Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T20:47:43.009Z Has data issue: false hasContentIssue false

7 - A biologist's guide to the solar system

from Part II - Extent of life

Published online by Cambridge University Press:  29 December 2010

Constance M. Bertka
Affiliation:
AAAS, Washington
Get access

Summary

Introduction

Astrobiology has life at its core: Where does life come from? Where is it going? Are we alone? While it includes the search for extraterrestrial life – the very bit that has so captured the public's attention – it uses life on Earth as its reference point. Of course this probably has less to do with philosophy, and more to do with practicalities. After all, there is only one place that we know with certainty contains life, and most likely an indigenous biota at that. So, planet Earth remains the reference point. Thus, a search for life elsewhere, even in our own solar system, must include an understanding of the known range of life on Earth. And, even before that, an understanding of what we mean by “life.”

Understanding the range of current life on Earth, and mapping it to current environments in the solar system, is only a start as it lacks the element of time. Life on Earth may have been substantially different when it arose around about 4 billion years ago because the environmental range on Earth was dramatically different. Similarly, the climatic conditions forecast for a billion or so years into the future are bleak for much of life as we know it, including ourselves. Without intervention, the Sun as we know it will not even exist.

Type
Chapter
Information
Exploring the Origin, Extent, and Future of Life
Philosophical, Ethical and Theological Perspectives
, pp. 115 - 142
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Porco, C. C., Helfenstein, P., Thomas, P. C., et al. Cassini observes the active South Pole of Enceladus. Science, 311 (2006), 1393–1401.CrossRefGoogle ScholarPubMed
Proctor, R.. Other Worlds Than Ours(Longmans, 1870), pp. 134.Google Scholar
Benner, S. A., Ricardo, A., and Carrigan, M. A.. Is there a common chemical model for life in the universe?Current Opinions in Chemical Biology, 8 (2004), 672–689.Google Scholar
,Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life. The Limits of Organic Life in Planetary Systems (Washington, DC: The National Academies Press, 2007).Google Scholar
MacElroy, R.. Some comments on the evolution of extremophiles. Biosystems, 6 (1974), 74–75.CrossRefGoogle Scholar
Rothschild, L. J. and Mancinelli, R. L.. Life in extreme environments. Nature, 409 (2001), 1092–1101.CrossRefGoogle ScholarPubMed
Ashcroft, F.. Life at the Extremes: The Science of Survival (London: Flamingo Press, 2001), p. 326.Google Scholar
Bartels, D.. Desiccation tolerance studied in the resurrection plantCraterostigma plantagineum. Integrative and Comparative Biology, 45 (2005), 696–701.CrossRefGoogle ScholarPubMed
Rothschild, L. J.. Extremophiles: defining the envelope for the search for life in the universe. In Planetary Systems and the Origins of Life, eds. Pudritz, R. E., P. Higgs and Stone, J. (Cambridge: Cambridge University Press, 2007), pp. 123–146.Google Scholar
Arai, S. and Hirai, M.. Reversibility and hierarchy of thermal transition of hen egg-white lysozyme studied by small-angle x-ray scattering. Biophysical Journal, 76 (1999), 2192–2197.CrossRefGoogle ScholarPubMed
Marguet, E. and Forterre, P.. DNA stability at temperatures typical for hyperthermophiles. Nucleic Acids Research, 22 (1994), 1681–1686.CrossRefGoogle ScholarPubMed
Kampmann, M. and Stock, D.. Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. Nucleic Acids Research, 32 (2004), 3537–3545.CrossRefGoogle ScholarPubMed
J. H. A. Nagel, Gultyaev, A. P., Öistämö, K. J., Gerdes, K., and Pleij, C. W. A.. A pH-jump approach for investigating secondary structure refolding kinetics in RNA. Nucleic Acids Research, 30 (2002), e63.Google Scholar
Lambros, R. J., Mortimer, J. R., and Forsdyke, D. R.. Optimum growth temperature and the base composition of open reading frames in prokaryotes. Extremophiles, 7 (2003) 443–450.CrossRefGoogle ScholarPubMed
Kowalak, J. A., Dalluge, J. J., McCloskey, J. A., and Stetter, K. O.. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry, 33 (1994), 7869–7876.CrossRefGoogle ScholarPubMed
Ray, P. H., White, D. C., and Brock, T. D.. Effect of growth temperature on the lipid composition of Thermus aquaticus. Journal of Bacteriology, 108 (1971), 227–235.Google ScholarPubMed
Albers, S. V., J. L. van de Vossenberg, Driessen, A. J., and Konings, W. N.. Adaptations of the archaeal cell membrane to heat stress. Frontiers in Bioscience, 5 (2000), D813–D820.CrossRefGoogle ScholarPubMed
R. Singleton Jr. and Amelunxen, R. E.. Proteins from thermophilic microorganisms. Bacteriological Reviews, 37 (1973), 320–342.Google Scholar
Brock, T. D.. Life at high temperatures. Science, 158 (1967), 1012–1019.CrossRefGoogle ScholarPubMed
Reysenbach, L., Wickham, G. S., and Pace, N. R.. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Applied and Environmental Microbiology, 60 (1994), 2113–2119.Google ScholarPubMed
E. Blöchl, Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., and Stetter, K. O.. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles, 1 (1997), 14–21.Google Scholar
Huber, H. and Stetter, K. O.. Hyperthermophiles and their possible potential in biotechnology. Journal of Biotechnology, 64 (1998), 39–52.CrossRefGoogle Scholar
Carpenter, E. J., Lin, S., and Capone, D. G.. Bacterial activity in South Pole snow. Applied and Environmental Microbiology, 66 (2000), 4514–4517.CrossRefGoogle ScholarPubMed
Schmid, W. D.. Survival of frogs in low temperature. Science, 215 (1982), 697–698.CrossRefGoogle ScholarPubMed
Davies, P. L. and Hew, C. L.. Biochemistry of fish antifreeze proteins. The Federation of American Societies for Experimental Biology Journal, 4 (1990), 2460–2468.CrossRef
Clarke, A.. Evolution at low temperatures. In Evolution on Planet Earth: The Impact of the Physical Environment, eds. L. Rothschild and Lister, A. (London: Academic Press, 2003), pp. 187–208.Google Scholar
M. Ageno, Dore, E., and Frontali, C.. The alkaline denaturation of DNA. Biophysical Journal, 9 (1969), 1281–1311.
Seckbach, J.. The Cyanidiophyceae: hot spring acidophilic algae. In Enigmatic Microorganisms and Life in Extreme Environments, ed. Seckbach, J. (Dordrecht: Kluwer Academic Publishers, 1999), pp. 427–435.CrossRefGoogle Scholar
Enami, I.. Mechanisms of the acido- and thermophily of Cyanidium caldarium Geitler V. Acid and heat stabilities of soluble proteins. Plant and Cell Physiology, 19 (1978), 869–876.
Schleper, C., Puehler, G., Holz, I., et al. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. Journal of Bacteriology, 177 (1995), 7050–7059.CrossRefGoogle ScholarPubMed
Edwards, K. J., Bond, P. L., Gihring, T. M., and Banfield, J. F.. An archaeal iron-oxdizing extreme acidophile important in acid mine drainage. Science, 287 (2000), 1796–1799.CrossRefGoogle ScholarPubMed
Martins, R. F., Davids, W., W. A. Al-Sond, Levander, F., Radström, P., and Hatti-Kaul, R.. Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles, 5 (2001), 135–144.CrossRefGoogle ScholarPubMed
Pedersen, K., Nilsson, E., Arlinger, J., Hallbeck, L., and O'Neill, A.. Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles, 8 (2004), 151–164.CrossRefGoogle ScholarPubMed
Grant, W. D., Mwatha, W. E., and Jones, B. E.. Alkaliphiles, ecology, diversity and applications. FEMS Microbiology Reviews, 75 (1990), 255–270.CrossRefGoogle Scholar
Rees, H. C., Grant, W. D., Jones, B. E., and Heaphy, S.. Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles, 8 (2004), 63–71.CrossRefGoogle ScholarPubMed
Vasquez, E. A., Glenn, E. P., Guntenspergen, G. R., Brown, J. J., and Nelson, S. G.. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. American Journal of Botany, 93 (2006), 1784–1790.CrossRefGoogle ScholarPubMed
Harper, D. M., Childress, R.B., Harper, M.M., et al. Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia, 500 (2003), 259–276.CrossRefGoogle Scholar
Watanabe, M.. Anhydrobiosis in invertebrates. Applied Entomology and Zoology, 41 (2006), 15–31.CrossRefGoogle Scholar
Crowe, L. M. and Crowe, J. H.. Anhydrobiosis: a strategy for survival. Advances in Space Research, 12(4) (1992), 239–247.CrossRefGoogle Scholar
Crowe, J. H., Hoekstra, F. A., and Crowe, L. M.. Anhydrobiosis. Annual Review of Physiology, 54 (1992), 579–599.CrossRefGoogle ScholarPubMed
Mancinelli, R. L., White, M. R., and Rothschild, L. J.. Biopan-survival I: exposure of the osmophiles Synechococcus sp. (Nageli) and Haloarcula sp. to the space environment. Advances in Space Research, 22(3) (1998), 327–334.CrossRefGoogle Scholar
Yayanos, A. A.. Microbiology to 10,500 meters in the deep sea. Annual Review of Microbiology, 49 (1995), 777–805.CrossRefGoogle ScholarPubMed
Sharma, A., Scott, J. H., Cody, G. D., et al. Microbial activity at gigapascal pressures. Science, 295 (2002), 1514–1516.CrossRefGoogle ScholarPubMed
Rothschild, L. J. and Giver, L. J.. Photosynthesis below the surface in a cryptic microbial mat. International Journal of Astrobiology, 1 (2003), 295–304.CrossRefGoogle Scholar
Petit, C. and Sancar, A.. Nucleotide excision repair: from E. coli to man. Biochimie, 81 (1999), 15–25.CrossRefGoogle Scholar
Jönsson, K. I., Harms-Ringdahl, M., and Torudd, J.. Radiation tolerance in the eutardigrade Richtersius coronifer. International Journal of Radiation Biology, 81 (2005), 649–656.CrossRefGoogle ScholarPubMed
Horikawa, D. D., Sakashita, T., Katagiri, C., et al. Radiation tolerance in the tardigrade Milnesium tardigradum. International Journal of Radiation Biology, 82 (2006), 843–848.CrossRefGoogle ScholarPubMed
Battista, J. R.. Against all odds: the survival strategies of Deinococcus radiodurans. Annual Review of Microbiology, 51 (1997), 203–224.CrossRefGoogle ScholarPubMed
Daly, M. J., Gaidamakova, E. K., Matrosova, V. Y., et al. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science, 306 (2004), 1025–1028.CrossRefGoogle ScholarPubMed
Makarova, K. S., et al. Deinococcus geothermalis: the pool of radiation resistance genes shrinks. PLoS ONE, Issue 9 (2007), e955.CrossRefGoogle ScholarPubMed
Jacob, R. A. and Burri, B. J.. Oxidative damage and defense. American Journal of Clinical Nutrition, 63 (1996), 985S–990S.CrossRefGoogle ScholarPubMed
Blokhina, O., Virolainen, E., and Fagerstedt, K. V.. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91 (2003), 179–194.CrossRefGoogle ScholarPubMed
Shashar, N., Cohe, Y., and Loya, Y.. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biological Bulletin, 185 (1993), 455–461.CrossRefGoogle ScholarPubMed
Burke, C. M.. Benthic microbial production of oxygen supersaturates the bottom water of a stratified hypersaline lake. Microbial Ecology, 19 (1995), 163–171.CrossRefGoogle Scholar
M. Kühl, Lassen, C., and Revsbech, N. P.. A simple light meter for measurements of PAR (400 to 700 nm) with fiber-optic microprobes: application for P vs E0(PAR) measurements in a microbial mat. Aquatic Microbial Ecology, 13 (1997), 197–207.Google Scholar
Wharton, R. A. Jr., McKay, C. P., Simmons, G. M., and Parker, B. C.. Oxygen budget of a perennially ice-covered Antarctic lake. Limnology and Oceanography, 31 (1986), 437–443.CrossRefGoogle ScholarPubMed
Craig, H., Wharton, R. A. Jr., and McKay, C. P.. Oxygen supersaturation in ice-covered Antarctic lakes: biological versus physical contributions. Science, 255 (1992), 318–321.CrossRefGoogle ScholarPubMed
Berner, R. A., Beerlind, D. J., Dudley, R., Robinson, J. M., and Wildman, R. A. J.. Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Science, 31 (2003), 105–134.CrossRefGoogle Scholar
Graham, J. B., Aguilar, N. M., Dudley, R., and Gans, C.. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature, 375 (1995), 117–120.CrossRef
Berner, R. A., VandenBrooks, J. M., and Ward, P.. Oxygen and evolution. Science, 316 (2007), 557–558.CrossRefGoogle ScholarPubMed
Horowitz, N. H., Hobby, G. L., and Hubbard, J. S.. Viking on Mars: the carbon assimilation experiments. Journal of Geophysical Research, 82 (1977), 4659–4661.CrossRefGoogle Scholar
Klein, H. P.. The Viking biological experiment on Mars. Icarus, 34 (1978), 666–674.CrossRefGoogle Scholar
Klein, H. P.. The Viking mission and the search for life on Mars. Reviews of Geophysics and Space Physics, 17 (1979), 1655–1662.CrossRefGoogle Scholar
Bennett, J. O. and Shostak, S.. Life in the Universe, 2nd edn. (San Francisco, CA and London: Addison-Wesley, 2007).Google Scholar
Gladman, B., Dones, L., Levison, H. F., and Burns, J. A.. Impact seeding and reseeding in the inner solar system. Astrobiology, 5 (2005), 483–496.CrossRefGoogle ScholarPubMed
Sagan, C.. The planet Venus. Science, 133 (1961), 849–858.CrossRefGoogle ScholarPubMed
Cockell, C. S.. Life on Venus. Planetary and Space Science, 47 (1999), 1487–1501.CrossRefGoogle Scholar
D. Schulze-Makuch, Grinspoon, D. H., Abbas, O., Irwin, L. N., and Bullock, M. A.. A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology, 4 (2004), 11–17.Google Scholar
Schopf, J. W.. Microfossils of the Early Archean Apex chart: new evidence of the antiquity of life. Science, 260 (1993), 640–646.CrossRefGoogle Scholar
Brasier, M. D., Green, O. R., Jephcoat, A. P., et al. Questioning the evidence for Earth's oldest fossils. Nature, 416 (2002), 76–81.CrossRefGoogle ScholarPubMed
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., and Czaja, A. D.. Laser-Raman imagery of Earth's earliest fossils. Nature, 416 (2002), 73–76.CrossRefGoogle ScholarPubMed
Zahnle, K.. Decline and fall of the Martian empire. Nature, 412 (2001), 209–213.CrossRefGoogle Scholar
Rothschild, L. J.. Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus, 88 (1990), 246–260.CrossRefGoogle ScholarPubMed
McKay, D. S., Gibson, E. K. Jr., Thomas, K. L.-Keprta, et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273 (1996), 924–930.CrossRef
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al. Distribution of hydrogen in the near surface of Mars: evidence for subsurface deposits. Science, 297 (2002), 81–85.CrossRefGoogle ScholarPubMed
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. Noe. Rate and contemporary gully activity on Mars. Science, 314 (2006), 1573–1577.CrossRefGoogle ScholarPubMed
Cassen, P. M., Reynolds, R. T., and Peale, S. J.. Is there liquid water on Europa?Geophysical Research Letters, 6 (1979), 731–734.CrossRefGoogle Scholar
Chyba, C. F. and Phillips, C. B.. Europa as an abode of life. Origins of Life and Evolution of Biospheres, 32 (2002), 47–68.CrossRefGoogle ScholarPubMed
Melosh, H. J., Ekholm, A. G., Showman, A. P., and Lorenz, R. D.. The temperature of Europa's subsurface water ocean. Icarus, 168 (2004), 498–502.CrossRefGoogle Scholar
Pappalardo, R. T., et al. Does Europa have a subsurface ocean? Evaluation of the geological evidence. Journal Geophysical Research, 104 (1999), 24015–24055.CrossRefGoogle Scholar
Stevenson, D. J.. Europa's ocean: the case strengthens. Science, 289 (2000), 1305–1307.CrossRefGoogle ScholarPubMed
Greenberg, R.. Europa – the Ocean Moon: Search for an Alien Biosphere (Berlin and Chichester, UK: Springer-Praxis, 2005).Google Scholar
Reynolds, R. T., Squyres, S. W., Colburn, D. S., and McKay, C. P.. On the habitability of Europa. Icarus, 56 (1983), 246–254.CrossRefGoogle Scholar
Lunine, J. I. and Lorenz, R. D.. Light and heat in cracks on Europa: implications for prebiotic synthesis. Lunar and Planetary Science, 28 (1997), 855–856.Google Scholar
Greenberg, R., Geissler, P., Tufts, B., and Hoppa, G.. Habitability of Europa's crust: the role of tidal-tectonic processes. Journal of Geophysical Research, 105(E7) (2000), 17551–17562.CrossRefGoogle Scholar
Chyba, C. F. and Phillips, C. B.. Possible ecosystems and the search for life on Europa. Proceedings of the National Academy of Sciences of the United States of America, 98 (2001), 801–804.CrossRefGoogle ScholarPubMed
McCollom, T. M.. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. Journal of Geophysical Research, 104 (1990), 30, 729–30,742.Google Scholar
Gaidos, E. J., Nealson, K. H., and Kirschvink, J. L.. Life in ice-covered oceans. Science, 284 (1999), 1631–1633.CrossRefGoogle ScholarPubMed
Johnson, R. E., Quickenden, T. I., Cooper, P. D., Mckinley, A. J., and Freeman, C. G.. The Production of oxidants in Europa's surface. Astrobiology, 3 (2003), 823–850.CrossRefGoogle ScholarPubMed
Kargel, J. S., Kaye, J. Z., Head, J. W., et al. Europa's crust and ocean: origin, composition, and the prospects for life. Icarus, 148 (2000), 226–265.CrossRefGoogle Scholar
Marion, G. M., Fritsen, C. H., H. Eicken, and Payne, M. C.. The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogs. Astrobiology, 3 (2003), 785–811.CrossRefGoogle Scholar
Israël, G., et al. Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis. Nature, 438 (2005), 796–799.CrossRefGoogle ScholarPubMed
Tomasko, M. G., et al. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature, 438 (2005), 765–778.CrossRefGoogle ScholarPubMed
McKay, C. P. and Smith, H. D.. Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus, 178 (2005), 274–276.CrossRefGoogle Scholar
Spencer, J. R., Pearl, J. C., M. Segura, et al. Cassini encounters Enceladus: background and the discovery of a South Polar hot spot. Science, 311 (2006), 1401–1405.CrossRefGoogle ScholarPubMed
Horneck, G., Bücker, H., Reitz, G., et al. Microorganisms in the space environment. Science, 225 (1984), 226–228.CrossRefGoogle ScholarPubMed
Horneck, G.. Responses of Bacillus subtilis spores to space environment: results from experiments in space. Origins of Life and Evolution of Biospheres, 23 (1993), 37–52.CrossRefGoogle ScholarPubMed
Horneck, G.. European activities in exobiology in Earth orbit: results and perspectives. Advances in Space Research, 23 (1999), 381–386.CrossRefGoogle Scholar
Schulte, W., Demets, R., Baglioni, P., Rettberg, P., Heise-Rotenburg, R., and Toporski, J.. BIOPAN and ESPOSE: space exposure platforms for exo/astrobiological research in Earth orbit with relevance for Mars exploration. Geophysical Research Abstracts, 8 (2006), 06643.Google Scholar
Horneck, G., Stöffler, D., and Eshweiller, U.. Bacterial spores survive simulated meteorite impact. Icarus, 149 (2001), 285–290.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×