Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 6
  • Print publication year: 2014
  • Online publication date: May 2014

4 - Extreme seismic events: from basic science to disaster risk mitigation

from Part II - Extreme hazards and disaster risks


Allen, C. R., Edwards, W., Hall, W. al. (1976). Predicting Earthquakes: A Scientific and Technical Evaluation – With Implications for Society. Panel on Earthquake Prediction of the Committee on Seismology, National Research Council. Washington, DC: US National Academy of Sciences.
Ambraseys, N. and Bilham, R. (2011). Corruption kills. Nature, 469, 153–155.
Ando, M., Ishida, M., Hayashi, Y. and Mizuki, C. (2011). Interviews with survivors of Tohoku earthquake provide insights into fatality rate. EOS Transactions, American Geophysical Union, 92, 411, doi:10.1029/2011EO460005.
Babayev, G., Ismail-Zadeh, A. and Le Mouël, J.-L. (2010). Scenario-based earthquake hazard and risk assessment for Baku (Azerbaijan). Natural Hazard and Earth System Sciences, 10, 2697–2712.
Beer, T. and Ismail-Zadeh, A. T., eds. (2003). Risk Science and Sustainability. Dordrecht: Kluwer Academic Publishers.
Braile, L. W., Hinze, W. J., Keller, G. R., Lidiak, E. G. and Sexton, J. L. (1986). Tectonic development of the New Madrid Rift Complex, Mississippi Embayment, North America. Tectonophysics, 131, 1–21.
Burridge, R. and Knopoff, L. (1967). Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57, 341–371.
Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.
Cummings, R. G.Brookshire, D. S., Bishop, R. C., and Arrow, K. J. (1986). Valuing Environmental Goods: An Assessment of the Contingent Valuation Method. Totowa: Rowman & Allanheld.
Cutter, S. L. and Zoback, M. L. (2013). Improving the nation's resilience to disasters, EOS Transactions, American Geophysical Union, 94, 89, doi:10.1002/2013EO090007.
Davis, C. A. (2012). Loss functions for temporal and spatial optimizing of earthquake prediction and disaster preparedness. Pure and Applied Geophysics, 169, 1989–2010.
Fedotov, S. A. (1965). Regularities of the distribution of strong earthquakes in Kamchatka, the Kurile islands, and northeastern Japan. Trudy Inst. Fiziki Zemli Akad. Nauk SSSR (Proceedings of the Institute Physics of the Earth of the USSR Academy of Sciences) 36, 66–93.
Forsyth, D. W., Lay, T., Aster, R. C. and Romanowicz, B. (2009). Grand challenges for seismology. Eos Transactions American Geophysical Union, 90, doi:10.1029/2009EO410001.
Fuchs, K. (2005). The great earthquakes of Lisbon 1755 and Aceh 2004 shook the world – seismologists’ societal responsibility. In: Proceedings of the 250th Anniversary of the 1755 Lisbon Earthquake International Conference, Lisbon, Portugal, 1–4 November.
Gabrielov, A. M., Levshina, T. A. and Rotwain, I. M. (1990). Block model of earthquake sequence. Physics of the Earth and Planetary Interiors, 61, 18–28.
Geller, R. J., Jackson, D. D., Kagan, Y. Y. and Mulargia, F. (1997). Earthquakes cannot be predicted. Science, 275, 1616–1617.
Gerstenberger, M. C., Wiemer, S., Jones, L. M. and Reasenberg, P. A. (2005). Real-time forecasts of tomorrow's earthquakes in California. Nature, 435, 328–331.
Green, H. W. II and Burnley, P. C. (1989). A new self-organizing mechanism for deep-focus earthquakes. Nature, 341, 733–737.
Griggs, D. T. and Baker, D. W. (1969). The origin of deep-focus earthquakes. In Properties of Matter Under Unusual Conditions, eds. Mark, H. and Fernbach, S.New York: Wiley, pp. 23–42.
Hacker, B. R., Peacock, S. M., Abers, G. A. and Holloway, S. D. (2003). Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?Journal of Geophysical Research 108, 2030, doi:10.1029/ 2001JB001129.
Hanks, T. C., Beroza, G. C. and Toda, S. (2012). Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?Seismological Research Letters 83, 759–764.
Hess, H. (1962). History of ocean basins. In Petrologic Studies, eds. Engeln, A., James, H. L., and Leonard, B. F.New York: Geological Society of America, pp. 599–620.
IRDR (2011). Forensic Investigations of Disasters: The FORIN Project (IRDR FORIN Publication No. 1). Beijing: Integrated Research on Disaster Risk.
IRDR (2012). Assessment of Integrated Research on Disaster Risk: The AIRDR Project. Beijing: Integrated Research on Disaster Risk.
Ismail-Zadeh, A. (2006). Earthquake science for society. Keynote lecture, OECD Global Science Forum Workshop on Earthquake Science and its Contribution to Society, 1–2 June 2006, Potsdam, Germany. Paris: Organisation for Economic Co-operation and Development. Available on CD-ROM.
Ismail-Zadeh, A. (2010). Computational geodynamics as a component of comprehensive seismic hazards analysis. In Geophysical Hazards: Minimizing Risk and Maximizing Awareness, ed. Beer, T.Amsterdam: Springer, pp. 161–178.
Ismail-Zadeh, A. T. and Kossobokov, V. G. (2011). Earthquake prediction M8 algorithm. In Encyclopaedia of Solid Earth Geophysics, ed. Gupta, H.Heidelberg: Springer, pp. 178–182.
Ismail-Zadeh, A. and Takeuchi, K. (2007). Preventive disaster management of extreme natural events. Natural Hazards, 42, 459–467.
Ismail-Zadeh, A., Mueller, B. and Schubert, G. (2005). Three-dimensional modeling of present-day tectonic stress beneath the earthquake-prone southeastern Carpathians based on integrated analysis of seismic, heat flow, and gravity observations. Physics of the Earth and Planetary Interiors, 149, 81–98.
Ismail-Zadeh, A. T., Sokolov, V. and Bonier, K. (2007a). Geodynamics, seismicity and seismic hazard of the south-eastern Carpathians. Natural Hazards, 42, 493–514.
Ismail-Zadeh, A. T., Le Mouël, J. L., Soloviev, A., Tapponnier, P. and Vorobieva, I. (2007b). Numerical modeling of crustal block-and-fault dynamics, earthquakes and slip rates in the Tibet-Himalayan region. Earth and Planetary Science Letters, 258, 465–485.
Ismail-Zadeh, A. T., Schubert, G., Tsepelev, I. A. and Korotkii, A. I. (2008). Thermal evolution and geometry of the descending lithosphere beneath the SE-Carpathians: An insight from the past. Earth and Planetary Science Letters, 273, 68–79.
Ismail-Zadeh, A., Aoudia, A., and Panza, G. F. (2010). Three-dimensional numerical modeling of contemporary mantle flow and tectonic stress beneath the Central Mediterranean. Tectonophysics, 482, 226–236.
Ismail-Zadeh, A., Le Mouël, J.-L. and Soloviev, A. (2012a). Modeling of extreme seismic events. In Extreme Events and Natural Hazards: The Complexity Perspective eds. Sharma, S. A., Bunde, A., Dimri, V. P. and Baker, D. N. Geophysical Monograph 196. Washington, DC: American Geophysical Union, pp. 75–97.
Ismail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh, S. and Panza, G. (2012b). Geodynamic and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the-art. Tectonophysics, 530–531, 50–79.
Kanamori, H. (2003). Earthquake prediction; An overview. In: International Handbook of Earthquake and Engineering Seismology, Part B, eds. Lee, W. H. K., Kanamori, H., Jennings, P. C. and Kisslinger, C.London: Academic Press, pp. 1205–1216.
Kant, I. (1756). Geschichte und Naturbeschreibung der merkwürdigsten Vorfälle des Erdbebens welches an dem Ende des 1755sten Jahres einen großen Theil der Erde erschüttert hat. Königsberg.
Kantorovich, L., Keilis-Borok, V. I., and Molchan, G. (1973). Seismic risk and principles of seismic zoning. In Computational and Statistical Methods for Interpretation of Seismic Data, ed. Keilis-Borok, V. I.Moscow: Nauka, pp. 3–20 (in Russian).
Keilis-Borok, V. I. (1990). The lithosphere of the Earth as a nonlinear system with implications for earthquake prediction. Reviews of Geophysics, 28, 19–34.
Keilis-Borok, V. I., and Kossobokov, V. G. (1990). Premonitory activation of earthquake flow: algorithm M8. Physics of the Earth and Planetary Interiors, 61, 73–83.
Keilis-Borok, V. I. and Soloviev, A. A. (2003). Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Heidelberg: Springer.
Keilis-Borok, V. I., Ismail-Zadeh, A. T., Kossobokov, V. G. and Shebalin, P. N. (2001). Non-linear dynamics of the lithosphere and intermediate-term earthquake prediction. Tectonophysics, 338, 247–259.
Kelleher, J., Sykes, L. and Oliver, J. (1973). Possible criteria for predicting earthquake locations and their application to major plate boundaries of Pacific and Caribbean. Journal of Geophysical Research, 78, 2547–2585.
King, G. C. P., Stein, R. S. and Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84, 935–953.
Klügel, J. U., Mualchin, L. and Panza, G. F. (2006). A scenario-based procedure for seismic risk analysis. Engineering Geology, 88, 1–22.
Knopoff, L. (1999). Earthquake prediction is difficult but not impossible. Nature Debates. Accessed 15 March 2013.
Kossobokov, V. G., and Nekrasova, A. K. (2012). Global Seismic Hazard Assessment Program maps are erroneous. Seismic Instruments, 48, 162–170.
Lay, T. and Kanamori, H. (2011). Insights from the great 2011 Japan earthquake. Physics Today, 64, 33–39.
Lazaridou-Varotsos, M. S. (2013). Earthquake Prediction by Seismic Electric Signals: The Success of the VAN Method over Thirty Years. Springer, Heidelberg, 252 pp.
Manaker, D. M., Calais, E., Freed, A. al. (2008). Interseismic plate coupling and strain partitioning in the Northeastern Caribbean. Geophysical Journal International, 174, 889–903.
Molchan, G., and Romashkova, L. (2011). Gambling score in earthquake prediction analysis. Geophysical Journal International, 184, 1445–1454.
Morat, P., and Le Mouël, J.-L. (1987). Variation of the electrical resistivity of large rock samples with stress. Geophysics, 52, 1424–1430.
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association, 83, 9–27.
Panza, G. F., Irikura, K., Kouteva, al. (2010). Advanced seismic hazard assessment. Pure and Applied Geophysics, 168, DOI 10.1007/s00024-010-0179-9.
Peacock, W. G., Kunreuther, H., Hooke, W. al. (2008). Toward a Resiliency and Vulnerability Observatory Network: RAVON. HRRC reports: 08-02R,
Reid, H. F. (1911). The Elastic-Rebound Theory of Earthquakes. University of California Publications in Geological Sciences. Berkeley, CA: University of California Press, pp. 413–444.
Rice, J. R. and Ben-Zion, Y. (1996). Slip complexity in earthquake fault models. Proceedings of the National Academy of Sciences of the United States of America, 93, 3811–3818.
Rubin, C. B., ed. (2012). Emergency Management: The American Experience 1900–2010. Boca Raton: CRC Press, Taylor & Francis Group.
Rundle, J. B., Tiampo, K. F., Klein, W. and Martins, J. S. S. (2002). Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology, and forecasting. Proceedings of the National Academy of Sciences of the United States of America, 99, 2514–2521.
Rundle, P. B., Rundle, J. B., Tiampo, K. F., Donnellan, A. and TurcotteD. L. (2006). Virtual California: Fault model, frictional parameters, application. Pure and Applied Geophysics, 163, 1819–1846.
Satake, K., Sawai, Y., Shishikura, al. (2007). Tsunami source of the unusual AD 869 earthquake off Miyagi, Japan, inferred from tsunami deposits and numerical simulation of inundation. American Geophysical Union (AGU), Fall Meeting 2007, abstract T31G-03. Washington, DC: AGU.
Schwartz, D. P. and Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes – examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89, 5681–5698.
Shebalin, P., Keilis-Borok, V., Gabrielov, A., Zaliapin, I. and Turcotte, D. (2006). Short-term earthquake prediction by reverse analysis of lithosphere dynamics. Tectonophysics, 413, 63–75.
Soloviev, A. A. and Ismail-Zadeh, A. T. (2003). Models of dynamics of block-and-fault systems. In Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, eds. Keilis-Borok, V. I. and Soloviev, A. A.Heidelberg: Springer, pp. 69–138.
Sornette, D. and Sammis, C. G. (1995). Complex critical exponents from renormalization group theory of earthquakes: Implication for earthquake prediction. Journal of Physics I, 5, 607–619.
Stein, S., Geller, R. and Liu, M. (2011). Bad assumptions or bad luck: why earthquake hazard maps need objective testing. Seismological Research Letters, 82, 623–626.
Stirling, M. W. (2012). Earthquake hazard maps and objective testing: the hazard mapper's point of view. Seismological Research Letters, 83, 231–232.
Stokols, D. (2006). Toward a science of transdisciplinary action research. American Journal of Community Psychology, 38, 63–77.
Turcotte, D. L. (1999). Seismicity and self-organized criticality. Physics of the Earth and Planetary Interiors, 111, 275–294.
Turcotte, D. L., Holliday, J. R. and Rundle, J. B. (2007). BASS, an alternative to ETAS. Geophysical Research Letters, 34, L12303, doi:10.1029/2007GL029696.
Varotsos, P., Alexopoulos, K., Nomicos, K. and Lazaridou, M. (1986). Earthquake predictions and electric signals. Nature, 322, 120.
Working Group on California Earthquake Probabilities (2007). The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). US Geological Survey Open-file Report 2007–1437 (also California Geological Survey Special Report 203).
Wyss, M., ed. (1991). Evaluation of Proposed Earthquake Precursors. Special Publication No. 32. Washington, DC: American Geophysical Union.
Wyss, M., Nekraskova, A. and KossobokovV. (2012). Errors in expected human losses due to incorrect seismic hazard estimates. Natural Hazards, 62, 927–935.
Zaliapin, I., Keilis-Borok, V. and GhilM. (2003). A Boolean delay model of colliding cascades. II: Prediction of critical transitions. Journal of Statistical Physics, 111, 839–861.
Zechar, J. D. and Jordan, T. H. (2008). Testing alarm-based earthquake predictions. Geophysical Journal International, 172, 715–724.
Zhang-li, C., Pu-xiong, L., De-yu, al. (1984). Characteristics of regional seismicity before major earthquakes. In Earthquake Prediction. Paris: UNESCO, pp. 505–521.