Skip to main content Accessibility help
×
Home
  • Print publication year: 2012
  • Online publication date: February 2013

Chapter 9.1 - Structural heart disease

from Section 2 - Fetal disease

Summary

In essence cardiac development shows basic similarities of the major processes involved in between species; therefore, mechanisms unraveled in animal models can be reliably used in understanding normal human cardiac development and congenital heart disease (CHD). This chapter provides an update on recent advances in heart development in which it is important to distinguish a first heart field (FHF) and a second heart field (SHF). It provides a general introduction into embryology and then talks about the most common heart malformations in a developmental context. This is followed by a discussion on each specific malformation. The chapter explains the separation of the SHF in an anterior/secondary (arterial pole) and posterior (venous pole) population. It then introduces a number of processes that are essential in the formation of the four-chambered heart with a proper alignment of the atria, ventricles, and great arteries.
References
Farrell AP. Evolution of cardiovascular systems: insights into ontogeny. In: Burggren, WW, Keller, BB, eds. Development of Cardiovascular System: Molecules to Organisms. Cambridge, UK, New York, NY, USA, Cambridge University Press. 1997; 101–14.
DeRuiter, MC, Poelmann, RE, VanderPlas-de Vries, I, et al. The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes? Anat Embryol 1992;185:461–73.
Buckingham, M, Meilhac, S, Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet 2005;6:826–35.
Cai, CL, Liang, X, Shi, Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003;5:877–89.
de la Cruz, M, Sanchez-Gomez, C, Palomino, MA. The primitive cardiac regions in the straight tube heart (Stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick heart. J Anat 1989;165:121–31.
Kirby, ML, Gale, TF, Stewart, DE. Neural crest cells contribute to normal aorticopulmonary septation. Science 1983;220:1059–61.
Bockman, DE, Redmond, ME, Kirby, ML. Altered development of pharyngeal arch vessels after neural crest ablation. Ann N Y Acad Sci 1990;588:296–304.
Bergwerff, M, Verberne, ME, DeRuiter, MC, et al. Neural crest cell contribution to the developing circulatory system. Implications for vascular morphology? Circ Res 1998;82:221–31.
Farrell, MJ, Burch, JL, Wallis, K, et al. FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation. J Clin Invest 2001;107:1509–17.
Lindsay, EA, Vitelli, F, Su, H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410:97–101.
Poelmann, RE, Mikawa, T, Gittenberger-de Groot, AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn 1998;212:373–84.
Poelmann, RE, Jongbloed, MRM, Molin, DGM, et al. The neural crest is contiguous with the cardiac conduction system in the mouse embryo: a role in induction? Anat Embr 2004;208:389–93.
Gurjarpadhye, A, Hewett, KW, Justus, C, et al. Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol 2007;292:H1291–300.
Bax, NA, Bleyl, SB, Gallini, R, et al. Cardiac malformations in Pdgfrα mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field. Dev Dyn 2010;239:2307–17.
Kruithof, BP, van Wijk, B, Somi, S, et al. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol 2006;295:507–22.
Perez-Pomares, JM, Phelps, A, Sedmerova, M, et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 2002;247:307–26.
Gittenberger-de Groot, AC, Vrancken Peeters, M-PFM, Mentink, MMT, et al. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 1998;82:1043–52.
Lie-Venema, H, van den Akker, NMS, Bax, NAM, et al. Origin, fate, and function of epicardium-derived cells (EPCDs) in normal and abnormal cardiac development. Scientific World Journal 2007;7:1777–98.
Poelmann, RE, Gittenberger-de Groot, AC, Mentink, MMT, et al. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 1993;73:559–68.
Winter, EM, Gittenberger-de Groot AC. Cardiovascular development: towards biomedical applicability: epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci. 2007;64:692–703.
Red-Horse, K, Ueno, H, Weissman, IL, et al. Coronary arteries form by developmental reprogramming of venous cells. Nature 2010;464:549–53.
Zhou, B, Ma, Q, Rajagopal, S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008;454:109–13.
Gittenberger-de Groot, AC, Winter, EM, Poelmann RE. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med 2010;14:1056–60.
Goumans, MJ, de Boer, TP, Smits, AM, et al. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 2007;1:138–49.
Winter, EM, Van Oorschot, AA, Hogers, B, et al. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail 2009;2:643–53.
van Vliet, P, Smits, AM, de Boer, TP, et al. Foetal and adult cardiomyocyte progenitor cells have different developmental potential. J Cell Mol Med 2010;14:861–70.
Poelmann, RE, Jongbloed, MR, Gittenberger-de Groot AC. Pitx2: a challenging teenager. Circ Res 2008;102:749–51.
Franco, D, Campione, M. The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med 2003;13:157–63.
Manasek, FJ, Monroe, RG. Early cardiac morphogenesis is independent of function. Dev Biol 1972;27:584–8.
Bouman, HGA, Broekhuizen, MLA, Baasten, AM, et al. Spectrum of looping disturbances in stage 34 chicken hearts after retinoic acid treatment. Anat Rec 1995;243:101–8.
Blom, NA, Gittenberger-de Groot, AC, DeRuiter, MC, et al. Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity. Circulation 1999;99:800–6.
Bartelings, MM, Gittenberger-de Groot, AC. Morphogenetic considerations on congenital malformations of the outflow tract. Part 1: Common arterial trunk and tetralogy of Fallot. Int J Cardiol 1991;32:213–30.
Conway, SJ, Bundy, J, Chen, J, et al. Decreased neural crest stem cell expansion is responsible for the conotruncal heart defects within the splotch (Sp(2H))/Pax3 mouse mutant. Cardiovasc Res 2000;47:314–28.
Kirby, ML, Waldo, KL. Role of neural crest in congenital heart disease. Circulation 1990;82:332–40.
Bogers, AJJC, Bartelings, MM, Bökenkamp, R, et al. Common arterial trunk, uncommon coronary arterial anatomy. J Thorac Cardiovasc Surg 1993;106:1133–7.
Gittenberger-de Groot, AC, Bartelings, MM, Bogers, AJJC, et al. The embryology of the common arterial trunk. Progr Pediatr Cardiol 2002;15:1–8.
Van Den Akker, NM, Molin, DG, Peters, PP, et al. Tetralogy of fallot and alterations in vascular endothelial growth factor-A signaling and notch signaling in mouse embryos solely expressing the VEGF120 isoform. Circ Res 2007;100:842–9.
Molin, DGM, Roest, PA, Nordstrand, H, et al. Disturbed morphogenesis of cardiac outflow tract and increased rate of aortic arch anomalies in the offspring of diabetic rats. Birth Defects Res A Clin Mol Teratol 2004;70:927–38.
Bartram, U, Molin, DGM, Wisse, LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGFß2-knockout mice. Circulation 2001;103:2745–52.
Jenkins, SJ, Hutson, DR, Kubalak, SW. Analysis of the proepicardium-epicardium transition during the malformation of the RXRalpha-/- epicardium. Dev Dyn 2005;233:1091–101.
Hogers, B, DeRuiter, MC, Gittenberger-de Groot, AC, et al. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 1997;80:473–81.
Van Loo, PF, Mahtab, EAF, Wisse, LJ, et al. Transcription factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol 2007;27:8571–82.
Gittenberger-de Groot, AC, Vrancken Peeters, M-PFM, Bergwerff, M, et al. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res 2000;87:969–71.
Nakajima, Y, Morishima, M, Nakazawa, M, et al. Inhibition of outflow cushion mesenchyme formation in retinoic acid-induced complete transposition of the great arteries. Cardiovasc Res 1996;31:E77–85.
Blom, NA, Ottenkamp, J, Jongeneel, TH, et al. Morphogenetic differences of secundum atrial septal defects. Pediatr Cardiol 2005;26:338–43.
Benson, DW, Silberbach, GM, Kavanaugh-McHugh, A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999;104:1567–73.
Moskowitz, IP, Kim, JB, Moore, ML, et al. A molecular pathway including Id2, Tbx5, and Nkx2–5 required for cardiac conduction system development. Cell 2007;129:1365–76.
Blaschke, RJ, Hahurij, ND, Kuijper, S, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 2007;115:1830–38.
Barlow, GM, Chen, X-N, Lyons, GE, et al. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med 2001;3:91–101.
Blom, NA, Ottenkamp, J, Wenink, AG, et al. Deficiency of the vestibular spine in atrioventricular septal defects in human fetuses with down syndrome. Am J Cardiol 2003;91:180–4.
Mahtab, EAF, Wijffels, MCEF, van den Akker, NMS, et al. Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn 2008;237:847–57.
Hinton, RB Jr, Martin, LJ, Tabangin, ME, et al. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol 2007;50:1590–5.
Wenink, ACG, Gittenberger-de Groot, AC, et al. Developmental considerations of mitral valve anomalies. Int J Cardiol 1986;11:85–98.
Elzenga, N, Gittenberger-de Groot, AC. Coarctation and related aortic arch anomalies in hypoplastic left heart syndrome. Int J Cardiol 1985;8:379–89.
Sedmera, D, Pexieder, T, Rychterova, V, et al. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 1999;254:238–52.
Bartram, U, Bartelings, MM, Kramer, HH, et al. Congenital polyvalvular disease: a review. Pediatr Cardiol 2001;22:93–101.
Garg, V, Muth, AN, Ransom, JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature 2005;437:270–4.
Fernandez, B, Duran, AC, Fernandez-Gallego, T, et al. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J Am Coll Cardiol 2009;54:2312–18.
Gittenberger-de Groot, AC, Tennstedt, C, Chaoui, R, et al. Ventriculo coronary arterial communications (VCAC) and myocardial sinusoids in hearts with pulmonary atresia with intact ventricular septum: two different diseases. Progr Pediatr Cardiol 2001;13:157–64.
Chaoui, R, Tennstedt, C, Göldner, B, et al. Prenatal diagnosis of ventriculo-coronary communications in a second-trimester fetus using transvaginal and transabdominal color Doppler sonography. Ultrasound ObstetGynecol 1997;9:194–7.
Oosthoek, PW, Wenink, ACG, Macedo, AJ, et al. The parachute-like asymmetric mitral valve and its two papillary muscles. J Thorac Cardiovasc Surg 1997;114:9–15.
Wu, B, Wang, Y, Lui, W, et al. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res 2011;109:183–92.
Lie-Venema, H, Eralp, I, Markwald, RR, et al. Periostin expression by epicardium-derived cells (EPDCs) is involved in the development of the atrioventricular valves and fibrous heart skeleton. Differentiation 2008;76:809–19.
Haissaguerre, M, Jais, P, Shah, DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998;339:659–66.
Jongbloed, MR, Mahtab, EAF, Blom, NA, et al. Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Scientific World Journal 2008;8:239–69.