Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T14:29:45.610Z Has data issue: false hasContentIssue false

15 - Evolution of Air Breathing and Lung Distribution among Fossil Fishes

Published online by Cambridge University Press:  31 December 2018

Zerina Johanson
Affiliation:
Natural History Museum, London
Charlie Underwood
Affiliation:
Birkbeck, University of London
Martha Richter
Affiliation:
Natural History Museum, London
Get access

Summary

Air-breathing evolved in fishes during the Silurian, prior to the conquest of terrestrial environments, as the first air-breathing groups were still aquatic forms. Among fossil fishes and stem-tetrapods, the air-breathing behaviour was described based on anatomical structures and organs, such as spiracles, skeletal buccal pump components, cranial ribs, well-developed pleural ribs, integumentary dermal skeleton, choanae and calcified lungs. However, due to the rarity of soft tissue preservation in the fossil record, the presence of lungs is mostly described among fossil coelacanths, which present a pulmonary complex covered by ossified lung plates throughout its length. Here, we describe the main differences among fossil coelacanth lungs, review some of the accessory air-breathing structures in fossil fishes and stem-tetrapods and discuss the air-breathing evolution that enabled the rise and development of early vertebrates on the terrestrial environment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1835. Recherches sur les Poissons Fossiles. Vol. 2. 4ème livraison. Imprimerie Petit-Pierre Neuchatel: pp. 35–64.Google Scholar
Ahlberg, PE. 1991. A re-examination of sarcopterygian interrelationships, with special reference to the Porolepiformes. Zool J Linn Soc Lond 103:241287.Google Scholar
Ahlberg, PE, Clack, JA. 2006. Palaeontology: A firm step from water to land. Nature 440:747749.CrossRefGoogle ScholarPubMed
Ahlberg, PE, Clack, JA, Blom, H. 2005. The axial skeleton of the Devonian tetrapod Ichthyostega. Nature 437:137140.CrossRefGoogle ScholarPubMed
Anderson, JS, Pardo, JD, Maddin, HC, Szostakiwskyj, M, Tinius, A. 2016. Is there an exemplar taxon for modelling the evolution of early tetrapod hearing? Proc R Soc B 283:20160027.CrossRefGoogle ScholarPubMed
Andrews, SM, Westoll, TS. 1970. IX. The postcranial skeleton of Eusthenopteron foordi Whiteaves. Trans Soc, R. Edinburgh Earth Sci 68:207329.Google Scholar
Arratia, G, Schultze, HP, Casciotta, J. 2001. Vertebral column and associated elements in dipnoans and comparison with other fishes: Development and homology. J Morph 250:101172.Google Scholar
Bartsch, P, Gemballa, S. 1992. On the anatomy and development of the vertebral column and pterygiophores in Polypterus senegalus Cuvier, 1829 (‘Pisces’, Polypteriformes). Zool Jb Anat 122:497529.Google Scholar
Basden, AM, Young, GC. 2001. A primitive actinopterygian neurocranium from the Early Devonian of southeastern Australia. J Vert Paleont, 21:754766.Google Scholar
Béchard, I, Arsenault, F, Cloutier, R, Kerr, J. 2014. The Devonian placoderm fish Bothriolepis canadensis revisited with three-dimensional digital imagery. Palaeontol Electron 17:119.Google Scholar
Bemis, WE. 1986. Feeding systems of living Dipnoi: Anatomy and function. J Morph 190:249275.Google Scholar
Bishop, IR, Foxon, GEH. 1968. The mechanism of breathing in the South American lungfish, Lepidosiren paradoxa: Radiological study. J Zool 154:263271.Google Scholar
Blieck, A, Clément, G, Blom, H, Lelièvre, H, Luksevics, E, Streel, M, Thorez, J, Young, GC. 2007. The biostratigraphical and palaeogeographical framework of the earliest diversification of tetrapods (Late Devonian). In: Becker, RT, Kirchgasser, WT, editors. Devonian Events and Correlations. London: Geological Society of London. pp. 219235.Google Scholar
Brainerd, EL. 1994. The evolution of lung-gill bimodal breathing and the homology of vertebrate respiratory pumps. Am Zool 34:289299.Google Scholar
Brainerd, EL. 1999. New perspectives on the evolution of lung ventilation mechanisms in vertebrates. Exp Biol Online 4:128.Google Scholar
Brainerd, EL, Ditelberg, JS, Bramble, DM. 1993. Lung ventilation in salamanders and the evolution of vertebrate air-breathing mechanisms. Biol J Linn Soc Lond 49:163183.Google Scholar
Brazeau, MD, Ahlberg, PE. 2006. Tetrapod-like middle ear architecture in a Devonian fish. Nature 439:318321.Google Scholar
Brito, PM, Meunier, FJ, Clément, G, Kuriyama, DG. 2010. The histological structure of the calcified lung of the fossil coelacanth Axelrodichthys araripensis (Actinistia: Mawsoniidae). Palaeontology 53:12811290.Google Scholar
Britz, R, Bartsch, P. 2003. The myth of dorsal ribs in gnathostome vertebrates. Proc R Soc Lond B 270 (Suppl 1): S1S4.Google Scholar
Campbell, KSW, Barwick, RE. 1988. Geological and palaeontological information and phylogenetic hypotheses. Geol Mag 125:207227.Google Scholar
Challands, T, Blaauwen, J. 2016. A redescription of the Middle Devonian dipnoan Pentlandia macroptera Traquair, 1889, and an assessment of the Phaneropleuridae. Zool J Linn Soc Lond 180(2):414460.Google Scholar
Clack, JA. 2002. An early tetrapod from ‘Romer’s Gap’. Nature 418:7276.Google Scholar
Clack, JA, Finney, SM. 2005. Pederpes finneyae, an articulated tetrapod from the Tournaisian of western Scotland. J Syst Palaeo 2: 311346.CrossRefGoogle Scholar
Clack, JA. 2007. Devonian climate change, breathing, and the origin of the tetrapod stem group. Integr Comp Biol 47:510523.Google Scholar
Clack, JA. 2009. The fish–tetrapod transition: New fossils and interpretations. Evol Educ Outreach 2:213223.CrossRefGoogle Scholar
Clack, JA. 2012. Gaining Ground: The Origin and Evolution of Tetrapods. Indiana: Indiana University Press.Google Scholar
Clement, AM. 2012. A new species of long-snouted lungfish from the Late Devonian of Australia, and its functional and biogeographical implications. Palaeontology 55:5171.Google Scholar
Clement, AM, Long, JA. 2010. Air-breathing adaptation in a marine Devonian lungfish. Biol Lett 6:509512.CrossRefGoogle Scholar
Clement, AM, Long, JA, Tafforeau, P, Ahlberg, PE. 2016. The dipnoan buccal pump reconstructed in 3D and implications for air breathing in Devonian lungfishes. Paleobiology 42:289304.Google Scholar
Clément, G. 1999. The actinistian (Sarcopterygii) Piveteauia madagascariensis Lehman from the Lower Triassic of Northeastern Madagascar: A redescription on the basis of new material. J Vert Paleo 19:234242.CrossRefGoogle Scholar
Clément, G. 2005. A new coelacanth (Actinistia, Sarcopterygii) from the Jurassic of France, and the question of the closest relative fossil to Latimeria. J Vert Paleo 25:481491.CrossRefGoogle Scholar
Coates, MI. 1996. The Devonian tetrapod Acanthostega gunnari Jarvik: Postcranial anatomy, basal tetrapod relationships and patterns of skeletal evolution. Trans R Soc Edinburgh: Earth Sci 87:363421.Google Scholar
Coates, MI, Clack, JA. 1991. Fish-like gills and breathing in the earliest known tetrapod. Nature 352:234.Google Scholar
Criswell, KE. 2015. The comparative osteology and phylogenetic relationships of African and South American lungfishes (Sarcopterygii: Dipnoi). Zool J Linn Soc Lond 174:801858.Google Scholar
Cupello, C, Brito, PM, Herbin, M, Meunier, FJ, Janvier, P, Dutel, H, Clément, G. 2015. Allometric growth in the extant coelacanth lung during ontogenetic development. Nat Comm 6:8222.Google Scholar
Cupello, C, Meunier, FJ, Herbin, M, Clément, G, Brito, PM. 2017a. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians. Roy Soc Open Sci 4:161030.Google Scholar
Cupello, C, Meunier, FJ, Herbin, M, Janvier, P, Clément, G, Brito, PM. 2017b. The homology and function of the lung plates in extant and fossil coelacanths. Sci Rep 7:9244.Google Scholar
Daeschler, EB, Shubin, NH, Jenkins, FA. 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440:757763.Google Scholar
Denison, RH. 1941. The soft anatomy of Bothriolepis. J Paleo 15:553561.Google Scholar
Dutheil, D. 1999. The first articulated fossil Cladistian: Serenoichthys kemkemensis, gen. et sp. nov., from the Cretaceous of Morocco. J Vert Paleo 19: 243246.Google Scholar
Fishman, AP, Pack, AI, Delaney, RG, Galante, RJ. 1986. Estivation in Protopterus. J Morph 190:237248.Google Scholar
Forey, PL. 1998. The History of the Coelacanth Fishes. London: Chapman & Hall/Natural History Museum.Google Scholar
Gardiner, BG. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull Brit Mus Nat Hist (Geol) 37:173428.Google Scholar
Graham, JB. 1997. Air-Breathing Fishes. Evolution, Diversity and Adaptation. San Diego: Academic Press.Google Scholar
Graham, JB, Lee, HJ. 2004. Breathing air in air: In what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiol Biochem Zool 77:720731.Google Scholar
Graham, JB, Wegner, NC, Miller, LA, Jew, CJ, Lai, NC, Berquist, RM, Frank, LR, Long, JA. 2014. Spiracular air-breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods. Nat Comm 5:3022.Google Scholar
Grigg, GC. 1965a. Studies of the Queensland lungfish, Neoceratodus forsteri (Krefft). I. Anatomy, histology, and functioning of the lung. Aust J Zool 13:243253.Google Scholar
Grigg, GC. 1965b. Studies of the Queensland lungfish, Neoceratodus forsteri (Krefft). III. Aerial respiration in relation to habits. Aust J Zool 13:413421.Google Scholar
Goodrich, ES. 1925. On the cranial roofing bones in the Dipnoi. J Linn Soc Lond, Zool 36:7986.Google Scholar
Goodrich, ES. 1958. Studies on the Structure and Development of Vertebrates. New York: Dover.Google Scholar
Goujet, D. 2011. ‘Lungs’ in placoderms, a persistent palaeobiological myth related to environmental preconceived interpretations. C R Palevol 10:323329.Google Scholar
Hildebrand, M, Goslow, G. 2001. Analysis of Vertebrate Structure, 5th edition. Hoboken: John Wiley & Sons.Google Scholar
Janis, CM, Keller, JC. 2001. Modes of ventilation in early tetrapods: Costal aspiration as a key feature of amniotes. Acta Palaeo Pol 46:137170.Google Scholar
Janvier, P. 1996. Early Vertebrates Oxford: Oxford University Press.Google Scholar
Janvier, P, Desbiens, S, Willett, JA. 2007. New evidence for the controversial ‘lungs’ of the Late Devonian antiarch Bothriolepis canadensis (Whiteaves, 1880) (Placodermi: Antiarcha). J Vert Paleo 27:709710.Google Scholar
Jessen, H. 1966. Die Crossopterygier des Oberen Plattenkalkes (Devon) der Bergisch-Gladbach-Paffrather Mulde (Rheinisches Schiefergebirge) unter Berücksichtigung von amerikanischemund europäischem Onychodus-material. Ark Zool 18:305389.Google Scholar
Johansen, K, Lenfant, C. 1967. Respiratory function in the South American lungfish, Lepidosiren paradoxa (Fitz). J Exp Biol 46: 205218.Google Scholar
Johansen, K, Lenfant, C, Grigg, GC. 1967. Respiratory control in the lungfish, Neoceratodus forsteri. Comp Biochem Physiol 20: 835854.Google Scholar
Kemp, A, Cavin, L, Guinot, G. 2017. Evolutionary history of lungfishes with a new phylogeny of post-Devonian genera. Palaeogeogr Palaeoclimatol Palaeoecol 471:209219.Google Scholar
Kind, PK, Grigg, GC, Booth, DT. 2002. Physiological responses to prolonged aquatic hypoxia in the Queensland lungfish Neoceratodus forsteri. Resp Physiol Neurobiol 132:179190.CrossRefGoogle ScholarPubMed
Lambertz, M, Grommes, K, Kohlsdorf, T, Perry, SF. 2015. Lungs of the first amniotes: Why simple if they can be complex? Biol Lett 11:20140848.Google Scholar
Lechleuthner, A, Schumacher, U, Negele, RD, Welsch, U. 1989. Lungs of Polypterus and Erpetoichthys. J Morph 201:161178.Google Scholar
Lehman, JP. 1952. Etude complémentaire des poissons de l’Eotrias du Nord-Ouest de Madagascar. Kung Sven Vetenskap Hand 2:1201.Google Scholar
Liem, KF. 1988. Form and function of lungs: The evolution of air breathing mechanisms. Am Zool 28:739759.Google Scholar
Lombard, RE, Bolt, JR. 1995. A new primitive tetrapod, Whatcheeria deltae, from the Lower Carboniferous of Iowa. Palaeontology 38:471494.Google Scholar
Long, JA. 1993. Cranial ribs in Devonian lungfishes and the origin of dipnoan air-breathing. Mem. Assoc. Australas Palaeo 15:199209.Google Scholar
Long, JA, Clement, AM. 2009. The postcranial anatomy of two Middle Devonian lungfishes (Osteichthyes, Dipnoi) from Mt. Howitt, Victoria, Australia. Mem Mus Victoria 66:189202.Google Scholar
Long, JA, Gordon, MS. 2004. The greatest step in vertebrate history: A paleobiological review of the fish-tetrapod transition. Physiol Biochem Zool 77:700719.Google Scholar
Long, JA, Trinajstic, K. 2010. The Late Devonian Gogo Formation lägerstatte of Western Australia: Exceptional early vertebrate preservation and diversity. Ann Rev Earth Plan Sci 38:255279.CrossRefGoogle Scholar
Long, JA, Young, GC, Holland, T, Senden, TJ, Fitzgerald, EM. 2006. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444:199202.Google Scholar
Longo, S, Riccio, M, McCune, AR. 2013. Homology of lungs and gas bladders: Insights from arterial vasculature. J Morph 274:687703.Google Scholar
Lu, J, Zhu, M, Ahlberg, PE, Qiao, T, Zhu, YA, Zhao, W, Jia, L. 2016. A Devonian predatory fish provides insights into the early evolution of modern sarcopterygians. Sci Adv 2:e1600154.CrossRefGoogle ScholarPubMed
Lund, R. 1986. On Damocles serratus, nov. gen. et sp. (Elasmobranchii: Cladodontida) from the Upper Mississippian Bear Gulch Limestone of Montana. J Vert Paleo 6:1219.Google Scholar
MacIver, MA, Schmitz, L, Mugan, U, Murphey, TD, Mobley, CD. 2017. Massive increase in visual range preceded the origin of terrestrial vertebrates. Proc Natl Acad Sci USA:201615563.Google Scholar
Maisey, JG. 1986. Coelacanths from the Lower Cretaceous of Brazil. Am Mus Novit 2866:130.Google Scholar
Marshall, C, Schultze, HP. 1992. Relative importance of molecular, neontological, and paleontological data in understanding the biology of the vertebrate invasion of land. J Mol Evol 35:93101.Google Scholar
McMahon, BE. 1969. A functional analysis of the aquatic and aerial respiratory movements of an African lungfish, Protopterus aethiopicus. J Exp Biol 51:407430.Google Scholar
Melton, WG. 1969. A new dorypterid fish from central Montana. Northwest. Science 43:196206.Google Scholar
Meunier, FJ. 2011. The Osteichthyes, from the Paleozoic to the extant time, through histology and palaeohistology of bony tissues. C R Palevol 10:347355.CrossRefGoogle Scholar
Millot, J. 1954. Le troisième coelacanthe. Le naturaliste malgache. Premier supplément 1–22.Google Scholar
Millot, J, Anthony, T, Robineau, D. 1978. Anatomie de Latimeria chalumnae, Vol. 3. Paris: CNRS.Google Scholar
Mondéjar-Fernández, J, Clément, G, Sanchez, S. 2014. New insights into the scales of the Devonian tetrapod Tulerpeton curtum Lebedev, 1984. J Vert Paleo 34:14541459.Google Scholar
Myers, GS. 1942. The ‘lungs’ of Bothriolepis. Stanford Ichthy Bull 2:134136.Google Scholar
Otero, O, Likius, A, Vignaud, P, Brunet, M. 2006. A new polypterid fish: Polypterus faraou sp. nov. (Cladistia, Polypteridae) from the Late Miocene, Toros Menalla, Chad. Zool J Linn Soc Lond 146:227237.CrossRefGoogle Scholar
Panchen, AL, Smithson, TR. 1987. Character diagnosis, fossils and the origin of tetrapods. Biol Rev 62:341436.Google Scholar
Pardo, JD, Huttenlocker, AK, Small, BJ. 2014. An exceptionally preserved transitional lungfish from the Lower Permian of Nebraska, USA, and the origin of modern lungfishes. PLoS ONE 9:e108542.CrossRefGoogle ScholarPubMed
Perry, SF, Euverman, R, Wang, T, Loong, AM, Chew, SF, Ip, YK, Gilmour, KM. 2008. Control of breathing in African lungfish (Protopterus dolloi): A comparison of aquatic and cocooned (terrestrialized) animals. Resp Physiol Neurobi 160:817.Google Scholar
Perry, SF, Sander, M. 2004. Reconstructing the evolution of the respiratory apparatus in tetrapods. Resp Physiol Neurobiol 144:125139.CrossRefGoogle ScholarPubMed
Perry, SF, Wilson, RJ, Straus, C, Harris, MB, Remmers, JE. 2001. Which came first, the lung or the breath? Comp Biochem Phys Part A 129:3747.Google Scholar
Pierce, SE, Clack, JA, Hutchinson, JR. 2012. Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 486:523526.Google Scholar
Poll, M. 1962. Étude sur la structure adulte et la formation des sacs pulmonaires des Protoptères. Ann Mus R Afr Cent 108:129172.Google Scholar
Poll, M, Dewattines, CL. 1967. Etude systématique des appareils respiratoire et circulatoire des Polypteridae. Ann Mus Roy Afr Cent 158:163.Google Scholar
Quenstedt, FA. 1858. Der Jura. Laupp, Tübingen.Google Scholar
Roux, E. 2002. Origine et évolution de l’appareil respiratoire aérien des Vertébrés. Rev Mal Respir 19:601615.Google Scholar
Sallan, LC. 2012. Tetrapod-like axial regionalization in an early ray-finned fish. Proc R Soc Ser B Biol 279:32643271.Google Scholar
Schaeffer, B. 1948. A study of Diplurus longicaudatus with notes on the body form and locomotion of the Coelacanthini. Am Mus Novit 1110:117.Google Scholar
Schultze, HP. 1973. Crossopterygier mit heterozerker Schwanzflosse aus dem Oberdevon Kanadas, nebst einer Beschreibung von Onychodontida-Resten aus dem Mitteldevon Spaniens und ausdem Karbon der USA. Palaeont Abt A 143:188208.Google Scholar
Sharp, EL, Clack, JA. 2013. A review of the Carboniferous lungfish genus Ctenodus Agassiz, 1838 from the United Kingdom, with new data from an articulated specimen of Ctenodus interruptus Barkas, 1869. Trans Soc Edinburgh, R. Earth Env Sci 104:169204.Google Scholar
Smet, W. 1966. Le développement des sacs aériens des Polyptères. Acta Zool 47:151183.Google Scholar
Smith, HW. 1931. Observations on the African lung-fish, Protopterus aethiopicus, and on evolution from water to land environment. Ecology 12:164181.Google Scholar
Smith, JLB. 1939. A living fish of Mesozoic type. Nature 143: 455456.Google Scholar
Stensiö, EA. 1948. On the Placodermi of the Upper Devonian of East Greeenland. II. Antiarchi: subfamily Bothriolepinae. With an attempt at a revision of the previously described species of that family. Meddel Grøn 139:1622.Google Scholar
Tatsumi, N, Kobayashi, R, Yano, T, Noda, M, Fujimura, K, Okada, N, Okabe, M. 2016. Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs. Sci Rep 6:30580.Google Scholar
Tissier, J, Rage, JC, Laurin, M. 2017. Exceptional soft tissues preservation in a mummified frog-eating Eocene salamander. PeerJ 5:e3861.Google Scholar
Traquair, RH. 1881. Report on the fossil fishes collected by the Geological Survey of Scotland in Eskdale and Liddlesdale. Trans Roy Soc Edinburgh 30:1471.Google Scholar
Thomson, KS. 1969. The biology of the lobe-finned fishes. Biol Rev 44:91154.Google Scholar
Vorobyeva, EI. 2006. A new species of Laccognathus (Porolepiform Crossopterygii) from the Devonian of Latvia. Paleont J 40:312322.Google Scholar
Vorobyeva, E, Schultze, HP. 1991. Description and systematics of panderichthyid fishes with comments on their relationship to tetrapods. In: Schultze, HP, Trueb, L, editors. Origins of the Higher Groups of Tetrapods: Controversy and Consensus, Ithaca: Cornell University Press. pp. 68109.Google Scholar
Whitheaves, JF. 1880. On a new species of Pterichthys, allied to Bothriolepis ornata, from the Devonian rocks of the north side of the Baie des Chaleurs. Am J Sci 3:132136.Google Scholar
Witmer, LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason, JJ, editor. Functional Morphology in Vertebrate Paleontology, New York: Cambridge University Press. pp 1933.Google Scholar
Witzmann, F. 2015. CO2-metabolism in early tetrapods revisited: inferences from osteological correlates of gills, skin and lung ventilation in the fossil record. Lethaia 49:492506.Google Scholar
Woodward, AS. 1909. The fossil fishes of the English Chalk. Palaeontogr Soc Lond Pt 5:153184.Google Scholar
Zaccone, D, Icardo, JM, Kuciel, M, Alesci, A, Pergolizzi, S, Satora, L, Lauriano, ER, Zaccone, G. 2015. Polymorphous granular cells in the lung of the primitive fish, the bichir Polypterus senegalus. Acta Zool 98:1319.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×