Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: August 2009

3 - Characterizing extrasolar planets

Summary

Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this chapter, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.

Introduction

Finding extrasolar planets is good; learning something about their intrinsic properties is much better. Planets that are known only from their radial velocity signatures can be studied only in a limited sense: we can put a fairly reliable lower limit on their masses, and we can know the size and shape of their orbits. Transiting planets offer opportunities for more complete characterization: we can measure their radii with some precision, and in principle we can learn something of their temperature structure and of their atmospheres. For this reason, this review deals almost entirely with transiting planets. The plan of the paper is as follows: Section 3.2 introduces the basic geometrical and astrophysical ideas relating to transiting planets, and establishes the relationships among them.

Related content

Powered by UNSILO
REFERENCES
Alonso, R., 2005, Ph. D. thesis, University of La Laguna.
Alonso, R., Brown, T., Torres, G., et al., 2004, ApJ 613, L153.
Baglin, A., 2003, Adv. Space Res. 31, 345.
Baglin, A., Vauclair, G. & The COROT Team, 2000, J. Astrophys. Astron. 21, 319.
Borucki, W. J., Koch, D. B., Lissauer, J. J., et al., 2003, Proc. SPIE 4854, 129.
Bouchy, F., Pont, F., Santos, N. C., Melo, C., Mayor, M., Queloz, D. & Udry, S., 2004, A&A 421, L13.
Brown, T. M., 2001, ApJ 553, 1006.
Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W. & Burrows, A., 2001, ApJ 552, 699.
Burrows, A., Hubeny, I. & Sudarsky, D., 2005, ApJ 625, L135.
Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L., 2002, ApJ 568, 377.
Charbonneau, D., Allen, L. E., Megeath, S. T., et al., 2005, ApJ 626, 523.
Cox, A. N., 2000, Allen's Astrophysical Quantities, fourth edn. Ed. Arthur, N. Cox. New York: AIP Press; Springer.
Deming, D., Brown, T. M., Charbonneau, D., Harrington, J. & Richardson, L. J., 2005, ApJ 622, 1149.
Drake, A. J., 2003, ApJ 589, 1020.
Dravins, D., Lindegren, L., Mezey, E. & Young, A. T., 1998, PASP 110, 610.
Duquennoy, A. & Mayor, M., 1991, A&A 248, 485.
Fortney, J. J., Marley, M. S., Lodders, K., Saumon, D. & Freedman, R., 2005, ApJ 627, L69.
Horgan, J. 1996, The End of Science: Facing the Limits of Science in the Twilight of the Scientific Age. Reading, MA: Addison-Wesley.
Konacki, M., Torres, G., Jha, S. & Sasselov, D. D., 2003, Nature 421, 507.
Konacki, M., Torres, G., Sesselov, D. D., et al., 2004, ApJ 609, L37.
Kotredes, L., Charbonneau, D., Looper, D. L. & O'Donovan, F. T., 2004, The Search for Other Worlds, AIP Conf. Proc. 713, 173.
Latham, D. W., 1992, IAU Colloq. 135, Complementary Approaches to Double and Multiple Star Research, ASP Conf. Ser. 32, 110.
Mallén-Ornelas, G., Seager, S., Yee, H. K. C., Minniti, D., Gladders, M. D., Mallén-Fullerton, G. M. & Brown, T. M., 2003, ApJ 582, 1123.
Mandushev, G., Torres, G., Latham, D. W., et al., 2005, ApJ 621, 1061.
Marcy, G. W., Butler, R. P., Vogt, S. S., et al., 2005, ApJ 619, 570.
Pont, F., Bouchy, F., Queloz, D., Santos, N. C., Melo, C., Mayor, M. & Udry, S., 2004, A&A 426, L15.
Seager, S. & Mallén-Ornelas, G., 2003, ApJ 585, 1038.
Seager, S., Richardson, L. J., Hanson, B. M. S., Menou, K., Cho, J. Y.-K. & Deming, D., 2005, ApJ 632, 1122.
Shklovsky, J. S. & Sagan, C., 1966, Intelligent Life in the Universe, San Francisco: Holden-Day.
Sirko, E. & PaczyŃski, B., 2003, ApJ 592, 1217.
Tingley, B., 2004, A&A 425, 1125.
Udalski, A., Paczynski, B., Zebrun, K., et al., 2002a, Acta Astronomica 52, 1.
Udalski, A., Zebrun, K., Szymanski, M., Kubiak, M., Soszynski, I., Szewczyk, O., Wyrzykowski, L. & Pietrzynski, G., 2002b, Acta Astronomica 52, 115.
Udalski, A., Pietrzynski, G., Szymanski, M., et al., 2003, Acta Astronomica 53, 133.
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., Ballester, G. E., Ferlet, R., Hébrard, G. & Mayor, M., 2003, Nature 422, 143.
Yee, H. K. C., Mallen-Ornelas, G., Seager, S., et al., 2003, Proc. SPIE 4834, 150.
Young, A. T., 1969, Appl. Opt. 8, 869.
Young, A. T., 1974, in Methods of Experimental Physics, Vol. 12, Astrophysics, Part A, Optical and Infrared, ed. Carlton, N.. New York: Academic Press, 95.