Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-27T22:43:27.146Z Has data issue: false hasContentIssue false

2 - The Polymorphic Estimator

Published online by Cambridge University Press:  17 August 2009

David D. Sworder
Affiliation:
University of California, San Diego
John E. Boyd
Affiliation:
Cubic Defense Systems
Get access

Summary

Introduction

At its basic level, an estimation algorithm is a causal mapping from a spatiotemporal observation (the measurement) to an approximation of a primary process (the signal or state, depending on the context). Estimators have become increasingly sophisticated as more versatile online processors have become available. If the state process has a suitable structure, improved estimation and prediction is achieved through model-based synthesis procedures. These approaches, as their name suggests, use a comprehensive analytical model to delineate both the state dynamics and the precise relationship between the state and its measurement. Using this model as an intermediary, a problem in optimal inference is posed. The solution to this optimization problem is then said to be the best estimation algorithm in the application. Through the model, the estimator is tuned to subtle patterns in the measurement, thus enabling good performance to be achieved in the presence of significant measurement ambiguity. Of course, the model is only an abridgement of reality, and to the degree that the model fails to adequately portray the salient features of the actual state processes, there is justifiable concern that the algorithm may be tuned improperly and may see things in the observation that are not actually there.

Perhaps the most widely studied model-based algorithm is the Kalman filter and its lineal variants. As described in Chapter 1, the dynamic features of the plant are represented by a base-state process {xt}.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×