Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T00:16:36.684Z Has data issue: false hasContentIssue false

191 - Equation-Based Models of Dynamic Biological Systems

from PART V - CHALLENGES AND OPPORTUNITIES

Published online by Cambridge University Press:  04 May 2010

Gilles Clermont
Affiliation:
University of Pittsburgh, Pennsylvania
Yoram Vodovotz
Affiliation:
University of Pittsburgh, Pennsylvania
Jonathan Rubin
Affiliation:
University of Pittsburgh, Pennsylvania
William C. Aird
Affiliation:
Harvard University, Massachusetts
Get access

Summary

The endothelium serves barrier, synthetic and catalytic functions and is a site of complex interacting processes involving a large number of biological components. Mathematical modeling might provide valuable insight into the global integration of those interactions into tissue function. The purpose of this chapter is to provide a nontechnical review of a well-established modeling platform, namely differential equations, that harnesses the powerful tools of calculus to analyze the time-dependent behavior of dynamical systems. Differential equations have been abundantly used by modelers. Yet, this framework is largely unknown to basic and clinical scientists. We will briefly describe this framework, provide examples that relate to endothelium modeling, and discuss its strengths and weaknesses (Figure 191.1).

DYNAMICAL SYSTEMS

A dynamical system is an amalgam of interacting components together with a set of rules for how the states of the components evolve in time, and so the notion of time evolution is key when thinking about such a system. Many primary or calculated useful physiological quantities, such as cardiac output and vascular resistance, are related in a static fashion. In other words, one can relate these quantities by means of algebraic equations of varying complexity. The equations resulting from drawing an analogy between electrical circuits and the circulation have led to additional appealing concepts, such as peripheral vascular resistance and vascular capacitance. However, the clinician is clearly aware that these quantities change over time as the “system” adapts to changing external and internal conditions such as fluid administration, local concentration of effectors, or drug dose.

Type
Chapter
Information
Endothelial Biomedicine , pp. 1780 - 1785
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×