., Cirranello, A. L., Bates, P. J. J., and Simmons, N. B. (2016). The roles of taxonomy and systematics in bat conservation. In Bats in the Anthropocene (pp. 503538). Cham: Springer.Google Scholar
Tsoar, A., Nathan, R., Bartan, Y., Vyssotski, A., Dell’Omo, G., and Ulanovsky, N. (2011). Large-scale navigational map in a mammal. Proceedings of the National Academy of Sciences, 108, 718724.CrossRefGoogle Scholar
Ulanovsky, N., and Moss, C. F. (2008). What the bat’s voice tells the bat’s brain. Proceedings of the National Academy of Sciences, 105, 84918498.CrossRefGoogle ScholarPubMed
Voigt, C. C., Lehnert, L. S., Popa-Lisseanu, A. G., et al. (2014). The trans-boundary importance of artificial bat hibernacula in managed European forests. Biodiversity and Conservation, 23, 617631.CrossRefGoogle Scholar
Voigt, C. C., Lindecke, O., Schönborn, S., Kramer-Schadt, S., and Lehmann, D. (2016). Habitat use of migratory bats killed during autumn at wind turbines. Ecological Applications, 26, 771783.CrossRefGoogle ScholarPubMed
Voigt-Heucke, S. L., Zimmer, S., and Kipper, S. (2016). Does interspecific eavesdropping promote aerial aggregations in European pipistrelle bats during autumn? Ethology, 122, 745757.CrossRefGoogle Scholar
Weißenbacher, P., and Wiegrebe, L. (2003). Classification of virtual objects in the echolocating bat, Megaderma lyra. Behavioral Neuroscience, 117, 833839.CrossRefGoogle ScholarPubMed
Weller, T. J., Castle, K. T., Liechti, F., Hein, C. D., Schirmacher, M. R., and Cryan, P. M. (2016). First direct evidence of long-distance seasonal movements and hibernation in a migratory bat. Scientific Reports, 6, 34585.CrossRefGoogle Scholar
Wilkinson, G. S. (1984). Reciprocal food sharing in the vampire bat. Nature, 312, 181184.CrossRefGoogle Scholar
Winter, Y. (2005). Foraging in a complex naturalistic environment: capacity of spatial working memory in flower bats. Journal of Experimental Biology, 208, 539548.CrossRefGoogle Scholar
Withey, J. C., Bloxton, T. D., and Marzluff, J. M. (2001). Effects of tagging and location error in wildlife radiotelemetry studies. In Radio tracking and animal populations (pp. 4375). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Wohlgemuth, M. J., Kothari, N. B., and Moss, C. F. (2016). Action enhances acoustic cues for 3-D target localization by echolocating bats. PLoS Biology, 14, e1002544.CrossRefGoogle ScholarPubMed
Wright, G. S., Wilkinson, G. S., and Moss, C. F. (2011). Social learning of a novel foraging task by big brown bats, Eptesicus fuscus. Animal Behaviour, 82, 10751083.CrossRefGoogle ScholarPubMed
Yamada, Y., Hiryu, S., and Watanabe, Y. (2016). Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight. Journal of Comparative Physiology A, 202, 791801.CrossRefGoogle ScholarPubMed
Yartsev, M. M., Witter, M. P., and Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature, 479, 103107.CrossRefGoogle ScholarPubMed
Yovel, Y., Franz, M. O., Stilz, P., and Schnitzler, H. U. (2008). Plant classification from bat-like echolocation signals. PLoS Computational Biology, 4, e1000032.CrossRefGoogle ScholarPubMed
Yovel, Y., Falk, B., Moss, C. F., and Ulanovsky, N. (2011a). Active control of acoustic field-of-view in a biosonar system. PLoS Biology, 9, e1001150.CrossRefGoogle Scholar
Yovel, Y., Franz, M. O., Stilz, P., and Schnitzler, H. U. (2011b). Complex echo classification by echo-locating bats: a review. Journal of Comparative Physiology A, 197, 475490.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×