Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T08:57:15.028Z Has data issue: false hasContentIssue false

5 - Kinetics of electrochromic operation

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Kinetic considerations for type-I and type-II electrochromes: transport of electrochrome through liquid solutions

Type-I and type-II electrochromes are dissolved in solution prior to the electron-transfer reaction that results in colour. Such electron-transfer reactions are said to be ‘nernstian’ or ‘reversible’ when uncomplicated and fast and in accord with the Nernst equation (Eq. (3.1), Chapter 3). When two conditions regarding the motions of electroactive species (or indeed other participant species) are met, there is a particular means, that needs definition, whereby the key electroactive species arrives at the electrode. These conditions are: the absence both of convection (i.e. the solution unstirred, ‘still’), and also of electroactive-species migration. Then ‘mass transport’ (directional motion) of any electroactive species is constrained to occur wholly by diffusion. On the one hand, the rate of forming coloured product can be dictated by the rate of electron transfer with rate constant ket, which if low may render the electrode response non-nernstian (the electrode potential EO,R diverges from the Nernst equation (3.1) in terms of bulk electroactive concentrations), and furthermore, the rate of the process governed by ket largely determines the current. On the other hand, if ket is high, then electroactive/electrode electron transfer is not the rate- and current-controlling bottleneck, and the overall rate of colour formation is dictated by the rate of mass transport of electroactive species toward the electrode.

The experimental context of these considerations arises as follows. An electrochromic cell is primed for use (‘polarised’) by applying an overpotential (Section 3.3, Chapter 3).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, A. J. and Faulkner, L. R.Electrochemical Methods: Fundamentals and Applications, 2nd edn, New York, Wiley, 2002, pp. 148 ff.Google Scholar
Bard, A. J. and Faulkner, L. R.Electrochemical Methods: Fundamentals and Applications 2nd edn, New York, Wiley, 2002.Google Scholar
Steckhan, E. and Kuwana, T.Spectroelectrochemical study of mediators, I: bipyridilium salts and their electron transfer rates to Cytochrome crystalline. Ber. Bunsen-Ges. Phys. Chem., 78, 1974, 253–9.Google Scholar
Rosseinsky, D. R. and Monk, P. M. S.Electrochromic cyanophenylparaquat (CPQ: 1,1′-bis-cyanophenyl-4,4′-bipyridilium) studied voltammetrically, spectroelectrochemically and by ESR. Sol. Energy Mater. Sol. Cells, 25, 1992, 201–10.CrossRefGoogle Scholar
Hansen, W. N., Kuwana, T. and Osteryoung, R. A.Observation of electrode-solution interface by means of internal reflection spectrometry. Anal. Chem., 38, 1966, 1810–21.CrossRefGoogle Scholar
Tsutsumi, H., Nakagawa, Y. and Tamura, K.Single-film electrochromic devices with polymer gel films containing aromatic electrochromics. Sol. Energy Mater. Sol. Cells, 39, 1995, 341–8.CrossRefGoogle Scholar
Granqvist, C. G.Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells, 60, 2000, 201–62.CrossRefGoogle Scholar
Ord, J. L., Pepin, G. M. and Beckstead, D. J.An optical study of hydrogen insertion in the anodic oxide of tungsten. J. Electrochem. Soc., 136, 1989, 362–8.Google Scholar
Noshino, T. and Baba, N.Characterization and properties of electrochromic cobalt oxide thin film prepared by electrodeposition. Sol. Energy Mater. Sol. Cells, 39, 1995, 391–7.CrossRefGoogle Scholar
Wadayama, T., Wako, H. and Hatta, A.Electrobleaching of WO3 as probed by Raman scattering. Mater. Trans. JIM, 37, 1996, 1486–91.CrossRefGoogle Scholar
Goodenough, J. B.Transition metal oxides with metallic conductivity. Bull. Soc. Chim. Fr., 4, 1965, 1200–7. The introduction includes a comprehensive list.Google Scholar
Whittingham, M. S. The formation of tungsten bronzes and their electrochromic properties. In Chowdari, B. V. R. and Radhakrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Company, 1988, pp. 325–40.CrossRefGoogle Scholar
Hersch, H. N., Kramer, W. E. and McGee, J. K.Mechanism of electrochromism in WO3. Appl. Phys. Lett., 27, 1975, 646–8.CrossRefGoogle Scholar
Weppner, W. and Huggins, R. A.Determination of the kinetics parameters of mixed conducting electrodes and application to the system Li3 Sb. J. Electrochem. Soc., 124, 1977, 1569–78.CrossRefGoogle Scholar
Bell, J. M. and Matthews, J. P.Temperature dependence of kinetic behaviour of sol–gel deposited electrochromics. Sol. Energy Mater. Sol. Cells, 68, 2001, 249–63.CrossRefGoogle Scholar
Tuck, B. Atomic Diffusion in III–V Semiconductors, Bristol, Adam Hilger, 1988; e.g. see ch. 2 ‘Elements of diffusion’, pp. 9–45.
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995.CrossRefGoogle Scholar
Granqvist, G. C.Handbook of Inorganic Electrochromic Materials, Amsterdam, Elsevier, 1995.Google Scholar
Goldner, R. B. Some aspects of charge transport in electrochromic films. In Chowdari, B. V. R. and Radhakrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Company, 1988, pp. 351–8.CrossRefGoogle Scholar
Kim, J. J., Tryk, D. A., Amemiya, T., Hashimoto, K. and Fujishima, A.Color impedance and electrochemical impedance studies of WO3 thin films: H+ and Li+ transportJ. Electroanal. Chem., 435, 1997, 31–8.CrossRefGoogle Scholar
Ho, C.-K., Raistrick, I. D. and Huggins, R. A.Application of AC-techniques to the study of lithium diffusion in tungsten trioxide thin-films. J. Electrochem. Soc., 127, 1980, 343–50.CrossRefGoogle Scholar
Baudry, P., Aegerter, M. A., Deroo, D. and Valla, B.Electrochromic window with lithium conductive polymer electrolyte. Proc. Electrochem. Soc., 90–2, 1990, 274–87.Google Scholar
Kamimori, T., Nagai, J. and Mizuhashi, M.Electrochromic devices for transmissive and reflective light control. Sol. Energy Mater., 16, 1987, 27–38.CrossRefGoogle Scholar
Green, M.Atom motion in tungsten bronze thin films. Thin Solid Films, 50, 1978, 148–50.CrossRefGoogle Scholar
Xu, G. and Chen, L.Lithium diffusion in WO3 films. Solid State Ionics, 28–30, 1988, 1726–8.CrossRefGoogle Scholar
Avellaneda, C. O. and Bulhões, L. O. S.Intercalation in WO3 and WO3:Li films. Solid State Ionics, 165, 2003, 59–64.CrossRefGoogle Scholar
Baudry, P., 1989. Ph.D thése nouveau regime. Grenoble, France.
Hesse, K. and Schlettwein, D.Spectroelectrochemical investigations on the reduction of thin films of hexadecafluorophthalocyaninatozinc (F16 PcZn). J. Electroanal. Chem., 476, 1999, 148–58.CrossRefGoogle Scholar
Nicholson, M. M. and Pizzarello, F.Galvanostatic transients in lutetium diphthalocyanine. J. Electrochem. Soc., 127, 1980, 821–7.CrossRefGoogle Scholar
MacArthur, D. M.The proton diffusion coefficient for the nickel hydroxide electrode. J. Electrochem. Soc., 117, 1970, 729–32. MacArthur consistently in this paper talks of ‘ΔH for diffusion’, but in fact the data from his Arrhenius-type graphs yield EA.CrossRefGoogle Scholar
Lukovtsev, P. D. and Slaidin, G. J.Proton diffusion through nickel oxide. Electrochim. Acta, 6, 1962, 17–21.CrossRefGoogle Scholar
Gomes, M. A. B. and Bulhões, L. O. S.Diffusion coefficient of H+ at Nb2O5 layers prepared by thermal oxidation of niobium. Electrochim. Acta, 35, 1990, 765–8.CrossRefGoogle Scholar
Tran-Van, F., Henri, T. and Chevrot, C.Synthesis and electrochemical properties of mixed ionic and electronic modified polycarbazole. Electrochim. Acta, 47, 2002, 2927–36.CrossRefGoogle Scholar
Yashima, H., Kobayashi, M., Lee, K.-B., Chung, D., Heeger, A. J. and Wudl, F.Electrochromic switching of the optical properties of polyisothianaphthene. J. Electrochem. Soc., 134, 1987, 46–52.CrossRefGoogle Scholar
Faughnan, B. W., Crandall, R. S. and Lampert, M. A.Model for the bleaching of WO3 electrochromic films by an electric field. Appl. Phys. Lett., 27, 1975, 275–7.CrossRefGoogle Scholar
Wagner, C.Z. Phys. Chem., Abs. B, 21, 1933, 25, as cited in ref. 14 here.
Bisquert, J. and Vikhrenko, V. S.Analysis of the kinetics of ion intercalation: two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochim. Acta, 47, 2002, 3977–88.CrossRefGoogle Scholar
Bisquert, J.Analysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processes. Electrochim. Acta, 47, 2002, 2435–49.CrossRefGoogle Scholar
Yoshimura, T., Watanabe, M., Koike, Y., Kiyota, K. and Tanaka, M.Effect of surface states on WO3 on the operating characteristics of thin film electrochromic devices. Thin Solid Films, 101, 1983, 141–51.CrossRefGoogle Scholar
Ho, K.-C., Singleton, D. E. and Greenberg, C. B.The influence of terminal effects on the performance of electrochromic windows. J. Electrochem. Soc., 137, 1990, 3858–64.CrossRefGoogle Scholar
Kaneko, H. and Miyake, K.Effects of transparent electrode resistance on the performance characteristics of electrochemichromic cells. Appl. Phys. Lett., 49, 1986, 112–14.CrossRefGoogle Scholar
Jeong, D. J., Kim, W.-S. and Sung, Y. E.Improved electrochromic response time of nickel hydroxide thin films by ultra-thin nickel metal underlayer. Jpn. J. Appl. Phys., 40, 2001, L708–10.CrossRefGoogle Scholar
He, T., Ma, Y., Cao, Y., Yang, W. and Yao, J.Enhanced electrochromism of WO3 thin film by gold nanoparticles. J. Electroanal. Chem., 514, 2001, 129–32.CrossRefGoogle Scholar
Yao, J. N., Yang, Y. A. and Loo, B. H.Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films. J. Phys. Chem. B, 102, 1998, 1856–60.CrossRefGoogle Scholar
Haranahalli, A. R. and Holloway, P. H.The influence of metal overlayers on electrochromic behavior of tungsten trioxide films. J. Electron. Mater., 10, 1981, 141–72.CrossRefGoogle Scholar
Haranahalli, A. R. and Dove, D. B.Influence of a thin gold surface layer on the electrochromic behavior of WO3 films. Appl. Phys. Lett., 36, 1980, 791–3.CrossRefGoogle Scholar
Cheng, K. H. and Whittingham, M. S.Lithium incorporation in tungsten oxides. Solid State Ionics, 1, 1980, 151–61.CrossRefGoogle Scholar
Dini, D., Passerini, S., Scrosati, B. and Decker, F.Stress changes in electrochromic thin film electrodes: laser beam deflection method (LBDM) as a tool for the analysis of intercalation processes. Sol. Energy Mater. Sol. Cells, 56, 1999, 213–21.CrossRefGoogle Scholar
Berezin, L. Y. and Malinenko, V. P.Electrochromic coloration and bleaching of polycrystalline tungsten trioxide. Pis'ma. Zh. Tekh. Fiz. 13, 1987, 401–4 [in Russian], as cited in Chem. Abs. 107: 449,382t.Google Scholar
Berezin, L. Y., Aleshina, L. A., Inyushin, N. B., Malinenko, V. P. and Fofanov, A. D.Phase transitions during electrochromic processes in tungsten trioxide. Fiz. Tverd Tela (Leningrad), 31, 1989, 41–9 [in Russian], as cited in Chem. Abs. 112: 225,739.Google Scholar
Ord, J. L., Bishop, S. D. and DeSmet, D. J.Hydrogen insertion into anodic oxide films on vanadium. Proc. Electrochem. Soc., 90–2, 1990, 116–24.Google Scholar
Ord, J. L. and DeSmet, D. J.Optical anisotropy and electrostriction in the anodic oxide of molybdenum. J. Electrochem. Soc., 130, 1983, 280–4.CrossRefGoogle Scholar
Ord, J. L. and Wang, W. P.Optical anisotropy and electrostriction in the anodic oxide of tantalum. J. Electrochem. Soc., 130, 1983, 1809–14.CrossRefGoogle Scholar
Mohapatra, S. K.Electrochromism in LixWO3. J. Electrochem. Soc., 125, 1978, 284–8.CrossRefGoogle Scholar
Shiyanovskaya, I.Isotopic effect in evolution of structure and optical gap during electrochromic coloration of WO3. ⅓(H2O) films. Mikrochim. Acta, S14, 1997, 819–22.Google Scholar
Kurita, S., Nishimura, T. and Taira, K.Proton injection phenomena in WO3-electrolyte electrochromic cells. Appl. Phys. Lett., 36, 1980, 585–7.Google Scholar
Shiyanovskaya, I. and Hepel, M.Isotopic effects in cation-injected electrochromic films. J. Electrochem. Soc., 145, 1998, 1023–8.CrossRefGoogle Scholar
Kang, K. and Green, M.Solid state electrochromic cells: optical properties of the sodium tungsten bronze system. Thin Solid Films, 113, 1984, L29–32.CrossRefGoogle Scholar
Dini, D., Decker, F. and Masetti, E.A comparison of the electrochromic properties of WO3 films intercalated with H+, Li+ and Na+. J. Appl. Electrochem., 26, 1996, 647–53.CrossRefGoogle Scholar
Masetti, E., Dini, D. and Decker, F.The electrochromic response of tungsten bronzes MxWO3 with different ions and insertion rates. Sol. Energy Mater. Sol. Cells, 39, 1995, 301–7.CrossRefGoogle Scholar
Green, M. and Richman, D.A solid state electrochromic cell: the RbAg4 I5∣WO3 system. Thin Solid Films, 24, 1974, S45–6.CrossRefGoogle Scholar
Scarminio, J.Stress in photochromic and electrochromic effects on tungsten oxide film. Sol. Energy Mater. Sol. Cells, 79, 2003, 357–68.CrossRefGoogle Scholar
García-Canãdas, J., Mora-Seró, I., Fabregat-Santiago, F., Bisquert, J. and Garcia-Belmonte, G.Analysis of cyclic voltammograms of electrochromic amorphous-WO3 films from voltage-dependent equilibrium capacitance measurements, J. Electroanal. Chem., 565, 2004, 329–334.CrossRefGoogle Scholar
Bohnke, O., Bohnke, C., Robert, G. and Carquille, B.Electrochromism in WO3 thin films, I: LiClO4–propylene carbonate-water electrolytes. Solid State Ionics, 6, 1982, 121–8.CrossRefGoogle Scholar
Bohnke, C. and Bohnke, O.Impedance analysis of amorphous WO3 thin films in hydrated LiClO4–propylene carbonate electrolytes. Solid State Ionics, 39, 1990, 195–204.CrossRefGoogle Scholar
Bohnke, O., Vuillemin, B., Gabrielli, C., Keddan, M., Perrot, H., Takenouti, H. and Torresi, R.An electrochemical quartz crystal microbalance study of lithium insertion into thin films of tungsten trioxide, I: modeling of the ionic insertion mechanism. Electrochim. Acta, 40, 1995, 2755–64.CrossRefGoogle Scholar
Bohnke, O., Vuillemin, B., Gabrielli, C., Keddam, M. and Perrot, H.An electrochemical quartz crystal microbalance study of lithium insertion into thin films of tungsten trioxide, II: experimental results and comparison with model calculations. Electrochim. Acta, 40, 1995, 2765–73.CrossRefGoogle Scholar
Babinec, S. J.A quartz crystal microbalance analysis of ion insertion into WO3. Sol. Energy Mater. Sol. Cells, 25, 1992, 269–91.CrossRefGoogle Scholar
Plinchon, V., Giron, J.-C., Deloulbe, J. P. and Lerbet, F.Detection by mirage effect of the counter-ion flux between an electrochrome and a liquid electrolyte: application to WO3, Prussian blue and lutetium diphthalocyanine film. Proc. SPIE, 1536, 1991, 37–47.CrossRefGoogle Scholar
Kim, J. J., Tryk, D. A., Amemiya, T., Hashimoto, K. and Fujishima, A.Color impedance and electrochemical impedance studies of WO3 thin films: behavior of thinner films in non-aqueous electrolyte. J. Electroanal. Chem., 433, 1997, 9–17.CrossRefGoogle Scholar
Zhang, L. and Goto, K. S.Measurement of Li+ diffusivity in thin films of tungsten troxide with oxygen deficiency. Proc. Electrochem. Soc., 90–2, 1990, 23–39.Google Scholar
Kubo, T. and Nishikitani, Y.Deposition temperature dependence of optical gap and coloration efficiency spectrum in electrochromic tungsten oxide films. J. Electrochem. Soc., 145, 1998, 1729–35.CrossRefGoogle Scholar
Wang, J., Bell, J. M. and Skryabin, I. L.Kinetics of charge injection in sol–gel deposited WO3. Sol. Energy Mater. Sol. Cells, 56, 1999, 465–75.CrossRefGoogle Scholar
Chen, X., Hu, X. and Feng, J.Nanostructured nickel oxide films and their electrochromic properties. Nanostruct. Mater., 6, 1995, 309–12.CrossRefGoogle Scholar
Shamritskaya, I. G., Lazorenko-Manevich, R. M. and Sokolova, L. A.Effects of anions on the electroreflectance spectra of anodically oxidized iridium in aqueous solutions. Russ. J. Electrochem., 33, 1997, 645–52.Google Scholar
Yoshiiki, N. and Kondo, S.Electrochemical properties of WO3. x H2O, I: the influence of water adsorption and hydroxylation. J. Electrochem Soc., 130, 1983, 2283–7.Google Scholar
Hurditch, R.Electrochromism in hydrated tungsten-oxide films. Electron. Lett., 11, 1975, 142–4.CrossRefGoogle Scholar
Arnoldussen, T. C.Electrochromism and photochromism in MoO3 films. J. Electrochem. Soc., 123, 1976, 527–31.CrossRefGoogle Scholar
Holland, L.Vacuum Deposition of Thin Films, London, Chapman and Hall, 1956.Google Scholar
Hjelm, A., Granqvist, C. G. and Wills, J. M.Electronic properties and optical properties of WO3. LiWO3, NaWO3 and HWO3. Phys. Rev. B, 54, 1996, 2436–45.CrossRefGoogle ScholarPubMed
Yishiike, N. and Kondo, S.Electrochemical properties of WO3. x (H2O), II: the influence of crystallization as hydration. J. Electrochem. Soc., 131, 1984, 809–13.Google Scholar
Wagner, W., Rauch, F., Ottermann, C. and Bange, K.Hydrogen dynamics in electrochromic multilayer systems investigated by the 15N technique. Nucl. Instr. Meth. Phys. Res. B., 50, 1990, 27–30.CrossRefGoogle Scholar
Wagner, W., Bange, K., Rauch, F. and Ottermann, C.In-depth profiling of hydrogen in oxide multi-layer systems. Surf. Sci. Anal., 16, 1990, 331–4.Google Scholar
Kreuer, K. D.Proton conductivity: materials and applications. Chem. Mater., 8, 1996, 610–41.CrossRefGoogle Scholar
Duffy, J. A., Ingram, M. D. and Monk, P. M. S.The effect of moisture on tungsten oxide electrochromism in polymer electrolyte devices. Solid State Ionics, 58, 1992, 109–14.CrossRefGoogle Scholar
Faughnan, B. W. and Crandall, R. S. Electrochromic devices based on WO3. In Pankove, J. L. (ed.), Display Devices, Berlin, Springer-Verlag, 1980, pp. 181–211.CrossRefGoogle Scholar
Arnoldussen, T. C.A model for electrochromic tungsten oxide microstructure and degradation. J. Electrochem. Soc., 128, 1981, 117–23.CrossRefGoogle Scholar
Randin, J.-P.Chemical and electrochemical stability of WO3 electrochromic films in liquid electrolytes. J. Electron. Mater., 7, 1978, 47–63.CrossRefGoogle Scholar
Hefny, M. M., Gadallah, A. G. and Mogoda, A. S.Some electrochemical properties of the anodic oxide film on tungsten. Bull. Electrochem., 3, 1987, 11–14.Google Scholar
Reichman, B. and Bard, A. J.The electrochromic process at WO3 electrodes prepared by vacuum evaporation and anodic oxidation of W. J. Electrochem. Soc., 126, 1979, 583–91.CrossRefGoogle Scholar
Kumagai, N., Abe, M., Kumagai, N., Tanno, K. and Pereria-Ramos, J. P.Kinetics of electrochemical insertion of lithium into WO. Solid State Ionics, 70–71, 1994, 451–7.CrossRefGoogle Scholar
Crandall, R. S. and Faughnan, B. W.Electronic transport in amorphous HxWO3. Phys. Rev. Lett., 39, 1977, 232–5.CrossRefGoogle Scholar
Crandall, R. S. and Faughnan, B. W.Dynamics of coloration of amorphous electrochromic films of WO3 at low voltages. Appl. Phys. Lett., 28, 1976, 95–7.CrossRefGoogle Scholar
Crandall, R. S., Wojtowicz, P. J. and Faughnan, B. W.Theory and measurement of the change in chemical potential of hydrogen in amorphous HxWO3 as a function of the stoichiometric parameter x. Solid State Commun., 18, 1976, 1409–11.CrossRefGoogle Scholar
Crandall, R. S. and Faughnan, B. W.Measurement of the diffusion coefficient of electrons in WO3 films. Appl. Phys. Lett, 26, 1975, 120–1.CrossRefGoogle Scholar
Ingram, M. D., Duffy, J. A. and Monk, P. M. S.Chronoamperometric response of the cell ITO | HxWO3 | PEO–H3PO4 (MeCN) | ITO. J. Electroanal. Chem., 380, 1995, 77–82.CrossRefGoogle Scholar
Pedone, P., Armand, M. and Deroo, D.Voltammetric and potentiostatic studies of the interface WO3/polyethylene oxide–H3PO4. Solid State Ionics, 28–30, 1988, 1729–32.CrossRefGoogle Scholar
Nishikawa, M., Ohno, H., Kobayashi, T., Tsuchida, E. and Hirohashi, R.All solid-state electrochromic device containing poly[oligo(oxyethylene) methylmethacrylate]/LiClO4 hybrid polymer ion conductor. J. Soc. Photoagr. Sci. Technol. Jpn., 81, 1988, 184–90 [in Japanese].Google Scholar
Luo, Z., Ding, Z. and Jiang, Z.Electrochromic kinetics of amorphous WO3 films. J. Non-Cryst. Solids, 112, 1989, 309–13.Google Scholar
Green, M., Smith, W. C. and Weiner, J. A.A thin film electrochromic display based on the tungsten bronzes. Thin Solid Films, 38, 1976, 89–100.CrossRefGoogle Scholar
Bohnke, O. and Vuillermin, B. Proton insertion into thin films of amorphous WO3: kinetics study. In Balkanski, M., Takahashi, T. and Tuller, H. L. (eds.), Solid State Ionics, Amsterdam, Elsevier, 1992, pp. 593–8.Google Scholar
Bohnke, O. and Vuillermin, B.Proton insertion into thin films of amorphous WO3: kinetics study. Mater. Sci. Eng. B, 13, 1992, 243–6.CrossRefGoogle Scholar
Bohnke, O., Rezrazi, M., Vuillermin, B., Bohnke, C., Gillet, P. A. and Rousellot, C.In situ optical and electrochemical characterization of electrochromic phenomena into tungsten trioxide thin films. Sol. Energy Mater. Sol. Cells, 25, 1992, 361–74.CrossRefGoogle Scholar
Carslaw, H. S. and Jaeger, J. C.Conduction of Heat in Solids, 2nd edn, Oxford, Oxford University Press, 1959.Google Scholar
Seman, M. and Wolden, C. A.Characterization of ion diffusion and transient electrochromic performance in PECVD grown tungsten oxide thin films. Sol. Energy Mater. Sol. Cells, 82, 2004, 517–30.Google Scholar
Stauffer, D.Introduction to Percolation Theory, London, Taylor and Francis, 1985.CrossRefGoogle Scholar
Wittwer, V., Schirmer, O. F. and Schlotter, P.Disorder dependence and optical detection of the Anderson transition in amorphous HxWO3 bronzes. Solid State Commun., 25, 1978, 977–80.CrossRefGoogle Scholar
Likalter, A. A.Impurity states and insulator–metal transition in tungsten bronzes. Physica B, 315, 2002, 252–60.CrossRefGoogle Scholar
Craig, J. B. and Grant, J. M.Kinetic of electrochromic processes in tungsten oxide films. J. Mater. Chem., 2, 1992, 521–8.CrossRefGoogle Scholar
Aoki, K. and Tezuka, Y.Chronoamperometric response to potentiostatic doping at polypyrrole-coated microdisk electrodes. J. Electroanal. Chem., 267, 1989, 55–66.CrossRefGoogle Scholar
Malta, M., Gonzalez, E. R. and Torresi, R. M.Electrochemical and chromogenic relaxation processes in polyaniline films. Polymer, 43, 2002, 5895–901.CrossRefGoogle Scholar
Goldner, R. B., Norton, P., Wong, G., Foley, E. L., Seward, G. and Chapman, R.Further evidence for free electrons as dominating the behaviour of electrochromic polycrystalline WO3 films. Appl. Phys. Lett., 47, 1985, 536–8.CrossRefGoogle Scholar
Cogan, S. F., Plante, T. D., Parker, M. A. and Rauh, R. D.Free-electron electrochromic modulation in crystalline LixWO3. J. Appl. Phys., 60, 1986, 2735–8.CrossRefGoogle Scholar
Maranhão, S. L. D. A. and Torresi, R. M.Electrochemical and chromogenics kinetics of lithium intercalation in anodic niobium oxide films. Electrochim. Acta, 43, 1998, 257–64.CrossRefGoogle Scholar
Maranhão, S. L. D. A. and Torresi, R. M.Filmes de óxidos anódicos de nióbio: efeito eletrocrômico e cinética da reação de eletro-intercalação. Quim. Nova, 21, 1998, 284–8.CrossRefGoogle Scholar
Zhang, J. G., Benson, D. K., Tracy, C. E., Deb, S. K., Czanderna, A. W. and Bechriger, C.Chromic mechanism in amorphous WO3 films. J. Electrochem. Soc., 144, 1997, 2022–6.CrossRefGoogle Scholar
Leftheriotis, G., Papaefthimiou, S., Yianoulis, P. and Siokou, A.Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films, 384, 2001, 298–306.CrossRefGoogle Scholar
Siokou, A., Leftheriotis, G., Papaefthimiou, S. and Yianoulis, P.Effect of the tungsten and molybdenum oxidation states on the thermal coloration of amorphous WO3 and MoO3 films. Surf. Sci., 482–5, 2001, 294–9.CrossRefGoogle Scholar
Wang, X. G., Jang, Y. S., Yang, N. H., Yuan, L. and Pang, S. J.XPS and XRD study of the electrochromic mechanism of WOx films. Surf. Coat. Technol., 99, 1998, 82–6.CrossRefGoogle Scholar
Temmink, A., Anderson, O., Bange, K., Hantsche, H. and Yu, X.Optical absorption of amorphous WO3 and binding state of tungsten, Thin Solid Films, 192, 1990, 211–18.CrossRefGoogle Scholar
Temmink, A., Anderson, O., Bange, K., Hantsche, H. and Yu, X.4f level shifts of tungsten and colouration state of amorphous-WO3. Vacuum, 41, 1990, 1144–6.CrossRefGoogle Scholar
Wang, B. X., Hu, G., Liu, B. F. and Dong, S. J.Electrochemical preparation of microelectrodes modified with non-stoichiometric mixed-valent molybdenum oxides. Acta Chim. Sinica, 54, 1996, 598–604 [in Chinese]. (Abstract available on Web of Science website.)Google Scholar
Fleisch, T. H. and Mains, G. J.An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys., 76, 1982, 780–6.CrossRefGoogle Scholar
Cruz, T. G. S., Gorenstein, A., Landers, R., Kleiman, G. G. and deCastro, S. C.Electrochromism in MoOx films characterized by X-ray electron spectroscopy. J. Electron. Spectrosc. Rel. Phenom., 101–3, 1999, 397–400.CrossRefGoogle Scholar
Papaefthimiou, S., Leftheriotis, G. and Yianoulis, P.Study of electrochromic cells incorporating WO3, MoO3, WO3–MoO3 and V2O5 coatings. Thin Solid Films, 343–344, 1999, 183–6.CrossRefGoogle Scholar
Bohnke, O., Frand, G., Fromm, M., Weber, J. and Greim, O.Depth profiling of W, O and H in tungsten trioxide thin films using RBS and ERDA techniques. Appl. Surf. Sci., 93, 1996, 45–52.CrossRefGoogle Scholar
Antonaia, A., Santoro, M. C., Fameli, G. and Polichetti, T.Transport mechanism and IR structural characterisation of evaporated amorphous WO3 films. Thin Solid Films, 426, 2003, 281–7.CrossRefGoogle Scholar
Lee, S.-H., Cheong, H. M., Tracy, C. E., Mascarenhas, A., Benson, D. K. and Deb, S. K.Raman spectroscopic studies of electrochromic amorphous-WO3. Electrochim. Acta, 44, 1999, 3111–15.CrossRefGoogle Scholar
Lee, S.-H., Cheong, H. M., Zhang, J.-G., Mascarenhas, A., Benson, D. K. and Deb, S. K.Electrochromic mechanism in WO3 −y thin films. Appl. Phys. Lett., 74, 1999, 242–4.CrossRefGoogle Scholar
Sun, S.-S. and Holloway, P. H.Modification of vapor-deposited WO3 electrochromic films by oxygen backfilling. J. Vac. Sci. Technol. A., 1, 1983, 529–33.CrossRefGoogle Scholar
Rezrazi, M., Vuillemin, B. and Bohnke, O.Thermodynamic study of proton insertion into thin films of amorphous-WO3. J. Electrochem. Soc., 138, 1991, 2770–4.CrossRefGoogle Scholar
Bechinger, C., Burdis, M. S. and Zhang, J.-G.Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films. Solid State Commun., 101, 1997, 753–6.CrossRefGoogle Scholar
Wijs, G. A. and Groot, R. A.Amorphous WO3: a first-principles approach. Electrochim. Acta, 46, 2001, 1989–93.CrossRefGoogle Scholar
Green, M. and Pita, K.Non-stoichiometry in thin film dilute tungsten bronzes: Mx WO3-y. Sol. Energy Mater. Sol. Cells, 43, 1996, 393–411.CrossRefGoogle Scholar
Gorenstein, A., Scarminio, J. and Lourenço, A.Lithium insertion in sputtered amorphous molybdenum thin films. Solid State Ionics, 86–88, 1996, 977–81.CrossRefGoogle Scholar
Monk, P. M. S., Duffy, J. A. and Ingram, M. D.Pulsed enhancement of the rate of coloration for tungsten trioxide based electrochromic devices. Electrochim. Acta, 43, 1998, 2349–57.CrossRefGoogle Scholar
Knapp, R. C., Turnbull, R. R. and Poe, G. B. (Gentex Corporation). Reflectance control of an electrochromic element using a variable duty cycle drive. US Patent 06084700, 2000.
Monk, P. M. S., Fairweather, R. D., Ingram, M. D. and Duffy, J. A.Pulsed electrolysis enhancement of electrochromism in viologen systems: influence of comproportionation reactions. J. Electroanal. Chem., 359, 1993, 301–6.CrossRefGoogle Scholar
Barclay, D. J. and Martin, D. H. Electrochromic displays. In Howells, E. R. (ed.), Technology of Chemicals and Materials for the Electronics Industry, Chichester, Ellis Horwood, 1984, pp. 266–76.Google Scholar
Protsenko, E. G., Klimisha, G. P., Krainov, I. P., Kramarenko, S. F. and Distanov, B. G.Deposited Doc., 1981, SPSTL 971, Khp-D81. Chem. Abs. 98: 170, 310 (1983).Google Scholar
Schierbeck, K. L. (Donnelly Corporation). Digital electrochromic mirror system. US Patent 06089721, 2000.
Statkov, L. I.Peculiarities of the mechanism of the electrochromic coloring of oxide films upon pulsed electrochemical polarization, Russ. J. Appl. Chem., 70, 1997, 653–4.Google Scholar
Ottaviani, M., Panero, S., Morizilli, S., Scrosati, B. and Lazzari, M.The electrochromic characteristics of titanium oxide thin film. Solid State Ionics, 20, 1986, 197–202.CrossRefGoogle Scholar
DeSmet, D. J. and Ord, J. L.An optical study of hydrogen insertion in the anodic oxide of molybdenum. J. Electrochem. Soc., 134, 1987, 1734–40.CrossRefGoogle Scholar
Duffy, J. A., Baucke, F. G. K. and Woodruff, P. R.Optical properties of tungsten bronze surfaces. Thin Solid Films, 148, 1987, L59–61.Google Scholar
Porqueras, I., Viera, G., Marti, J. and Bertran, E.Deep profiles of lithium in electrolytic structures of ITO/WO3 for electrochromic applications. Thin Solid Films, 343–4, 1999, 179–82.CrossRefGoogle Scholar
Zhong, Q., Wessel, S. A., Heinrich, B. and Colbow, K.The electrochromic properties and mechanism of H3WO3 and LixWO3. Sol. Energy Mater., 20, 1990, 289–96.CrossRefGoogle Scholar
Kamimori, T., Nagai, J. and Mizuhashi, M.Transport of Li+ ions in amorphous tungsten oxide films. Proc. SPIE, 428, 1983, 51–6.CrossRefGoogle Scholar
Matthews, J. P., Bell, J. M. and Skryabin, I. L.Effect of temperature on electrochromic device switching voltages. Electrochim. Acta, 44, 1999, 3245–50.CrossRefGoogle Scholar
Bell, J. M., Matthews, J. P. and Skryabin, I. L.Modelling switching of electrochromic devices – a route to successful large area device design. Solid State Ionics, 152–3, 2002, 853–60.CrossRefGoogle Scholar
Anderson, O. L. and Stuart, D. A.J. Am. Ceram. Soc., 37, 1954, 573, as cited in Elliott, S. R., Physics of Amorphous Materials, Harlow, Longman, 1990.CrossRef
Strømme Mattson, M., Niklasson, G. A. and Granqvist, C. G.Diffusion of Li, Na, and K in fluorinated Ti dioxide films: applicability of the Anderson–Stuart model. J. Appl. Phys., 81, 1997, 2167–72.CrossRefGoogle Scholar
Krasnov, Y. S., Sych, O. A., Patsyuk, F. N. and Vas'ko, A. T.Electrochromism and diffusion of charge carriers in amorphous tungsten trioxide, taking into account the electron capture on localized sites. Electrokhimiya, 24, 1988, 1468–1474 [in Russian], as cited in Chem Abs. 1110: 1447,1513z.Google Scholar
Rosseinsky, D. R. and Mortimer, R. J.Electrochromic systems and the prospects for devices. Adv. Mater., 13, 2001, 783–93.3.0.CO;2-D>CrossRefGoogle Scholar
Gardner, W. R. and Danielson, G. C.Electrical resistivity and Hall coefficient of sodium tungsten bronze. Phys. Rev., 93, 1954, 46–51.CrossRefGoogle Scholar
Jones, W. H. Jr., Garbaty, E. A. and Barnes, R. G.Nuclear magnetic resonance in metal tungsten bronzes. J. Chem. Phys., 36, 1962, 494–9.CrossRefGoogle Scholar
Bohnke, O., Gire, A. and Theobald, J. G.In situ detection of electrical conductivity variation of an amorphous-WO3 thin film during electrochemical reduction and oxidation in LiClO4 (M)–PC electrolyte. Thin Solid Films, 247, 1994, 51–5.CrossRefGoogle Scholar
Muhlestein, L. D. and Danielson, G. C.Effects of ordering on the transport properties of sodium tungsten bronze. Phys. Rev., 158, 1967, 825–32.CrossRefGoogle Scholar
Muhlestein, L. D. and Danielson, G. C.Seebeck effect in sodium tungsten bronze. Phys. Rev., 160, 1967, 562–7.CrossRefGoogle Scholar
Wolfram, T. and Sutcu, L.x Dependence of the electronic properties of cubic NaxWO3. Phys. Rev. B, 31, 1985, 7680–7.CrossRefGoogle ScholarPubMed
Baucke, F. G. K., Duffy, J. A. and Smith, R. I.Optical absorption of tungsten bronze thin films for electrochromic applications. Thin Solid Films, 186, 1990, 47–51.CrossRefGoogle Scholar
Burdis, M. S. and Siddle, J. R.Observation of non-ideal lithium insertion into sputtered thin films of tungsten oxide. Thin Solid Films, 237, 1994, 320–5.CrossRefGoogle Scholar
Batchelor, R. A., Burdis, M. S. and Siddle, J. R.Electrochromism in sputtered WO3 thin films. J. Electrochem. Soc., 143, 1996, 1050–5.CrossRefGoogle Scholar
Montella, C.Discussion on permeation transients in terms of insertion reaction mechanism and kinetics. J. Electroanal. Chem., 465, 1999, 37–50.CrossRefGoogle Scholar
Diard, J.-P., Gorrec, B. and Montella, C.Logistic differential equation: a general equation for electrointercalation processes?J. Electroanal. Chem., 475, 1999, 190–2.CrossRefGoogle Scholar
Torresi, R. M., Córdoba de Torresi, S. I. and Gonzalez, E. R.On the use of the quadratic logistic differential equation for the interpretation of electrointercalation processes. J. Electroanal. Chem., 461, 1999, 161–6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×