Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T16:07:01.199Z Has data issue: false hasContentIssue false

8 - Suspended Particulate Matter: The Measurement of Flocs

Published online by Cambridge University Press:  30 August 2017

R. J. Uncles
Affiliation:
Plymouth Marine Laboratory
S. B. Mitchell
Affiliation:
University of Portsmouth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackroyd, D. R., Bale, A. J., Howland, R. J. M., Knox, S., Millward, G. E., Morris, A. W., 1986. Distributions and behaviour of Cu, Zn and Mn in the Tamar estuary. Estuarine, Coastal and Shelf Science 23, 621640.Google Scholar
Agrawal, Y. C., Pottsmith, H. C., 1994. Laser diffraction particle sizing in STRESS. Continental Shelf Research 14, 11011121.Google Scholar
Agrawal, Y. C., Pottsmith, H. C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology 168, 89114.Google Scholar
Al Ani, S., Dyer, K. R., Huntley, D. A., 1991. Measurement of the influence of salinity on floc density and strength. Geo-Marine Letters 11, 154158.Google Scholar
Alldredge, A. L., Gotschalk, C., 1988. In situ settling behavior of marine snow. Limnology and Oceanography 33, 339351.Google Scholar
Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, P. L., Tevesz, M. J. S. (eds.), Animal-Sediment Relations. New York: Plenum Press, 53102.Google Scholar
Argaman, Y., Kaufman, W. J., 1970. Turbulence and flocculation. Journal of the Sanitary Engineering Division 96, 223241.Google Scholar
Bale, A. J., Uncles, R. J., Widdows, J., Brinsley, M. D., Barrett, C. D., 2002. Direct observation of the formation and break-up of aggregates in an annular flume using laser reflectance particle sizing. In: Winterwerp, J. C., Kranenburg, C. (eds.), Fine Sediment Dynamics in the Marine Environment, Proceedings in Marine Science, Vol. 5. Amsterdam: Elsevier, 189201.Google Scholar
Baugh, J. V., Manning, A. J., 2007. An assessment of a new settling velocity parameterisation for cohesive sediment transport modelling. Continental Shelf Research 27, 18351855. (doi:10.1016/j.csr.2007.03.003).Google Scholar
Benson, T., French, J. R., 2007. InSiPID: A new low cost instrument for in situ particle size measurements in estuaries. Journal of Sea Research 58, 167188.Google Scholar
Berner, R. A., 1980. Early Diagenesis: A Theoretical Approach. Princeton, NJ: Princeton University Press.Google Scholar
Black, K. S., Paterson, D. M., 1998. LISP-UK Littoral investigation of sediment properties: An introduction. In: Black, K. S., Paterson, D. M., Cramp, A. (eds.), Sedimentary Processes in the Intertidal Zone. Geological Society Special Publications, 139, 1–10.CrossRefGoogle Scholar
Bouyer, D., Coufort, C., Linè, A., Do-Quang, Z., 2005. Experimental analysis of floc size distributions in a 1-L jar under different hydrodynamics and physico-chemical conditions. Journal of Colloid Interface Science 292, 413428.Google Scholar
Brun-Cottan, J. C., 1986. Vertical transport of particles within the ocean. In: Buat-Ménard, P. (ed.), The Role of Air Sea Exchange in Geochemical Cycling. Dordrecht: Reidel, 83111.Google Scholar
Davies, J. L., 1964. A morphogenic approach to world shore-lines. Zeitschrift für Geomorphologie 8, 127142.Google Scholar
de Brouwer, J. F. C., Wolfstein, K., Ruddy, G. K., 2005. Biogenic stabilization of intertidal sediments: The importance of extracellular polymeric substances produced by benthic diatoms. Microbial Ecology 49, 501512.CrossRefGoogle ScholarPubMed
Buffle, J., Leppard, G. G., 1995. Characterisation of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results. Environmental Science and Technology 29, 21762184.Google Scholar
Burban, P.-Y., Lick, W., Lick, J., 1989. The flocculation of fine-grained sediments in estuarine waters. Journal of Geophysical Research 94 (C6), 83238330.Google Scholar
Cadee, G. C., 1985. Macroaggregates of Emiliana huxleyi in sediment traps. Marine Ecology Progress Series 24, 193196.Google Scholar
Cahoon, L. B., 1999. The role of benthic microalgae in neritic ecosystems. Oceanography and Marine Biology: An Annual Review 37, 4786.Google Scholar
Chassagne, C., Mietta, F., Winterwerp, J. C., 2009. Electrokinetic study on kaolinite suspensions. Journal of Colloid and Interface Science 336, 352359.Google Scholar
Cheviet, C., Violeau, D., Guesmia, M., 2002. Numerical simulation of cohesive sediment transport in the Loire estuary with a three-dimensional model including new parameterisations. In: Winterwerp, J. C., Kranenburg, C. (eds.), Fine Sediment Dynamics in the Marine Environment – Proc. in Mar. Sci. 5. Amsterdam: Elsevier, 529543.Google Scholar
Cornelisse, J. M., 1996. The field pipette withdrawal tube (FIPIWITU). Journal of Sea Research 36, 3739.Google Scholar
Dankers, P. J. T., 2002. The Behaviour of Fines Released due to Dredging – A Literature Review, Delft, The Netherlands: Hydraulic Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University.Google Scholar
Dankers, P. J. T., Winterwerp, J. C., 2007. Hindered settling of mud flocs: Theory and validation. Continental Shelf Research 27, 18931907.CrossRefGoogle Scholar
Dearnaley, M. P., 1996. Direct measurements of settling velocities in the Owen Tube: A comparison with gravimetric analysis. Journal of Sea Research 36, 4147.Google Scholar
Defossez, J. P., 1996. Dynamique des macroflocs au cours de cycles tidaux, Mise au point d’un système d’observation: VIL, Video in Lab. Mémoire de DEA, Université de Rouen, Rouen, France.Google Scholar
Delo, E. A., Ockenden, M. C., 1992. Estuarine Muds Manual. HR Wallingford Report, SR 309.Google Scholar
Droppo, I. G., Walling, D., Ongley, E., 2000. The influence of floc size, density and porosity on sediment and contaminant transport. Journal of the National Centre for Scientific Research 4, 141147.Google Scholar
Droppo, I. G., 2001. Rethinking what constitutes suspended sediments. Hydrological Processes 15, 15511564.CrossRefGoogle Scholar
Droste, R. L. 1997. Theory and Practice of Water and Wastewater Treatment. New York, NY: John Wiley and Sons.Google Scholar
Dyer, K. R., 1986. Coastal and Estuarine Sediment Dynamics. Chichester: John Wiley and Sons.Google Scholar
Dyer, K. R., 1989. Sediment processes in estuaries: Future research requirements. Journal of Geophysical Research 94 (C10), 1432714339.Google Scholar
Dyer, K. R., Cornelisse, J., Dearnaley, M. P., Fennessy, M. J., Jones, S. E., Kappenberg, J., McCave, I. N., Pejrup, M., Puls, W., Van Leussen, W., Wolfstein, K., 1996. A comparison of in situ techniques for estuarine floc settling velocity measurements. Journal of Sea Research 36, 1529.Google Scholar
Dyer, K. R., Manning, A. J., 1999. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions. Journal of Sea Research 41, 8795.CrossRefGoogle Scholar
Edzwald, J. K., O’Melia, C. R., 1975. Clay distributions in recent estuarine sediments. Clays and Clay Minerals 23, 3944.Google Scholar
Eisma, D., 1986. Flocculation and de-flocculation of suspended matter in estuaries. Netherlands Journal of Sea Research 20, 183199.Google Scholar
Eisma, D., Schuhmacher, T., Boekel, H., Van Heerwaarden, J., Franken, H., Lann, M., Vaars, A., Eijgenraam, F., Kalf, J., 1990. A camera and image analysis system for in situ observation of flocs in natural waters. Journal of Sea Research 27, 4356.Google Scholar
Eisma, D., Dyer, K. R., van Leussen, W., 1997. The in-situ determination of the settling velocities of suspended fine-grained sediment – a review. In: Burt, N., Parker, R., Watts, J. (eds.), Cohesive Sediments – Proceedings of INTERCOH Conference (Wallingford, England). Chichester: John Wiley and Sons.Google Scholar
EPA, 2002. Environmental Protection Agency. Water treatment manuals. [online] Available at: www.epa.ie/pubs/advice/drinkingwater/EPA_water_treatment_mgt_coag_flocc_clar2.pdf [accessed March 2016].Google Scholar
Fennessy, M. J., Dyer, K. R., Huntley, D. A., 1994a. INSSEV: An instrument to measure the size and settling velocity of flocs in-situ. Marine Geology 117, 107117.Google Scholar
Fennessy, M. J., Dyer, K. R., Huntley, D. A., 1994b. Size and settling velocity distributions of flocs in the Tamar Estuary during a tidal cycle. Netherlands Journal of Aquatic Ecology 28, 275282.Google Scholar
Fennessy, M. J., Dyer, K. R., 1996. Floc population characteristics measured with INSSEV during the Elbe estuary intercalibration experiment. Journal of Sea Research 36, 5562. doi: 10.1016/S1385-1101(96)90771-6.Google Scholar
Fennessy, M. J., Dyer, K. R., Huntley, D. A., Bale, A. J., 1997. Estimation of settling flux spectra in estuaries using INSSEV. In: Burt, N., Parker, R., Watts, J. (eds.), Cohesive Sediments – Proceedings of INTERCOH Conference (Wallingford, England). Chichester: John Wiley and Sons, 87104.Google Scholar
Fettweis, M., Francken, F., Pison, V., Van den Eynde, D., 2006. Suspended particulate matter dynamics and aggregate sizes in a high turbidity area. Marine Geology 235, 6374.Google Scholar
Friedlander, S. K., 1977. Smoke, dust and haze. In: Fundamentals of Aerosol Behaviour, New York: Wiley.Google Scholar
Galehouse, J. S., 1971. Sedimentation analysis. In: Carver, R. E. (ed.), Procedures in Sedimentary Petrology. New York: Wiley-Interscience, 6994.Google Scholar
Gee, G. W., Or, D., 2002. Particle-size analysis. In: Dane, J. H., Topp, G. C. (eds.), Methods of Soil Analysis: Part 4 – Physical Methods, Madison, WI: Soil Science Society of America, 255293.Google Scholar
Gerbersdorf, S. U., Bittner, R., Lubarsky, H., Manz, W., Paterson, D. M., 2009. Microbial assemblages as ecosystem engineers of sediment stability. Journal of Soils and Sediments 9, 640652.Google Scholar
Geyer, W. R., Hill, P. S., Milligan, T. G., Traykovski, P., 2000. The structure of the Eel River plume during floods. Continental Shelf Research 20, 20672093.Google Scholar
Gibbs, R. J., Konwar, L. N., 1983. Sampling of mineral flocs using Niskin bottles. Environmental Science & Technology 17, 374375.Google Scholar
Gibbs, R. J., 1985. Estuarine flocs: Their size settling velocity and density. Journal of Geophysical Research 90 (C2), 32493251.Google Scholar
Ginsberg, R. N., Lowenstam, H. A., 1958. The influence of marine bottom communities on the deposition environment of sediments. The Journal of Geology 66, 310318.CrossRefGoogle Scholar
Glasgow, L. A., Lucke, R. H., 1980. Mechanisms of deaggregation for clay-polymer flocs in turbulent systems. Industrial & Engineering Chemistry Fundamentals 19, 148156.Google Scholar
Grabowski, R. C., Droppo, I. G., Wharton, G., 2011. Erodibility of cohesive sediment: The importance of sediment properties. Earth-Science Reviews 105, 101120.Google Scholar
Graham, G., Manning, A., 2007. Floc size and settling velocity within a Spartina anglica canopy. Continental Shelf Research 27, 10601079.CrossRefGoogle Scholar
Graham, G. W., Nimmo Smith, W. A. M., 2010. The application of holography to the analysis of size and settling velocity of suspended cohesive sediments. Limnology and Oceanography – Methods 8, 115.Google Scholar
Graham, G. W., Davies, E. J., Nimmo Smith, W. A. M., Bowers, D. G., Braithwaite, K. M., 2012. Interpreting LISST-100X measurements of particles with complex shape using digital in-line holography. Journal of Geophysical Research 117, C05034. doi:10.1029/2011JC007613.CrossRefGoogle Scholar
Gratiot, N., Manning, A. J., 2004. An experimental investigation of floc characteristics in a diffusive turbulent flow. Journal of Coastal Research 41, 105113.Google Scholar
Gregory, J., 1978. Effects of polymers on colloid stability. In: Ives, K. J. (ed.), The Scientific Basis of Flocculation. Alphen aan den Rijn, The Netherlands: Sijthoff and Noordhoff, 8999.Google Scholar
Harper, M. A., Harper, J. F., 1967. Measurements of diatom adhesion and their relationship with movement. British Phycological Bulletin 3, 195207.Google Scholar
Heinzelmann, C. H., Wallisch, S., 1991. Benthic settlement and bed erosion. A review. Journal of Hydraulic Research 29, 355371.Google Scholar
Hickman, M., Round, F. E., 1970. Primary production and standing crops of epipsammic and epipelic algae. British Phycological Journal 5, 247255.Google Scholar
Hill, P. S., 1996. Sectional and discrete representations of floc breakage in agitated suspensions. Deep-Sea Research I 43, 679702.Google Scholar
Hill, P. S., Syvitski, J. P., Cowan, E. A., Powell, R. D., 1998. In situ observations of floc settling velocities in Glacier Bay, Alaska. Marine Geology 145, 8594.Google Scholar
Hopfinger, E. J., Toly, J. A., 1976. Spatially decaying turbulence and its relation to mixing across density interfaces. Journal of Fluid Mechanics 78, 155175.Google Scholar
HR Wallingford, 1998. SandCalc: Marine Sands Calculator Interface. Version 2.0 for Windows, Software by Tessela and HR Wallingford. HR Wallingford, Howbery Park, Wallingford, Oxfordshire OX10 8BA, UK.Google Scholar
HR Wallingford, 2016. DigiFloc Software (under development). HR Wallingford, Howbery Park, Wallingford, Oxfordshire OX10 8BA, UK.Google Scholar
Hudson, H. E., 1981. Testing and utilization of jar test data. In: Water Clarification Processes: Practical Design and Evaluation. New York: Van Nostrand Reinhold.Google Scholar
Jackson, G. A., 1990. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Research 37, 11971211.Google Scholar
Jones, S. E., Jago, C. F., 1996. Determination of settling velocity in the Elbe estuary using QUISSET tubes. Journal of Sea Research 36, 6367.Google Scholar
Kineke, G. C.; Sternberg, R. W., Johnson, R., 1989. A new instrument for measuring settling velocity in-situ. Marine Geology 90, 149158.CrossRefGoogle Scholar
Kirby, R., 1986. Suspended Fine Cohesive Sediment in the Severn Estuary and Inner Bristol Channel. Rep. No. ESTU-STP-4042. Harwell, U.K.: Department of Atomic Energy.Google Scholar
Kitchener, J. A., 1972. Principles of action of polymeric flocculants. British Polymer Journal 4, 217229.Google Scholar
Klimpel, R. C., Hogg, R., 1986. Effects of flocculation conditions on agglomerate structure. Journal of Colloid Interface Science 113, 121131.Google Scholar
Kolmogorov, A. N., 1941a. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proceedings of the USSR Academy of Sciences 30, 301.Google Scholar
Kolmogorov, A. N., 1941b. Dissipation of energy in locally iscotropic turbulence. Proceedings of the USSR Academy of Sciences 32, 16.Google Scholar
Kranck, K., 1984. The role of flocculation in the filtering of particulate matter in estuaries. In: Kennedy, V. (ed.), The Estuary as a Filter. Orlando, FL: Academic Press, 159175.Google Scholar
Kranck, K., 1993. Flocculation and sediment particle size. Archiv für Hydrobiologie, Supplement 75, 266309.Google Scholar
Kranck, K., Milligan, T. G., 1988. Macroflocs from diatoms: In-situ photography of particles in Bedford Basin, Nova Scotia. Marine Ecology Progress Series 4, 183189.CrossRefGoogle Scholar
Kranck, K., Milligan, T. G., 1992. Characteristics of suspended particles at an 11-hour anchor station in San Francisco Bay, California. Journal of Geophysical Research 97, 1137311382. doi:10.1029/92JC00950.Google Scholar
Kranenburg, C., 1994. The fractal structure of cohesive sediment aggregates. Estuarine, Coastal and Shelf Science 39, 451460.Google Scholar
Krone, R. B., 1962. Flume studies of the transport of sediment in estuarial shoaling process: Final report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory. Berkeley: University of California.Google Scholar
Krone, R. B., 1963. A Study of Rheological Properties of Estuarial Sediments. Berkeley: Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Report No. 63–68.Google Scholar
Lau, Y. L., 1994. Temperature effect on settling velocity and deposition of cohesive sediments, Journal of Hydraulic Research 32, 4151. doi:10.1080/00221689409498788.CrossRefGoogle Scholar
Lau, Y. L., Droppo, I. G., 2000. Influence of antecedent conditions on critical shear stress of bed sediments. Water Research 34, 663667.Google Scholar
Law, D. J., Bale, A. J., Jones, S. E., 1997. Adaptation of focused beam reflectance measurement to in-situ particle sizing in estuaries and coastal waters. Marine Geology 140, 4759.Google Scholar
Lee, B. J., Toorman, E., Molz, F. J., Wang, J., 2011. A two-class population balance equation yielding bimodal flocculation of marine or estuarine sediments. Water Research 45, 21312145.Google Scholar
Lick, W., Huang, H., Jepsen, R., 1993. Flocculation of fine-grained sediments due to differential settling. Journal of Geophysical Research 98 (C6), 1027910288.Google Scholar
Lick, W., 1994. Modelling the transport of sediment and hydrophobic contaminants in surface waters. In: U. S. / Israel Workshop on Monitoring and Modelling Water Quality, May 8–13, 1994, Haifa, Israel.Google Scholar
Little, C., 2000. The Biology of Soft Shores and Estuaries. Oxford: Oxford University Press.Google Scholar
Malarkey, J., Baas, J. H., Hope, J. A., Aspden, R. J., Parsons, D. R., Peakall, J., Paterson, D. M., Schindler, R. J., Ye, L., Lichtman, I. D., Bass, S. J., Davies, A. G., Manning, A. J., Thorne, P. D., 2015. The pervasive role of biological cohesion in bedform development. Nature Communications 6, 6257. doi:10.1038/ncomms7257.Google Scholar
Manning, A. J., Dyer, K. R., 1999. A laboratory examination of floc characteristics with regard to turbulent shearing. Marine Geology 160, 147170.CrossRefGoogle Scholar
Manning, A. J., 2001. A study of the effects of turbulence on the properties of flocculated mud. PhD Thesis. Institute of Marine Studies, University of Plymouth.Google Scholar
Manning, A.J., Dyer, K.R., 2002a. A comparison of floc properties observed during neap and spring tidal conditions. In: Winterwerp, J. C., Kranenburg, C. (eds.), Fine Sediment Dynamics in the Marine Environment – Proceedings in Marine Science 5, Amsterdam: Elsevier, pp. 233250.Google Scholar
Manning, A. J., Dyer, K. R., 2002b. The use of optics for the in-situ determination of flocculated mud characteristics. Journal of Optics A: Pure and Applied Optics, Institute of Physics Publishing 4, S71S81.Google Scholar
Manning, A. J., 2004a. Observations of the properties of flocculated cohesive sediment in three western European estuaries. Journal of Coastal Research 41, 7081.Google Scholar
Manning, A. J., 2004b. The observed effects of turbulence on estuarine flocculation. In: Ciavola, P., Collins, M. B. (eds.), Sediment Transport in European Estuaries, Journal of Coastal Research 41, 90104.Google Scholar
Manning, A. J., 2006. LabSFLOC – A Laboratory System to Determine the Spectral Characteristics of Flocculating Cohesive Sediments. HR Wallingford Technical Report, TR 156.Google Scholar
Manning, A. J., Bass, S. J., 2006. Variability in cohesive sediment settling fluxes: Observations under different estuarine tidal conditions. Marine Geology 235, 177192.Google Scholar
Manning, A. J., Bass, S. J., Dyer, K. R., 2006. Floc properties in the turbidity maximum of a mesotidal estuary during neap and spring tidal conditions. Marine Geology 235, 193211.CrossRefGoogle Scholar
Manning, A. J., Dyer, K. R., 2007. Mass settling flux of fine sediments in Northern European estuaries: Measurements and predictions. Marine Geology 245, 107122. doi:10.1016/j.margeo.2007.07.005.Google Scholar
Manning, A. J., Spearman, J., Whitehouse, R. J. S., 2007. Mud:Sand Transport – Flocculation and Settling Dynamics within Turbulent Flows, Part 1: Analysis of laboratory data. HR Wallingford Internal Report, IT 534.Google Scholar
Manning, A. J., 2008. The development of algorithms to parameterise the mass settling flux of flocculated estuarine sediments. In: Kudusa, T., Yamanishi, H., Spearman, J., Gailani, J. Z. (eds.), Sediment and Ecohydraulics – Proc. in Marine Science 9, Amsterdam: Elsevier, 193210. ISBN: 978-0-444-53184-1.Google Scholar
Manning, A. J., Baugh, J. V., Spearman, J., Whitehouse, R. J. S., 2010. Flocculation settling characteristics of mud:sand mixtures. Ocean Dynamics 60, 237–253. doi:10.1007/s10236-009-0251-0.Google Scholar
Manning, A. J., Baugh, J. V., Spearman, J. R., Pidduck, E. L., Whitehouse, R. J. S., 2011a. The settling dynamics of flocculating mud:sand mixtures: Part 1 – Empirical algorithm development. Ocean Dynamics, INTERCOH 2009 special issue. doi:10.1007/s10236-011-0394-7.Google Scholar
Manning, A. J., Baugh, J. V., Soulsby, R. L., Spearman, J. R., Whitehouse, R. J. S., 2011b. Cohesive sediment flocculation and the application to settling flux modelling. In: Ginsberg, S.S. (ed.), Sediment Transport. Rijeka, Croatia: InTech.Google Scholar
Manning, A. J., Schoellhamer, D.H., 2013. Factors controlling floc settling velocity along a longitudinal estuarine transect. Marine Geology, San Francisco Bay special issue. doi.org/10.1016/j.margeo.2013.04.006.Google Scholar
Manning, A. J., Spearman, J. R., Whitehouse, R. J. S., Pidduck, E. L., Baugh, J. V., Spencer, K. L., 2013. Laboratory assessments of the flocculation dynamics of mixed mud-sand suspensions. In: Manning, A.J. (ed.), Sediment Transport Processes and Their Modelling Applications. Rijeka, Croatia: InTech, 119164.Google Scholar
Manning, A. J., 2016. LabSFLOC-2 – the second generation of the laboratory system to determine spectral characteristics of flocculating cohesive and mixed sediments. HR Wallingford Report.Google Scholar
Maude, A. D., Whitmore, R. L., 1958. A generalized theory of sedimentation. British Journal of Applied Physics 9, 477482.Google Scholar
McAnally, W., 1999. Aggregation and deposition of estuarial fine sediment. PhD Thesis, University of Florida, FL.Google Scholar
McAnally, W. H., Mehta, A. J., 2001. Collisional aggregation of fine estuarine sediments. In: McAnally, W. H., Mehta, A. J. (eds.), Coastal and Estuarine Fine Sediment Processes – Proceedings in Marine Science, 3. Amsterdam: Elsevier, 1939.Google Scholar
McCave, I. N., 1975. Vertical flux of particles in the ocean. Deep Sea Research 22, 491502.Google Scholar
McCave, I. N., 1979. Suspended sediment. In: Dyer, K.R. (ed.), Estuarine Hydrography and Sedimentation. Cambridge: Cambridge University Press, 131185.Google Scholar
McCave, I. N., 1984. Erosion, transport and deposition of fine-grained marine sediments. In: Stow, D. A. V., Piper, D. J. W. (eds.), Fine-Grained Sediments: Deep Water Processes and Facies. Oxford: Blackwell, 3569.Google Scholar
McCave, I. N., Gross, T. F., 1991. In-situ measurements of particle settling velocity in the deep sea. Marine Geology 99, 403411.Google Scholar
McDowell, D. N., O’Connor, B. A., 1977. Hydraulic behaviour of estuaries. London: MacMillan.Google Scholar
Mehta, A. J., Partheniades, E., 1975. An investigation of the depositional properties of flocculated fine sediment. Journal of Hydraulic Research 92, 361381.Google Scholar
Mehta, A. J., Lott, J. W., 1987. Sorting of fine sediment during deposition. Proceedings of the Conference on Advances in Understanding Coastal Sediment Processes 1, 348362.Google Scholar
Mehta, A. J., 2014. An Introduction to Hydraulics of Fine Sediment Transport. Advanced Series on Ocean Engineering, Vol. 38. Hackensack, NJ: World Scientific Publishing Co.Google Scholar
Merckelbach, L., 2000. Consolidation and Strength Evolution of Soft Mud Layers. Communications on hydraulic and geotechnical eng., report 00-2. Delft, The Netherlands: Delft University of Technology, Faculty of Civil Engineering.Google Scholar
Mie, G., 1908. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Leipzig. Annalen der Physik 330, 377445.Google Scholar
Mietta, F., Chassagne, C., Manning, A. J., Winterwerp, J. C., 2009. Influence of shear rate, organic matter content, pH and salinity on mud flocculation. Ocean Dynamics 59, 751763. doi:10.1007/s10236-009-0231-4.Google Scholar
Migniot, C., 1968. Study of the physical properties of various very fine sediments and their behaviour under hydrodynamic action. La Houille Blanche, 23 (7). (Translation of French text).Google Scholar
Mikeš, D., Manning, A. J., 2010. An assessment of flocculation kinetics of cohesive sediments from the Seine and Gironde Estuaries, France, through laboratory and field studies. Journal of Waterway, Port, Coastal, and Ocean Engineering (ASCE) 136, 306318. doi: 10.1061/(ASCE)WW.1943-5460.0000053.Google Scholar
Millero, F. J., Poisson, A., 1981. International one-atmosphere equation of state of seawater. Deep-Sea Research 28, 625629.Google Scholar
Mitchener, H. J., Torfs, H., Whitehouse, R. J. S., 1996. Erosion of mud/sand mixtures. Coastal Engineering 29, 125 [Errata, 1997, 30, 319].Google Scholar
Nagata, S., 1975. Mixing, Principles and Applications. New York: John Wiley and Sons.Google Scholar
Nakagawa, H., Nezu, I., Ueda, H., 1975. Turbulence of open channel flow over smooth and rough beds. Proceedings of Japan Society of Civil Engineers 241, 151168.Google Scholar
Nowell, A. R. M., Jumars, P. A., Eckman, J. E., 1981. Effects of biological activities on the entrainment of marine sediments. Marine Geology 42, 133153.Google Scholar
Ockenden, M. C., Delo, E. A., 1988. Consolidation and erosion of estuarine mud and sand mixtures – an experimental study. HR Wallingford Report, SR 149.Google Scholar
Ockenden, M. C., Delo, E. A., 1991. Laboratory testing of muds. Geo-Marine Letters 11, 138142.Google Scholar
Ockenden, M. C., 1993. A model for the settling of non-uniform cohesive sediment in a laboratory flume and an estuarine field setting. Journal of Coastal Research 9, 10941105.Google Scholar
Odd, N. V. M., Roger, J. G., 1986. An analysis of the behaviour of fluid mud in estuaries. HR Wallingford Report, SR 84.Google Scholar
Odd, N. V. M., 1988. Mathematical modelling of mud transport in estuaries. In: Dronkers, J., van Leussen, W. (eds.), Physical Processes of Estuaries. Berlin: Springer Verlag, 503531.Google Scholar
Oseen, C. W., 1927. Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
Overbeek, J. T. G., 1952. Kinetics of flocculation. In: Kruyt, H. R. (ed.), Colloid Science. Amsterdam: Elsevier Publishing Company, 278300.Google Scholar
Owen, M. W., 1971. The effects of turbulence on the settling velocity of silt flocs. Proceedings of the 14th Congress of the International Association of Hydraulic Research (Paris), D4–1–D4–6.Google Scholar
Owen, M. W., 1976. Determination of the settling velocities of cohesive muds. HR Wallingford Report No. IT 161, 8pp.Google Scholar
Parker, D. S., Kaufman, W. J., Jenkins, D., 1972. Floc break-up in turbulent flocculation processes. Journal of the Sanitary Engineering Division 98 (SA1), 7997.Google Scholar
Parsons, D. R., Schindler, R. J., Hope, J. A., Malarkey, J., Baas, J. H., Peakall, J., Manning, A. J., Ye, L., Simmons, S., Paterson, D. M., Aspden, R. J., Bass, S. J., Davies, A. G., Lichtman, I. D., Thorne, P. D., 2016. The role of biophysical cohesion on subaqueous bed form size. Geophysical Research Letters, Early View, 1–8. doi:10.1002/2016GL067667.Google Scholar
Paterson, D. M., Crawford, R. M., Little, C., 1990. Subaerial exposure and changes in the stability of intertidal estuarine sediments. Estuarine, Coastal and Shelf Science 30, 541556.Google Scholar
Paterson, D. M., Hagerthey, S. E., 2001. Microphytobenthos in contrasting coastal ecosystems: Biology and dynamics. In: Reise, K. (ed.), Ecological Comparisons of Sedimentary Shores, Ecological Studies, vol. 151. Berlin: Springer, 105125.Google Scholar
Phipps and Bird, 2016. The jar test. [online] Available at: www.phippsbird.com/pbinc/WaterWasteWater/Jartest.aspx [accessed March 2016].Google Scholar
Potter, P. E., Heling, D., Shimp, M. F., van Wie, W., 1975. Clay mineralogy of modern alluvial muds of the Mississippi river basin. Bulletin du Centre Recherche Pau-SNPA 9, 353–89.Google Scholar
Pouët, M.-F., 1997. La clarification coagulation—Flocculation. Traitement de l’eau potable cours, EMA, option Environnement et Systèmes Industriels.Google Scholar
Puls, W., Kuehl, H., Heymann, K., 1988. Settling velocity of mud flocs: Results of field measurements in the Elbe and the Weser Estuary. In: Dronkers, J., Van Leussen, W. (eds.), Physical Processes in Estuaries. Berlin: Springer-Verlag, 404424.Google Scholar
Puls, W., Kühl, H., 1996. Settling velocity determination using the BIGDAN settling tube and the Owen settling tube. Journal of Sea Research 36, 119125.Google Scholar
Raudkivi, A. J., 1998. Loose Boundary Hydraulics. 3rd Edition. Rotterdam: Balkema.Google Scholar
Ross, M. A., 1988. Vertical structure of estuarine fine sediment suspensions. PhD thesis, University of Florida, Gainesville.Google Scholar
Schindler, R. J., Parsons, D. R., Ye, L., Hope, J. A., Baas, J. H., Peakall, J., Manning, A. J., Aspden, R. J., Malarkey, J., Simmons, S., Paterson, D. M., Lichtman, I. D., Davies, A. G., Thorne, P. D., Bass, S. J., 2015. Sticky stuff: Redefining bedform prediction in modern and ancient environments. Geology 43, 399–402. doi:10.1130/G36262.1.Google Scholar
Schlichting, H., 1968. Boundary Layer Theory. New York: McGraw-Hill.Google Scholar
Sternberg, R. W., Berhane, I., Ogston, A. S., 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf. Marine Geology 154, 4353.Google Scholar
Smith, S. J., 2010. Fine sediment dynamics in dredge plumes. PhD Thesis, Virginia Institute of Marine Science, College of William and Mary, USA.Google Scholar
Smith, S. J., Friedrichs, C. T., 2011. Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Continental Shelf Research 31, S50–63. doi:10.1016/j.csr.2010.04.002.Google Scholar
Smith, S. J., Friedrichs, C. T., 2015. Image processing methods for in situ estimation of cohesive sediment floc size, settling velocity, and density. Limnology and Oceanography Methods 13, 250264.Google Scholar
Soulsby, R. L., 1983. The bottom boundary layer of shelf seas. In: Johns, B. (ed.), Physical Oceanography of Coastal and Shelf Seas. Amsterdam: Elsevier, 189266.Google Scholar
Soulsby, R. L., 1997. Dynamics of Marine Sands. London: Thomas Telford.Google Scholar
Soulsby, R. L., 2000. Methods for predicting suspensions of mud. HR Wallingford Report TR 104.Google Scholar
Soulsby, R. L., Manning, A. J., Spearman, J., Whitehouse, R. J. S., 2013. Settling velocity and mass settling flux of flocculated estuarine sediments. Marine Geology 339, 112. doi.org/10.1016/j.margeo.2013.04.006.Google Scholar
Spencer, K. L., Manning, A. J., Droppo, I. G., Leppard, G. G., Benson, T., 2010. Dynamic interactions between cohesive sediment tracers and natural mud. Journal of Soils and Sediments 10, 14011414. doi:10.1007/s11368-010-0291-6.Google Scholar
Spinrad, R. W., Bartz, R., Kitchen, J. C., 1989. In-situ measurements of marine particle settling velocity and size distributions using the remote optical settling tube. Journal of Geophysical Research 94 (C1), 931938.Google Scholar
Stephens, J. A., Uncles, R. J., Barton, M. L., Fitzpatrick, F., 1992. Bulk properties of intertidal sediments in a muddy, macrotidal estuary. Marine Geology 103, 445460.Google Scholar
Sternberg, R. W., Berhane, I., Ogston, A. S., 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf. Marine Geology 154, 4353.Google Scholar
Stewart, C., Thomson, J. A. J., 1997. Vertical distribution of butyltin residues in sediments of British Columbia harbours. Environmental Technology 18, 11951202.Google Scholar
Stokes, G. G., 1851. On the effect of the internal friction on the motion of pendulums. Transactions of the Cambridge Philosophical Society 9, 8106.Google Scholar
Stolzenbach, K. D., Elimelich, M., 1994. The effect of density on collisions between sinking particles: Implications for particle aggregation in the ocean. Journal of Deep Sea Research I 41, 469483.Google Scholar
Stone, M., Krishnappan, B. G., 2003. Floc morphology and size distributions of cohesive sediment in steady-state flow. Water Research 37, 27392747.Google Scholar
Stratton, A., 1941. Electromagnetic Theory. New York: McGraw-Hill.Google Scholar
Syvitski, J. P. M., Asprey, K. W., Leblanc, K. W. G., 1995. In-situ characteristics of particles settling within a deep-water estuary. Deep-Sea Research II 42, 223256.Google Scholar
Tambo, N., Hozumi, H., 1979. Physical characteristics of flocs – II. Strength of flocs. Water Research 13, 441448.Google Scholar
Tambo, N., Watanabe, Y., 1979. Physical characteristics of flocs – I. The floc density function and aluminium floc. Water Research 13, 429439.Google Scholar
Ten Brinke, W. B. M., 1993. The impact of biological factors on the deposition of fine-grained sediment in the Oosterschelde (The Netherlands). PhD Thesis, Utrecht University.Google Scholar
Ten Brinke, W. B. M., 1994. Settling velocities of mud aggregates in the Oosterschelde tidal basin (The Netherlands), determined by a submersible video system. Estuarine, Coastal and Shelf Science 39, 549564.Google Scholar
Tennekes, H., Lumley, J. L., 1972. A First Course in Turbulence. Cambridge, MA: MIT Press.Google Scholar
Tolhurst, T. J., Gust, G., Paterson, D. M., 2002. The influence on an extra-cellular polymeric substance (EPS) on cohesive sediment stability. In: Winterwerp, J.C., Kranenburg, C. (eds.), Fine Sediment Dynamics in the Marine Environment – Proceedings in Marine Science 5, Amsterdam: Elsevier, pp. 409425.Google Scholar
Torfs, H., Mitchener, H. J., Huysentruyt, H., Toorman, E., 1996. Settling and consolidation of mud/sand mixtures. Coastal Engineering 29, 2745.Google Scholar
Tsai, C. H., Iacobellis, S., Lick, W., 1987. Flocculation of fine-grained sediments due to a uniform shear stress. Journal of Great Lakes Research 13, 135146.Google Scholar
Ueda, H., Hinze, J. O., 1975. Fine-structure turbulence in the wall region of a turbulent boundary layer. Journal of Fluid Mechanics 67, 125143.Google Scholar
Uncles, R. J., Stephens, J. A., Harris, C., 1998. Seasonal variability of subtidal and intertidal sediment distributions in a muddy, macrotidal estuary: The Humber-Ouse, UK. In: Black, K. S., Paterson, D. M., Cramp, A. (eds.), Sedimentary Processes in the Intertidal Zone. London: Geological Society Special Publications 139, 211–219.Google Scholar
Uncles, R. J., Bale, A. J., Brinsley, M. D., Frickers, P. E., Harris, C., Lewis, R. E., Pope, N. D., Staff, F. J., Stephens, J. A., Turley, C. M., Widdows, J., 2003. Intertidal mudflat properties, currents and sediment erosion in the partially mixed Tamar Estuary, UK. Ocean Dynamics 53, 239251. doi:10.1007/s10236-003-0047-6.Google Scholar
Uncles, R. J., Stephens, J. A., Harris, C., 2006. Properties of suspended sediment in the estuarine turbidity maximum of the highly turbid Humber Estuary system, UK. Ocean Dynamics 56, 235247.Google Scholar
Uncles, R. J., Bale, A. J., Stephens, J. A., Frickers, P. E., Harris, C., 2010. Observations of floc sizes in a muddy estuary. Estuarine, Coastal and Shelf Science 87, 186196.Google Scholar
Underwood, G. J. C., Kromkamp, J., 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29, 93153.Google Scholar
Underwood, G. J. C., Paterson, D. M., 2003. The Importance of Extracellular Carbohydrate Production by marine Epipelic Diatoms. Advances in Botanical Research (incorporating Advances in Plant Pathology), Vol. 40. Amsterdam: Elsevier, 183240.Google Scholar
van der Lee, E. M., Bowers, D. G., Kyte, E., 2009. Remote sensing of temporal and spatial patterns of suspended particle size in the Irish Sea in relation to the Kolmogorov microscale. Continental Shelf Research 29, 12131225.Google Scholar
van de Ven, T. G., Hunter, R. J., 1977. The energy dissipation in sheared coagulated soils. Rheologica Acta 16, 534543.Google Scholar
van Ledden, M., 2002. A process-based sand-mud model. In: Winterwerp, J.C., Kranenburg, C. (eds.), Fine Sediment Dynamics in the Marine Environment – Proceedings in Marine Science 5, Amsterdam: Elsevier, 577594.Google Scholar
van Ledden, M., 2003. Sand-mud segregation in estuaries and tidal basins. PhD Thesis, Delft University of Technology, The Netherlands, Report No. 03–2, ISSN 0169-6548, 217pp.Google Scholar
van Leussen, W., 1988. Aggregation of particles, settling velocity of mud flocs: A review. In: Dronkers, J., van Leussen, W. (eds.), Physical Processes in Estuaries. Berlin: Springer-Verlag, 347403.Google Scholar
van Leussen, W., 1991. Fine sediment transport under tidal action. Geo-Marine Letters 11, 119126.Google Scholar
van Leussen, W., 1994. Estuarine macroflocs and their role in fine-grained sediment transport. PhD Thesis, University of Utrecht, The Netherlands, 488pp.Google Scholar
van Leussen, W., 1997. The Kolmogorov microscale as a limiting value for the floc sizes of suspended fine-grained sediments in estuaries. In: Burt, N., Parker, R., Watts, J. (eds.), Cohesive Sediments. New York: Wiley, 4573.Google Scholar
van Leussen, W., Cornelisse, J. M., 1994. The determination of the sizes and settling velocities of estuarine flocs by an underwater video system. Journal of Sea Research 31, 231241.Google Scholar
van Olphen, H., 1977. An introduction to Clay Colloid Chemistry. For Clay Technologists, Geologists, and Soil Scientists, 2nd edition. New York: John Wiley and Sons.Google Scholar
Vanoni, V. A., 1975. Sedimentation Engineering. Manuals and Reports on Engineering Practice, no. 54. New York: American Society of Civil Engineers, 481484.Google Scholar
Verney, R., Lafite, R., Brun-Cottan, J. C., Le Hir, P., 2010. Behaviour of a floc population during a tidal cycle: Laboratory experiments and numerical modelling. Continental Shelf Research 31, S64S83.Google Scholar
Wacholder, E., Sather, N. F., 1974. The hydrodynamic interaction of two unequal spheres moving under gravity through quiescent viscous fluid. Journal of Fluid Mechanics 5, 417437.Google Scholar
Weaver, C. E., 1989, Clays, Muds, and Shales. Developments in Sedimentology, no. 44. New York: Elsevier.Google Scholar
Whitehouse, R. J. S., Soulsby, R., Roberts, W., Mitchener, H. J., 2000. Dynamics of Estuarine Muds. London: Thomas Telford Publications.Google Scholar
Widdows, J., Blauw, A., Heip, C. H. R., Herman, P. M. J., Lucas, C. H., Middelburg, J. J., Schmidt, S., Brinsley, M. D., Twisk, F., Verbeek, H., 2004. Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands. Marine Ecology Progress Series 274, 4156.Google Scholar
Williamson, H. J., Ockenden, M. C., 1993. Laboratory and field investigations of mud and sand mixtures. In: Wang, S. S. Y (ed.), Advances in Hydro-science and Engineering, Proceedings of the First International Conference on Hydro-science and Engineering, Washington D.C. (7–11 June 1993), Volume 1. University, MS: Center for Computational Hydroscience and Engineering, the University of Mississippi, 622629.Google Scholar
Winterwerp, J. C., 1998. A simple model for turbulence induced flocculation of cohesive sediment. Journal of Hydraulic Engineering 36, 309326.Google Scholar
Winterwerp, J. C., 1999. On the dynamics of high-concentrated mud suspensions, PhD thesis, Delft University of Technology, Delft.Google Scholar
Winterwerp, J. C., 2002. On the flocculation and settling velocity of estuarine mud. Continental Shelf Research 22, 13391360.CrossRefGoogle Scholar
Winterwerp, J. C., van Kesteren, W. G. M., 2004. Introduction to the physics of cohesive sediment in the marine environment. In: van Loon, T. (ed.), Developments in Sedimentology, 56. Amsterdam: Elsevier.Google Scholar
Winterwerp, J. C., Manning, A. J., Martens, C., de Mulder, T., Vanlede, J., 2006. A heuristic formula for turbulence-induced flocculation of cohesive sediment. Estuarine, Coastal and Shelf Science 68, 195207.Google Scholar
Wolanski, E., 2007. Estuarine Ecohydrology. Amsterdam, The Netherlands: Elsevier.Google Scholar
Xu, R., 2000. Particle Characterization: Light Scattering Methods. Dordrecht: Kluwer Academic Publishers.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×