Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T02:19:24.449Z Has data issue: false hasContentIssue false

11 - Bioluminescence-based fungal biosensors

from IV - Fungal bioremediation

Published online by Cambridge University Press:  05 October 2013

H. J. Weitz
Affiliation:
School of Biological Sciences Cruickshank Building University of Aberdeen Aberdeen AB24 3UU UK
G. D. Robson
Affiliation:
University of Manchester
Pieter van West
Affiliation:
University of Aberdeen
Geoffrey Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

To apply suitable bioremediation techniques, an understanding of the physical, chemical and biological attributes of an environmental matrix is required. Effective bioremediation is based on optimizing these attributes to enhance the biodegradation of target pollutants. Fundamental to these processes is the concept of bioavailability and bioaccessibility of these pollutants at a suitable and relevant scale (Alexander, 2000; Semple et al., 2004). Environmental analyses are still based on chemical approaches that usually require an exhaustive extraction step prior to chromatographic analysis. This extracted fraction is commonly modelled to assess the portion that may cause harm to a particular target receptor. It is widely acknowledged that modelled values may be appropriate for human risk assessment (though inherently conservative) but yield little information for hazard assessment in a wider ecological or environmental context (Alexander, 2000). Many authors have demonstrated that chemical analysis alone does not provide information regarding the bioavailable fraction of compounds nor about their effects on selected biological receptors (Power et al., 1998; Hansen & Sørensen, 2001; Belkin, 2003; Paton & Killham, 2003). Biological assays are able to complement chemical analysis by considering the effects of all pollutants present in a sample, including those not detected by chemical analysis or those unable to be fitted in a model. Bioassays are used for monitoring the progress of bioremediation because they determine the bioavailable fraction of compounds that in part determines the biodegradability of a compound (Hansen & Sørensen, 2001; Paton & Killham, 2003). However, Semple et al.

Type
Chapter
Information
Exploitation of Fungi , pp. 187 - 204
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aflalo, C. (1990). Targeting of cloned firefly luciferase to yeast mitochondria. Biochemistry, 29, 4758–66.CrossRefGoogle ScholarPubMed
Airth, R. L. & Foerster, G. E. (1962). The isolation of catalytic components required for cell-free fungal bioluminescence. Archives of Biochemistry and Biophysics, 97, 567–73.CrossRefGoogle ScholarPubMed
Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science and Technology, 34, 4259–65.CrossRefGoogle Scholar
Alkasrawi, M., Nandakumar, R., Margesin, R., Schinner, F. & Mattiasson, B. (1999). A microbial biosensor based on Yarrowia lipolytica for the off-line determination of middle-chain alkanes. Biosensors and Bioelectronics, 14, 723–7.CrossRefGoogle ScholarPubMed
Alleman, B. C., Logan, B. E. & Gilbertson, R. L. (1992). Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose. Applied and Environmental Microbiology, 58, 4048–50.Google ScholarPubMed
Baeumner, A. J. (2003). Biosensors for environmental pollutants and food contaminants. Analytical and Bioanalytical Chemistry, 377, 434–45.CrossRefGoogle ScholarPubMed
Baronian, K. H. R. (2004). The use of yeast and moulds as sensing elements in biosensors. Biosensors and Bioelectronics, 19, 953–62.CrossRefGoogle ScholarPubMed
Belkin, S. (2003). Microbial whole-cell sensing systems of environmental pollutants. Current Opinion in Microbiology, 6, 206–12.CrossRefGoogle ScholarPubMed
Bhattacharyya, J., Read, D., Amos, S., Dooley, S., Killham, K. & Paton, G. I. (2005). Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environmental Pollution, 134, 485–92.CrossRefGoogle ScholarPubMed
Billinton, N., Barker, M. G., Michel, C. E., Knight, A. W., Heyer, W.-D., Goddard, N. J., Fielden, P. R. & Walmsley, R. M. (1998). Development of a green fluorescent protein reporter for a yeast genotoxicity biosensor. Biosensors and Bioelectronics, 13, 831–8.CrossRefGoogle Scholar
Blaudez, D., Jacob, C., Turnau, K., Colpaert, J. V., Ahonen-Jonnarth, U., Finlay, R., Botton, B. & Chalot, M. (2000). Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research, 104, 1366–71.CrossRefGoogle Scholar
Boylan, M., Pelletier, J. & Meighen, E. A. (1989). Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes. Journal of Biological Chemistry, 264, 1915–18.Google ScholarPubMed
Bundy, J. G., Campbell, C. D. & Paton, G. I. (2001). Comparison of response of six different luminescent bacterial bioassays to bioremediation of five contrasting oils. Journal of Environmental Monitoring, 3, 404–10.CrossRefGoogle ScholarPubMed
Campanella, L., Favero, G. & Tomassetti, M. (1995). Immobilised yeast cells biosensor for total toxicity testing. The Science of the Total Environment, 171, 227–34.CrossRefGoogle ScholarPubMed
Campbell, C. D., Paton, G. I., Towers, W., Paterson, E., Dawson, J. C. C., Cameron, C. M., Coull, M. C. & Christie, P. (2001). A biological classification scheme to assess the sensitivity of Scottish and Northern Ireland soils to heavy metals. SNIFFER Report No SR (00) 08.
Chatterjee, J. & Meighen, E. A. (1995). Biotechnological applications of bacterial bioluminescence (lux) genes. Photochemistry and Photobiology, 62, 641–50.CrossRefGoogle Scholar
Chaudri, A. M., Knight, B. P., Barbosa-Jefferson, V. L., Preston, S., Paton, G. I., Killham, K., Coad, N., Nicholson, F. A., Chambers, B. J. & McGrath, S. P. (1999). Determination of acute Zn toxicity in pore water from soils previously treated with sewage sludge using bioluminescence assays. Environmental Science and Technology, 33, 1880–5.CrossRefGoogle Scholar
Chiu, S. W., Ching, M. L., Fong, K. L. & Moore, D. (1998). Spent oyster mushroom substrate performs better than mushroom mycelia in removing the biocide pentachlorophenol. Mycological Research, 102, 1553–62.CrossRefGoogle Scholar
Daunert, S., Barrett, G., Feliciano, J. S., Shetty, R. S., Shrestha, S. & Smith-Spencer, W. (2000). Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chemical Reviews, 100, 2705–38.CrossRefGoogle ScholarPubMed
Dennison, M. J. & Turner, A. P. F. (1995). Biosensors for environmental monitoring. Biotechnology Advances, 13, 1–12.CrossRefGoogle ScholarPubMed
D'Souza, S. F. (2001). Microbial biosensors. Biosensors and Bioelectronics, 16, 337–53.CrossRefGoogle ScholarPubMed
Escher, A., O'Kane, D. J., Lee, J. & Szalay, A. A. (1989). Bacterial luciferase αβ fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proceedings of the National Academy of Sciences of the United States of America, 86, 6528–32.CrossRefGoogle Scholar
Farré, M., Arranz, F., Ribó, J. & Barceló, D. (2004). Interlaboratory study of the bioluminescence inhibition tests for rapid wastewater toxicity assessment. Talanta, 62, 549–58.CrossRefGoogle ScholarPubMed
Gupta, R. K., Patterson, S. S., Ripp, S., Simpson, M. L. & Sayler, G. S. (2003). Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Research, 4, 305–13.CrossRefGoogle Scholar
Hansen, L. H. & Sørensen, S. J. (2001). The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microbial Ecology, 42, 483–93.CrossRefGoogle ScholarPubMed
Herring, P. J. (1994). Luminous fungi. Mycologist, 8, 181–3.CrossRefGoogle Scholar
Hill, P. J., Rees, C. E. D., Winson, M. K. & Stewart, G. S. A. B. (1993). The application of lux genes. Biotechnology and Applied Biochemistry, 17, 3–14.Google ScholarPubMed
Hoiland, K. (1995). Reaction of some decomposer basidiomycetes to toxic elements. Nordic Journal of Botany, 15, 305–18.CrossRefGoogle Scholar
Hoiland, K. & Dybdahl, H. G. (1993). A micro-well method for estimating fungal response to metal ions. Response to aluminium by some saprophytic basidiomycetes. Nordic Journal of Botany, 13, 691–6.CrossRefGoogle Scholar
Hollis, R. P. (1999). Construction and application of a luminescent eukaryotic biosensor. Ph.D. thesis, University of Aberdeen.
Hollis, R. P., Killham, K. & Glover, L. A. (2000). Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Applied and Environmental Microbiology, 66, 1676–9.CrossRefGoogle Scholar
Hollis, R. P., Lagido, C., Pettitt, J., Porter, A. J. R., Killham, K., Paton, G. I. & Glover, L. A. (2001). Toxicity of the bacterial luciferase substrate, n-decyl aldehyde, to Saccharomyes cerevisiae and Caenorhabditis elegans. FEBS Letters, 506, 140–2.CrossRefGoogle Scholar
Hrenovic, J., Stilinovic, B. & Dvoracek, L. (2005). Use of prokaryotic and eukaryotic biotests to assess toxicity of wastewater from pharmaceutical sources. Acta Chimica Slovenica, 52, 119–25.Google Scholar
Kamzolkina, O. V., Bekker, Z. E. & Egorov, N. S. (1984). Extraction of the luciferin-luciferase system from the fungus Armillaria mellea. Biologicheskiye Nauki, 1, 73–7.Google Scholar
Keane, A., Phoenix, P., Ghoshal, S. & Lau, P. C. K. (2002). Exposing culprit organic pollutants: a review. Journal of Microbiological Methods, 49, 103–19.CrossRefGoogle ScholarPubMed
Kelly, C. J., Lajoie, C. A., Layton, A. C. & Sayler, G. S. (1999). Bioluminescent reporter bacterium for toxicity monitoring in biological wastewater treatment systems. Water Environment Research, 71, 31–5.CrossRefGoogle Scholar
Kirchner, G., Roberts, J. L., Gustafson, G. D. & Ingolia, T. D. (1989). Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells. Gene, 81, 349–54.CrossRefGoogle ScholarPubMed
Koehler, S., Belkin, S. & Schmid, R. D. (2000). Reporter gene bioassays in environmental analysis. Fresenius Journal of Analytical Chemistry, 366, 769–79.Google Scholar
Korpan, Y. I. & El'skaya, A. V. (1995). Microbial sensors: achievements, problems, and prospects. Biochemistry (Moscow), 60, 1517–24.Google ScholarPubMed
Kuwabara, S. & Wassink, E. C. (1966). Purification and properties of the active substance of fungal luminescence. In Bioluminescence in Progress, eds. Johnson, F. H. & Haneda, Y.. Princeton: Princeton University Press, pp. 233–45.Google Scholar
Lorang, J. M., Tuori, R. P., Martinez, J. P., Sawyer, T. L., Redman, R. S., Rollins, J. A., Wolpert, T. J., Johnson, K. B., Rodriguez, R. J., Dickman, M. B. & Cuiffeti, L. M. (2001). Green fluorescent protein is lighting up fungal biology. Applied and Environmental Microbiology, 67, 1987–94.CrossRefGoogle ScholarPubMed
Meighen, E. A. (1991). Molecular biology of bacterial bioluminescence. Microbiological Reviews, 55, 123–42.Google ScholarPubMed
Meighen, E. A. (1993). Bacterial bioluminescence: organization, regulation, and application of the lux genes. FASEB Journal, 7, 1016–22.CrossRefGoogle ScholarPubMed
Mowat, F. S. & Bundy, K. J. (2001). Correlation of field-measured toxicity with chemical concentration and pollutant availability. Environment International, 27, 479–89.CrossRefGoogle ScholarPubMed
O'Kane, D. J., Lingle, W. L., Porter, D. & Wampler, J. E. (1986). Development and localization of bioluminescence in the fruiting bodies of the mushroom Panellus stypticus. Photochemistry and Photobiology, 43, 100s.Google Scholar
O'Kane, D. J., Lingle, W. L., Porter, D. & Wampler, J. E. (1990). Spectral analysis of bioluminescence of Panellus stypticus. Mycologia, 82, 607–16.CrossRefGoogle Scholar
Palmer, G., McFadzean, R., Killham, K., Sinclair, A. & Paton, G. I. (1998). Use of lux-based biosensors for rapid diagnosis of pollutants in arable soils. Chemosphere, 36, 2683–97.CrossRefGoogle Scholar
Paton, G. I., Rattray, E. A. S., Campbell, C. D., Cresser, M. S., Glover, L. A., Meeussen, J. C. L. & Killham, K. (1997). Use of genetically modified microbial biosensors for soil ecotoxicity testing. In Biological Indicators of Soil Health and Sustainable Productivity, eds. Pankhurst, C., Doube, B. & Gupta, V.. Wallingford: CAB International, pp. 397–418.Google Scholar
Paton, G. I. & Killham, K. (2003). Intelligent site assessment – a role for ecotoxicology. In Bioremediation: A Critical Review, eds. Head, I. M., Singleton, I. & Milner, M. G.. Wymondham: Horizon Scientific Press, pp. 157–83.Google Scholar
Paton, G. I., Viventsova, R. E., Kumpene, J., Wilson, M. J., Weitz, H. J. & Dawson, J. J. C. (2006). An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Science of the Total Environment, 355, 106–17.CrossRefGoogle ScholarPubMed
Power, M., Meer, J. R., Tchelet, R., Egli, T. & Eggen, R. (1998). Molecular-based methods can contribute to assessments of toxicological risks and bioremediation strategies. Journal of Microbiological Methods, 32, 107–19.CrossRefGoogle Scholar
Ramanathan, S., Ensor, M. & Daunert, S. (1997). Bacterial biosensors for monitoring toxic metals. Trends in Biotechnology, 15, 500–6.CrossRefGoogle ScholarPubMed
Rattray, E. A. S., Prosser, J. I., Killham, K. & Glover, L. A. (1990). Luminescence-based non-extractive technique for in situ detection of Escherichia coli in soil. Applied and Environmental Microbiology, 56, 3368–74.Google Scholar
Ripp, S., Nivens, D. E., Ahn, Y., Werner, C., Jarrell, J. IV, Easter, J. P., Cox, C. D., Burlage, R. S. & Sayler, G. S. (2000). Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environmental Science and Technology, 34, 846–53.CrossRefGoogle Scholar
Sabev, H. A., Handley, P. S. & Robson, G. D. (2004). In situ quantification of biocide efficacy using GFP transformed Aureobasidium pullulans. Journal of Applied Microbiology, 97, 1132–9.CrossRefGoogle ScholarPubMed
Sanseverino, J., Gupta, R. K., Layton, A. C., Patterson, S. S., Rip, S. A., Saidak, L., Simpson, M. L., Schultz, T. W. & Sayler, G. S. (2005). Use of Saccharomyces cerevisiae BLYES expressing bacterial bioluminescence for rapid, sensitive detection of estrogenic compounds. Applied and Environmental Microbiology, 71, 4455–60.CrossRefGoogle ScholarPubMed
Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A. & Harms, H. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science and Technology, 38, 209A–232A.CrossRefGoogle ScholarPubMed
Shimomura, O. (1992). Role of superoxide dismutase in regulating the light emission of luminescent fungi. Journal of Experimental Botany, 43, 1519–25.CrossRefGoogle Scholar
Sousa, S., Duffy, C., Weitz, H., Glover, L. A., Baer, E., Henkler, R. & Killham, K. (1998). Use of a lux-modified bacterial biosensor to identify constraints to bioremediation of BTEX-contaminated sites. Environmental Toxicology and Chemistry, 17, 1039–45.CrossRefGoogle Scholar
Steinberg, S. M., Poziomek, E. J., Engelmann, W. H. & Rogers, K. R. (1995). A review of environmental applications of bioluminescence measurements. Chemosphere, 30, 2155–97.CrossRefGoogle Scholar
Strachan, G., Capel, S., Maciel, H., Porter, A. J. R. & Paton, G. I. (2002). Application of cellular and immunological biosensor techniques to assess herbicide toxicity in soils. European Journal of Soil Science, 53, 37–44.CrossRefGoogle Scholar
Szittner, R., Jansen, G., Thomas, D. Y. & Meighen, E. (2003). Bright stable luminescent yeast using bacterial luciferase as a sensor. Biochemical and Biophysical Research Communications, 309, 66–70.CrossRefGoogle ScholarPubMed
Tandy, S., Barbosa, V., Tye, A., Preston, S., Paton, G., Zhang, H. & McGrath, S. (2005). Comparison of different microbial bioassays to assess metal-contaminated soils. Environmental Toxicology and Chemistry, 24, 530–6.CrossRefGoogle ScholarPubMed
Ulitzur, S. (1997). Established technologies and new approaches in applying luminous for analytical purposes. Journal of Bioluminescence and Chemiluminescence, 12, 179–92.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Vieites, J. M., Navarro-Garcia, F., Perez-Diaz, R., Pla, J. & Nombela, C. (1994). Expression and in vivo determination of firefly luciferase as gene reporter in Saccharomyces cerevisiae. Yeast, 10, 1321–7.CrossRefGoogle ScholarPubMed
Walmsley, R. M. & Keenan, P. (2000). The eukaryote alternative: advantage of using yeasts in place of bacteria in microbial biosensor development. Biotechnology and Bioprocess Engineering, 5, 387–94.CrossRefGoogle Scholar
Wassink, E. C. (1978). Luminescence in fungi. In Bioluminescence in Action, ed. Herring, P. J.. London: Academic Press, pp. 171–95.Google Scholar
Webb, J. S, Barratt, S. R., Sabev, H., Nixon, M., Eastwood, I. M., Greenhalgh, M., Handley, P. S. & Robson, G. D. (2001). Green fluorescent protein as a novel indicator of antimicrobial susceptibility in Aureobasidium pullulans. Applied and Environmental Microbiology, 67, 5614–20.CrossRefGoogle ScholarPubMed
Weitz, H. J., Ritchie, J. M., Bailey, D. A., Horsburgh, A. M., Killham, K. & Glover, L. A. (2001a). Construction of a modified mini-Tn5 luxCDABE transposon for the development of bacterial biosensors for ecotoxicity testing. FEMS Microbiology Letters, 197, 159–65.CrossRefGoogle Scholar
Weitz, H. J., Ballard, A. L., Campbell, C. D. & Killham, K. (2001b). The effect of culture conditions on the mycelial growth and luminescence of naturally bioluminescent fungi. FEMS Microbiology Letters, 202, 165–70.CrossRefGoogle Scholar
Weitz, H. J., Campbell, C. D. & Killham, K. (2002). Development of a novel, bioluminescence-based, fungal bioassay for toxicity testing. Environmental Microbiology, 4, 422–9.CrossRefGoogle ScholarPubMed
Wilson, T. & Hastings, J. W. (1998). Bioluminescence. Annual Review of Cell and Developmental Biology, 14, 197–230.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×