Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T01:27:11.877Z Has data issue: false hasContentIssue false

18 - Yeast Ageing

Reproduction Strategies Determine the Longevity of Budding and Fission Yeasts

from Part IV - Senescence in Microbes

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. (2003). Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science, 299, 1751–3.CrossRefGoogle ScholarPubMed
Barker, M. G. & Walmsley, R. M. (1999). Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast, 15, 1511–18.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Barton, A. A. (1950). Some aspects of cell division in Saccharomyces cerevisiae. Journal of General Microbiology, 4, 84.CrossRefGoogle ScholarPubMed
Bilinski, T. (2012). Hypertrophy, replicative ageing and the ageing process. FEMS Yeast Research, 12, 739–40.CrossRefGoogle ScholarPubMed
Bilinski, T., Bartosz, G. (2006). Hypothesis: cell volume limits cell divisions. Acta Biochimica Polonica, 53, 833–5.CrossRefGoogle ScholarPubMed
Bilinski, T., Zadrag-Tecza, R. & Bartosz, G. (2012). Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Research, 12, 97101.CrossRefGoogle ScholarPubMed
Blagosklonny, M. V. (2013). Aging is not programmed: genetic pseudo-program is a shadow of developmental growth. Cell Cycle, 12, 3736–42.CrossRefGoogle ScholarPubMed
Calder, P. C. (2005). Polyunsaturated fatty acids and inflammation. Biochemical Society Transactions, 33, 423–7.CrossRefGoogle ScholarPubMed
Carmona-Gutierrez, D. & Büttner, S. (2014). The many ways to age for a single yeast cell. Yeast, 31, 289–98.CrossRefGoogle ScholarPubMed
Chu, S. & Herskowitz, I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Molecular Cell, 1, 685–96.CrossRefGoogle ScholarPubMed
Coelho, M., Dereli, A., Haese, A., et al. (2013). Fission yeast does not age under favorable conditions, but does so after stress. Current Biology, 23, 1844–52.CrossRefGoogle Scholar
Drinnenberg, I. A., Weinberg, D. E., Xie, K. T., et al. (2009). RNAi in budding yeast. Science, 326, 544–50.CrossRefGoogle ScholarPubMed
Egilmez, N. K. & Jazwinski, S. M. (1989). Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. Journal of Bacteriology, 171, 3742.CrossRefGoogle ScholarPubMed
Erjavec, N., Cvijovic, M., Klipp, E. & Nystrom, T. (2008). Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proceedings of the National Academy of Sciences of the United States of America, 105, 18764–9.Google ScholarPubMed
Fuchs, J. & Loidl, J. (2004). Behaviour of nucleolus organizing regions (NORs) and nucleoli during mitotic and meiotic divisions in budding yeast. Chromosome Research, 12, 427–38.CrossRefGoogle ScholarPubMed
Ganley, A. R. & Kobayashi, T. (2014). Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Research, 14, 4959.CrossRefGoogle ScholarPubMed
Ganley, A. R. D., Breitenbach, M., Kennedy, B. K. & Kobayashi, T. (2012). Yeast hypertrophy: cause or consequence of aging? Reply to Bilinski et al. FEMS Yeast Research, 12, 267–8.CrossRefGoogle ScholarPubMed
Garigan, D., Hsu, A. L., Fraser, A. G., et al. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics, 161, 1101–12.CrossRefGoogle ScholarPubMed
Gershon, H. & Gershon, D. (2000). The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mechanisms of Ageing and Development, 120, 122.CrossRefGoogle Scholar
Hartwell, L. H. & Unger, M. W. (1977). Unequal division in Saccharomyces cerevisiae and its implications for control of cell division. Journal of Cell Biology, 75, 422–35.Google ScholarPubMed
Hayflick, L. (2007). Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genetics, 3, 2351–4.CrossRefGoogle Scholar
Hayflick, L. & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25,585621.CrossRefGoogle ScholarPubMed
Jung, H. J. & Suh, Y. (2012). MicroRNA in aging: from discovery to biology. Current Genomics, 13, 548–57.Google ScholarPubMed
Kaeberlein, M. (2012). Hypertrophy and senescence factors in yeast aging: a reply to Bilinski et al. FEMS Yeast Research, 12, 269–70.CrossRefGoogle ScholarPubMed
Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. (2005). Genes determining yeast replicative life span in a long-lived genetic background. Mechanisms of Ageing and Development, 126, 491504.CrossRefGoogle Scholar
Kennedy, B. K., Austriaco, N. R. & Guarente, L. (1994). Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life-span. Journal of Cell Biology, 127, 1985–93.Google ScholarPubMed
Kennedy, B. K. & Mccormick, M. A. (2011). Asymmetric segregation: the shape of things to come? Current Biology, 21, R149–51.CrossRefGoogle ScholarPubMed
Klinger, H., Rinnerthaler, M., Lam, Y. T., et al. (2010). Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Experimental Gerontology, 45, 533–42.CrossRefGoogle ScholarPubMed
Lai, C. Y., Jaruga, E., Borghouts, C. & Jazwinski, S. M. (2002). A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics, 162, 7387.CrossRefGoogle ScholarPubMed
Lin, S.-J. & Austriaco, N. (2014). Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Research, 14, 119–35.CrossRefGoogle ScholarPubMed
Lindstrom, D. L. & Gottschling, D. E. (2009). The Mother Enrichment Program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics, 183, 413–22.CrossRefGoogle Scholar
Liu, B., Larsson, L., Caballero, A., et al. (2010). The polarisome is required for segregation and retrograde transport of protein aggregates. Cell, 140, 257–67.CrossRefGoogle ScholarPubMed
Longo, V. D., Gralla, E. B. & Valentine, J. S. (1996). Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae: mitochondrial production of toxic oxygen species in vivo. Journal of Biological Chemistry, 271, 12275–80.CrossRefGoogle ScholarPubMed
Mcfaline-Figueroa, J. R., Vevea, J., Swayne, T. C., et al. (2011). Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell, 10, 885–95.CrossRefGoogle ScholarPubMed
Minois, N., Frajnt, M., Wilson, C. & Vaupel, J. W. (2005). Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 102, 402–6.Google ScholarPubMed
Mortimer, R. K. & Johnston, J. R. (1959). Life span of individual yeast cells. Nature, 183, 1751–2.CrossRefGoogle ScholarPubMed
Muller, I., Zimmermann, M., Becker, D. & Flomer, M. (1980). Calendar life span versus budding life span of Saccharomyces cerevisiae. Mechanisms of Ageing and Development, 12, 4752.CrossRefGoogle ScholarPubMed
Polymenis, M. & Kennedy, B. K. (2012). Chronological and replicative lifespan in yeast: do they meet in the middle? Cell Cycle, 11, 3531–2.CrossRefGoogle ScholarPubMed
Pratico, D. (2002). Lipid peroxidation and the aging process. Science of Aging Knowledge Environment, 2002, re5.CrossRefGoogle ScholarPubMed
Rueegger, S. & Grosshans, H. (2012). MicroRNA turnover: when, how, and why. Trends in Biochemical Sciences, 37, 436–46.CrossRefGoogle Scholar
Shcheprova, Z., Baldi, S., Frei, S. B., et al. (2008). A mechanism for asymmetric segregation of age during yeast budding. Nature, 454, 728–34.CrossRefGoogle ScholarPubMed
Sinclair, D., Mills, K. & Guarente, L. (1998). Aging in Saccharomyces cerevisiae. Annual Review of Microbiology, 52, 533–60.CrossRefGoogle ScholarPubMed
Sinclair, D. A. & Guarente, L. (1997). Extrachromosomal rDNA circles: a cause of aging in yeast. Cell, 91, 1033–42.CrossRefGoogle ScholarPubMed
Smith, E. D., Tsuchiya, M., Fox, L. A., et al. (2008). Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Research, 18, 564–70.CrossRefGoogle ScholarPubMed
Sohal, R. S. & Brunk, U. T. (1989). Lipofuscin as an indicator of oxidative stress and aging. Advances in Experimental Medicine and Biology, 1989(266), 1726.Google Scholar
Spiteller, G. (2001). Lipid peroxidation in aging and age-dependent diseases. Experimental Gerontology, 36, 1425–57.CrossRefGoogle ScholarPubMed
Tehlivets, O., Scheuringer, K. & Kohlwein, S. D. (2007). Fatty acid synthesis and elongation in yeast. Biochimica et Biophysica Acta, 1771, 255–70.Google ScholarPubMed
Teplyuk, N. M. (2012). Near-to-perfect homeostasis: examples of universal aging rule which germline evades. Journal of Cellular Biochemistry, 113, 388–96.CrossRefGoogle ScholarPubMed
Tufekci, K. U., Oner, M. G., Meuwissen, R. L. J. & Genc, S. (2014). The role of microRNAs in human diseases. Methods in Molecular Biology, 1107, 3350.CrossRefGoogle ScholarPubMed
Unal, E., Kinde, B. & Amon, A. (2011). Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science, 332, 1554–57.CrossRefGoogle ScholarPubMed
Wawryn, J., Swiecilo, A., Bartosz, G. & Bilinski, T. (2002). Effect of superoxide dismutase deficiency on the life span of the yeast Saccharomyces cerevisiae: an oxygen-independent role of Cu,Zn-superoxide dismutase. Biochimica et Biophysica Acta, 1570, 199202.CrossRefGoogle ScholarPubMed
Woldringh, C. L., Huls, P. G. & Vischer, N. O. E. (1993). Volume growth of daughter and parent cells during the cell-cycle of Saccharomyces cerevisiae a/alpha as determined by image cytometry. Journal of Bacteriology, 175, 3174–81.CrossRefGoogle ScholarPubMed
Wright, J., Dungrawala, H., Bright, R. K. & Schneider, B. L. (2013). A growing role for hypertrophy in senescence. FEMS Yeast Research, 13, 26.CrossRefGoogle ScholarPubMed
Yang, J., Dungrawala, H., Hua, H., et al. (2011). Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle, 10, 144–55.CrossRefGoogle ScholarPubMed
Zadrag-Tecza, R., Kwolek-Mirek, M., Bartosz, G. & Bilinski, T. (2009). Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae. Biogerontology, 10, 481–8.CrossRefGoogle ScholarPubMed
Zadrag-Tecza, R., Molon, M., Mamczur, J. & Bilinski, T. (2013). Dependence of the yeast Saccharomyces cerevisiae post-reproductive lifespan on the reproductive potential. Acta Biochimica Polonica, 60, 111–15.CrossRefGoogle ScholarPubMed
Zadrag, R., Bartosz, G. & Bilinski, T. (2005). Replicative aging of the yeast does not require DNA replication. Biochemical and Biophysical Research Communications, 333, 138–41.CrossRefGoogle Scholar
Zadrag, R., Bartosz, G. & Bilinski, T. (2008). Is the yeast a relevant model for aging of multicellular organisms? An insight from the total lifespan of Saccharomyces cerevisiae. Current Aging Science, 1, 159–65.CrossRefGoogle ScholarPubMed
Zhou, C., Slaughter, B. D., Unruh, J. R., et al. (2011). Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell, 147, 1186–96.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×