Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-28T14:23:26.445Z Has data issue: false hasContentIssue false

Chapter 34 - Ultra-Wideband Wireless Technology

from Part XIII - Ultra WideBand (UWB)

Published online by Cambridge University Press:  10 December 2009

Kazimierz Siwiak
Affiliation:
Consultant
Yasaman Bahreini
Affiliation:
Consultant
Benny Bing
Affiliation:
Georgia Institute of Technology
Get access

Summary

Ultra-Wideband (UWB) signaling technology is a modern wireless technique crafted to comply with recent regulations permitting UWB technology. Historically UWB, once called impulse radio, was defined by very short baseband signals that are transmitted and received without a radio frequency (RF) carrier in the usual sense. The technique reuses previously allocated RF bands by spreading the energy thinly in a wide spectrum, thus having a minimal impact on incumbent spectrum users. Regulations and Recommendations have been written in a way that restricted the permitted operating frequency ranges along with the emission levels, but remained silent on the modulation and signal characteristics. Hence in addition to pulse-based UWB technology, conventional technologies such as OFDM have been exploited under the rules. This chapter will expand on pulse-UWB, particularly at very high data rates, wherein the bandwidth of the signal is directly related to the inverse of the emitted pulse duration. Applications of UWB devices are presented, and potential use cases are described. It is shown that short-pulse low-power techniques have enabled practical through-wall radars, centimeter-precision 3-D positioning, and communications capabilities at the high data rates and with exceptional spatial capacities.

Introduction

Ultra-Wideband (UWB) wireless signaling is essentially the art of generating, modulating, emitting and detecting signals that inherently occupy large bandwidths. Wide band transmissions date back to the infancy of wireless technology. They include the wireless experiments of Heinrich Hertz in the 1880s, Alexander Popov in the 1890s, and later the 100 year old trans-Atlantic spark gap “impulse” transmissions of Guglielmo Marconi.

Type
Chapter
Information
Emerging Technologies in Wireless LANs
Theory, Design, and Deployment
, pp. 719 - 748
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×