Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2009
  • Online publication date: December 2010

7 - A biologist's guide to the solar system

from Part II - Extent of life

Summary

Introduction

Astrobiology has life at its core: Where does life come from? Where is it going? Are we alone? While it includes the search for extraterrestrial life – the very bit that has so captured the public's attention – it uses life on Earth as its reference point. Of course this probably has less to do with philosophy, and more to do with practicalities. After all, there is only one place that we know with certainty contains life, and most likely an indigenous biota at that. So, planet Earth remains the reference point. Thus, a search for life elsewhere, even in our own solar system, must include an understanding of the known range of life on Earth. And, even before that, an understanding of what we mean by “life.”

Understanding the range of current life on Earth, and mapping it to current environments in the solar system, is only a start as it lacks the element of time. Life on Earth may have been substantially different when it arose around about 4 billion years ago because the environmental range on Earth was dramatically different. Similarly, the climatic conditions forecast for a billion or so years into the future are bleak for much of life as we know it, including ourselves. Without intervention, the Sun as we know it will not even exist.

Related content

Powered by UNSILO
References
Porco, C. C., Helfenstein, P., Thomas, P. C., et al. Cassini observes the active South Pole of Enceladus. Science, 311 (2006), 1393–1401.
Proctor, R.. Other Worlds Than Ours(Longmans, 1870), pp. 134.
Benner, S. A., Ricardo, A., and Carrigan, M. A.. Is there a common chemical model for life in the universe?Current Opinions in Chemical Biology, 8 (2004), 672–689.
,Committee on the Limits of Organic Life in Planetary Systems, Committee on the Origins and Evolution of Life. The Limits of Organic Life in Planetary Systems (Washington, DC: The National Academies Press, 2007).
MacElroy, R.. Some comments on the evolution of extremophiles. Biosystems, 6 (1974), 74–75.
Rothschild, L. J. and Mancinelli, R. L.. Life in extreme environments. Nature, 409 (2001), 1092–1101.
Ashcroft, F.. Life at the Extremes: The Science of Survival (London: Flamingo Press, 2001), p. 326.
Bartels, D.. Desiccation tolerance studied in the resurrection plantCraterostigma plantagineum. Integrative and Comparative Biology, 45 (2005), 696–701.
Rothschild, L. J.. Extremophiles: defining the envelope for the search for life in the universe. In Planetary Systems and the Origins of Life, eds. Pudritz, R. E., P. Higgs and Stone, J. (Cambridge: Cambridge University Press, 2007), pp. 123–146.
Arai, S. and Hirai, M.. Reversibility and hierarchy of thermal transition of hen egg-white lysozyme studied by small-angle x-ray scattering. Biophysical Journal, 76 (1999), 2192–2197.
Marguet, E. and Forterre, P.. DNA stability at temperatures typical for hyperthermophiles. Nucleic Acids Research, 22 (1994), 1681–1686.
Kampmann, M. and Stock, D.. Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling. Nucleic Acids Research, 32 (2004), 3537–3545.
J. H. A. Nagel, Gultyaev, A. P., Öistämö, K. J., Gerdes, K., and Pleij, C. W. A.. A pH-jump approach for investigating secondary structure refolding kinetics in RNA. Nucleic Acids Research, 30 (2002), e63.
Lambros, R. J., Mortimer, J. R., and Forsdyke, D. R.. Optimum growth temperature and the base composition of open reading frames in prokaryotes. Extremophiles, 7 (2003) 443–450.
Kowalak, J. A., Dalluge, J. J., McCloskey, J. A., and Stetter, K. O.. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry, 33 (1994), 7869–7876.
Ray, P. H., White, D. C., and Brock, T. D.. Effect of growth temperature on the lipid composition of Thermus aquaticus. Journal of Bacteriology, 108 (1971), 227–235.
Albers, S. V., J. L. van de Vossenberg, Driessen, A. J., and Konings, W. N.. Adaptations of the archaeal cell membrane to heat stress. Frontiers in Bioscience, 5 (2000), D813–D820.
R. Singleton Jr. and Amelunxen, R. E.. Proteins from thermophilic microorganisms. Bacteriological Reviews, 37 (1973), 320–342.
Brock, T. D.. Life at high temperatures. Science, 158 (1967), 1012–1019.
Reysenbach, L., Wickham, G. S., and Pace, N. R.. Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Applied and Environmental Microbiology, 60 (1994), 2113–2119.
E. Blöchl, Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., and Stetter, K. O.. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles, 1 (1997), 14–21.
Huber, H. and Stetter, K. O.. Hyperthermophiles and their possible potential in biotechnology. Journal of Biotechnology, 64 (1998), 39–52.
Carpenter, E. J., Lin, S., and Capone, D. G.. Bacterial activity in South Pole snow. Applied and Environmental Microbiology, 66 (2000), 4514–4517.
Schmid, W. D.. Survival of frogs in low temperature. Science, 215 (1982), 697–698.
Davies, P. L. and Hew, C. L.. Biochemistry of fish antifreeze proteins. The Federation of American Societies for Experimental Biology Journal, 4 (1990), 2460–2468.
Clarke, A.. Evolution at low temperatures. In Evolution on Planet Earth: The Impact of the Physical Environment, eds. L. Rothschild and Lister, A. (London: Academic Press, 2003), pp. 187–208.
M. Ageno, Dore, E., and Frontali, C.. The alkaline denaturation of DNA. Biophysical Journal, 9 (1969), 1281–1311.
Seckbach, J.. The Cyanidiophyceae: hot spring acidophilic algae. In Enigmatic Microorganisms and Life in Extreme Environments, ed. Seckbach, J. (Dordrecht: Kluwer Academic Publishers, 1999), pp. 427–435.
Enami, I.. Mechanisms of the acido- and thermophily of Cyanidium caldarium Geitler V. Acid and heat stabilities of soluble proteins. Plant and Cell Physiology, 19 (1978), 869–876.
Schleper, C., Puehler, G., Holz, I., et al. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. Journal of Bacteriology, 177 (1995), 7050–7059.
Edwards, K. J., Bond, P. L., Gihring, T. M., and Banfield, J. F.. An archaeal iron-oxdizing extreme acidophile important in acid mine drainage. Science, 287 (2000), 1796–1799.
Martins, R. F., Davids, W., W. A. Al-Sond, Levander, F., Radström, P., and Hatti-Kaul, R.. Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles, 5 (2001), 135–144.
Pedersen, K., Nilsson, E., Arlinger, J., Hallbeck, L., and O'Neill, A.. Distribution, diversity and activity of microorganisms in the hyper-alkaline spring waters of Maqarin in Jordan. Extremophiles, 8 (2004), 151–164.
Grant, W. D., Mwatha, W. E., and Jones, B. E.. Alkaliphiles, ecology, diversity and applications. FEMS Microbiology Reviews, 75 (1990), 255–270.
Rees, H. C., Grant, W. D., Jones, B. E., and Heaphy, S.. Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles, 8 (2004), 63–71.
Vasquez, E. A., Glenn, E. P., Guntenspergen, G. R., Brown, J. J., and Nelson, S. G.. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. American Journal of Botany, 93 (2006), 1784–1790.
Harper, D. M., Childress, R.B., Harper, M.M., et al. Aquatic biodiversity and saline lakes: Lake Bogoria National Reserve, Kenya. Hydrobiologia, 500 (2003), 259–276.
Watanabe, M.. Anhydrobiosis in invertebrates. Applied Entomology and Zoology, 41 (2006), 15–31.
Crowe, L. M. and Crowe, J. H.. Anhydrobiosis: a strategy for survival. Advances in Space Research, 12(4) (1992), 239–247.
Crowe, J. H., Hoekstra, F. A., and Crowe, L. M.. Anhydrobiosis. Annual Review of Physiology, 54 (1992), 579–599.
Mancinelli, R. L., White, M. R., and Rothschild, L. J.. Biopan-survival I: exposure of the osmophiles Synechococcus sp. (Nageli) and Haloarcula sp. to the space environment. Advances in Space Research, 22(3) (1998), 327–334.
Yayanos, A. A.. Microbiology to 10,500 meters in the deep sea. Annual Review of Microbiology, 49 (1995), 777–805.
Sharma, A., Scott, J. H., Cody, G. D., et al. Microbial activity at gigapascal pressures. Science, 295 (2002), 1514–1516.
Rothschild, L. J. and Giver, L. J.. Photosynthesis below the surface in a cryptic microbial mat. International Journal of Astrobiology, 1 (2003), 295–304.
Petit, C. and Sancar, A.. Nucleotide excision repair: from E. coli to man. Biochimie, 81 (1999), 15–25.
Jönsson, K. I., Harms-Ringdahl, M., and Torudd, J.. Radiation tolerance in the eutardigrade Richtersius coronifer. International Journal of Radiation Biology, 81 (2005), 649–656.
Horikawa, D. D., Sakashita, T., Katagiri, C., et al. Radiation tolerance in the tardigrade Milnesium tardigradum. International Journal of Radiation Biology, 82 (2006), 843–848.
Battista, J. R.. Against all odds: the survival strategies of Deinococcus radiodurans. Annual Review of Microbiology, 51 (1997), 203–224.
Daly, M. J., Gaidamakova, E. K., Matrosova, V. Y., et al. Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science, 306 (2004), 1025–1028.
Makarova, K. S., et al. Deinococcus geothermalis: the pool of radiation resistance genes shrinks. PLoS ONE, Issue 9 (2007), e955.
Jacob, R. A. and Burri, B. J.. Oxidative damage and defense. American Journal of Clinical Nutrition, 63 (1996), 985S–990S.
Blokhina, O., Virolainen, E., and Fagerstedt, K. V.. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91 (2003), 179–194.
Shashar, N., Cohe, Y., and Loya, Y.. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biological Bulletin, 185 (1993), 455–461.
Burke, C. M.. Benthic microbial production of oxygen supersaturates the bottom water of a stratified hypersaline lake. Microbial Ecology, 19 (1995), 163–171.
M. Kühl, Lassen, C., and Revsbech, N. P.. A simple light meter for measurements of PAR (400 to 700 nm) with fiber-optic microprobes: application for P vs E0(PAR) measurements in a microbial mat. Aquatic Microbial Ecology, 13 (1997), 197–207.
Wharton, R. A. Jr., McKay, C. P., Simmons, G. M., and Parker, B. C.. Oxygen budget of a perennially ice-covered Antarctic lake. Limnology and Oceanography, 31 (1986), 437–443.
Craig, H., Wharton, R. A. Jr., and McKay, C. P.. Oxygen supersaturation in ice-covered Antarctic lakes: biological versus physical contributions. Science, 255 (1992), 318–321.
Berner, R. A., Beerlind, D. J., Dudley, R., Robinson, J. M., and Wildman, R. A. J.. Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Science, 31 (2003), 105–134.
Graham, J. B., Aguilar, N. M., Dudley, R., and Gans, C.. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature, 375 (1995), 117–120.
Berner, R. A., VandenBrooks, J. M., and Ward, P.. Oxygen and evolution. Science, 316 (2007), 557–558.
Horowitz, N. H., Hobby, G. L., and Hubbard, J. S.. Viking on Mars: the carbon assimilation experiments. Journal of Geophysical Research, 82 (1977), 4659–4661.
Klein, H. P.. The Viking biological experiment on Mars. Icarus, 34 (1978), 666–674.
Klein, H. P.. The Viking mission and the search for life on Mars. Reviews of Geophysics and Space Physics, 17 (1979), 1655–1662.
Bennett, J. O. and Shostak, S.. Life in the Universe, 2nd edn. (San Francisco, CA and London: Addison-Wesley, 2007).
Gladman, B., Dones, L., Levison, H. F., and Burns, J. A.. Impact seeding and reseeding in the inner solar system. Astrobiology, 5 (2005), 483–496.
Sagan, C.. The planet Venus. Science, 133 (1961), 849–858.
Cockell, C. S.. Life on Venus. Planetary and Space Science, 47 (1999), 1487–1501.
D. Schulze-Makuch, Grinspoon, D. H., Abbas, O., Irwin, L. N., and Bullock, M. A.. A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology, 4 (2004), 11–17.
Schopf, J. W.. Microfossils of the Early Archean Apex chart: new evidence of the antiquity of life. Science, 260 (1993), 640–646.
Brasier, M. D., Green, O. R., Jephcoat, A. P., et al. Questioning the evidence for Earth's oldest fossils. Nature, 416 (2002), 76–81.
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., and Czaja, A. D.. Laser-Raman imagery of Earth's earliest fossils. Nature, 416 (2002), 73–76.
Zahnle, K.. Decline and fall of the Martian empire. Nature, 412 (2001), 209–213.
Rothschild, L. J.. Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus, 88 (1990), 246–260.
McKay, D. S., Gibson, E. K. Jr., Thomas, K. L.-Keprta, et al. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science, 273 (1996), 924–930.
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al. Distribution of hydrogen in the near surface of Mars: evidence for subsurface deposits. Science, 297 (2002), 81–85.
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. Noe. Rate and contemporary gully activity on Mars. Science, 314 (2006), 1573–1577.
Cassen, P. M., Reynolds, R. T., and Peale, S. J.. Is there liquid water on Europa?Geophysical Research Letters, 6 (1979), 731–734.
Chyba, C. F. and Phillips, C. B.. Europa as an abode of life. Origins of Life and Evolution of Biospheres, 32 (2002), 47–68.
Melosh, H. J., Ekholm, A. G., Showman, A. P., and Lorenz, R. D.. The temperature of Europa's subsurface water ocean. Icarus, 168 (2004), 498–502.
Pappalardo, R. T., et al. Does Europa have a subsurface ocean? Evaluation of the geological evidence. Journal Geophysical Research, 104 (1999), 24015–24055.
Stevenson, D. J.. Europa's ocean: the case strengthens. Science, 289 (2000), 1305–1307.
Greenberg, R.. Europa – the Ocean Moon: Search for an Alien Biosphere (Berlin and Chichester, UK: Springer-Praxis, 2005).
Reynolds, R. T., Squyres, S. W., Colburn, D. S., and McKay, C. P.. On the habitability of Europa. Icarus, 56 (1983), 246–254.
Lunine, J. I. and Lorenz, R. D.. Light and heat in cracks on Europa: implications for prebiotic synthesis. Lunar and Planetary Science, 28 (1997), 855–856.
Greenberg, R., Geissler, P., Tufts, B., and Hoppa, G.. Habitability of Europa's crust: the role of tidal-tectonic processes. Journal of Geophysical Research, 105(E7) (2000), 17551–17562.
Chyba, C. F. and Phillips, C. B.. Possible ecosystems and the search for life on Europa. Proceedings of the National Academy of Sciences of the United States of America, 98 (2001), 801–804.
McCollom, T. M.. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. Journal of Geophysical Research, 104 (1990), 30, 729–30,742.
Gaidos, E. J., Nealson, K. H., and Kirschvink, J. L.. Life in ice-covered oceans. Science, 284 (1999), 1631–1633.
Johnson, R. E., Quickenden, T. I., Cooper, P. D., Mckinley, A. J., and Freeman, C. G.. The Production of oxidants in Europa's surface. Astrobiology, 3 (2003), 823–850.
Kargel, J. S., Kaye, J. Z., Head, J. W., et al. Europa's crust and ocean: origin, composition, and the prospects for life. Icarus, 148 (2000), 226–265.
Marion, G. M., Fritsen, C. H., H. Eicken, and Payne, M. C.. The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogs. Astrobiology, 3 (2003), 785–811.
Israël, G., et al. Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis. Nature, 438 (2005), 796–799.
Tomasko, M. G., et al. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature, 438 (2005), 765–778.
McKay, C. P. and Smith, H. D.. Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus, 178 (2005), 274–276.
Spencer, J. R., Pearl, J. C., M. Segura, et al. Cassini encounters Enceladus: background and the discovery of a South Polar hot spot. Science, 311 (2006), 1401–1405.
Horneck, G., Bücker, H., Reitz, G., et al. Microorganisms in the space environment. Science, 225 (1984), 226–228.
Horneck, G.. Responses of Bacillus subtilis spores to space environment: results from experiments in space. Origins of Life and Evolution of Biospheres, 23 (1993), 37–52.
Horneck, G.. European activities in exobiology in Earth orbit: results and perspectives. Advances in Space Research, 23 (1999), 381–386.
Schulte, W., Demets, R., Baglioni, P., Rettberg, P., Heise-Rotenburg, R., and Toporski, J.. BIOPAN and ESPOSE: space exposure platforms for exo/astrobiological research in Earth orbit with relevance for Mars exploration. Geophysical Research Abstracts, 8 (2006), 06643.
Horneck, G., Stöffler, D., and Eshweiller, U.. Bacterial spores survive simulated meteorite impact. Icarus, 149 (2001), 285–290.