Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2007
  • Online publication date: August 2009

1 - Introduction to electrochromism

Bard, A. J. and Faulkner, L. R.Electrochemical Methods: Fundamentals and Applications (2nd edn.), New York, Wiley, 2002.
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995.
[Online] at (accessed 27 January 2006).
Forslund, B., A simple laboratory demonstration of electrochromism, J. Chem. Ed., 74, 1997, 962–3. The demonstration employed tungsten trioxide, electro-deposited from aqueous sodium tungstate onto SnO2 coated electrodes.
[Online] at (accessed 27 January 2006).
[Online] at (accessed 27 January 2006).
Murga, L. F. and Ondrechen, M. J.Theory of the Stark Effect in protein systems containing an electron donor–acceptor couple. J. Inorg. Biochem., 70, 1998, 245–52.
Bamfield, P.Chromic Phenomena: Technological Applications of Colour Chemistry, Cambridge, Royal Society of Chemistry, 2001.
Loew, L. M., Scully, L., Simpson, L. M. and Waggoner, A. S.Evidence for a charge shift electrochromic mechanism in a probe of membrane potential. Nature (London), 281, 1979, 497–9.
Huesmann, H., Gabrielli, G. and Caminati, G.Monolayers and Langmuir–Blodgett films of the electrochromic dye Di-8-ANEPPS. Thin Solid Films, 327–329, 1998, 804–7.
Professor L. M. Loew, 1999, personal communication.
Vredenberg, W. J.Electrogenesis in the photosynthetic membrane: fields, facts and features. Bioelectrochem. Bioenergy, 44, 1997, 1–11.
Platt, J. R.Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys., 34, 1961, 862–3.
Tiede, D. M., Utschig, L., Hanson, D. K. and Gallo, D. M.Resolution of electron and proton transfer events in the electrochromism associated with quinone reduction in bacterial reaction centers. Photosyn. Res., 55, 1998, 267–73.
Tiede, D. M., Vazquez, J., Cordova, J. and Marone, P. A.Structural and function changes in photosynthetic bacterial reaction center proteins induced by incorporating different metal ions. Biochemistry, 35, 1996, 10763–73.
Miksovska, J., Maróti, P., Tandori, J., Schiffer, M., Hanson, D. K. and Sebban, P.Modulation of the free energy level of QA− by distant electrostatic interactions in the photosynthetic reaction center. Biochemistry, 35, 1996, 15411–17.
Crimi, M., Fregni, V., Altimari, A. and Melandri, B. A.Unreliability of carotenoid electrochromism for the measure of electrical potential differences induced by ATP hydrolysis in bacterial chromatophores. FEBS Lett., 367, 1995, 167–72.
O'Shea, P.Physical landscapes in biological membranes. Philos. Trans. R. Soc. London, Ser. A Math. Phys. Eng. Sci., 363, 2005, 575–88.
Asawakarn, T., Cladera, J. and O'Shea, P.Effects of the membrane dipole potential on the interaction of Saquinavir with phospholipid membranes and plasma membrane receptors of Caco-2 cells. J. Biol. Chem., 276, 2001, 38457–63.
Cladera, J. and O'Shea, P. Generic techniques for fluorescence measurements of protein–ligand interactions: real-time kinetics and spatial imaging. In Harding, S. E. and Chowdhry, B. (eds.), Protein–Ligand Interactions, Oxford, Oxford University Press, 2001, pp. 169–200.
Ross, E., Bedlack, R. S. and Loew, L. M.Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys. J., 67, 1994, 208–16.
Montana, V., Farkas, D. L. and Loew, L. M.Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry, 28, 1989, 4536–9.
Wall, J. S., Golding, C., Veen, M. and O'Shea, P. S.The use of fluoresceinphosphatidylethanolamine as a real-time probe for peptide–membrane interactions. Mol. Memb. Biol., 12, 1995, 181–90.
[Online] at (accessed 27 January 2006).
Georg, A., Graf, W., Neumann, R. and Wittwer, V.The role of water in gasochromic WO3 films. Thin Solid Films, 384, 2001, 269–75.
Georg, A.Graf, W.Neumann, R. and Wittwer, V.Stability of gasochromic WO3 films, Sol. Energy Mater. Sol. Cells, 63, 2000, 165–176.
Georg, A., Graf, W., Neumann, R. and Wittwer, V.Mechanism of the gasochromic coloration of porous WO3 films. Solid State Ionics, 127, 2000, 319–328.
Georg, A., Graf, W., Schweiger, D., Wittwer, V., Nitz, P. and Wilson, H. R.Switchable glazing with a large dynamic range in total solar energy transmittance (TSET). Sol. Energy, 62, 1998, 215–228.
Opara Krašovec, U., Orel, B., Georg, A. and Wittwer, V.The gasochromic properties of sol–gel WO3 films with sputtered Pt catalyst. Sol. Energy, 68, 2000, 541–551.
Schweiger, D., Georg, A., Graf, W. and Wittwer, V.Examination of the kinetics and performance of a catalytically switching (gasochromic) device. Sol. Energy Mater. Sol. Cells, 54, 1998, 99–108.
Shanak, H., Schmitt, H., Nowoczin, J. and Ziebert, C.Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations. Solid State Ionics, 171, 2004, 99–106.
Wittwer, V., Datz, M., Ell, J., Georg, A., Graf, W. and Walze, G.Gasochromic windows. Sol. Energy Mater. Sol. Cells, 84, 2004, 305–14.
[Online] at (accessed 27 January 2006).
[Online] at (accessed 27 January 2006).
Granqvist, G. C.Handbook of Inorganic Electrochromic Materials, Amsterdam, Elsevier, 1995.
Agnihotry, S. A.Electrochromic devices: present and forthcoming technology. Bull. Electrochem., 12, 1996, 707–12.
Bange, K., Gambke, T. and Sparschuh, G. Optically active thin-film coatings. In Hummel, R. E. and Guenther, K. H. (eds.), Handbook of Optical Properties, Boca Raton, FL, CRC Press, 1995, pp. 105–34.
Granqvist, C. G.Electrochromism and smart window design. Solid State Ionics, 53–6, 1992, 479–89.
Granqvist, C. G.Electrochromic materials: microstructure, electronic bands, and optical properties. Appl. Phys. A, 56, 1993, 3–12.
Granqvist, C. G.Electrochromics and smart windows. Solid State Ionics, 60, 1993, 213–14.
Granqvist, C. G.Electrochromic materials and devices. Proc. SPIE, 2968, 1997, 158–166.
Granqvist, C. G. Electrochromism and electrochromic devices. In Gellings, P. J. and Bouwmeester, H. J. M. (eds.), The CRC Book of Solid State Electrochemistry. Boca Raton, FL, CRC Press, 1997, pp. 587–615.
Granqvist, C. G.Progress in solar energy materials: examples of work at Uppsala University. Renewable Energy, 15, 1998, 243–250.
Granqvist, C. G., Azens, A., Hjelm, A., Kullman, L., Niklasson, G. A., Rönnow, D., Strømme Mattson, M., Veszelei, M. and Vaivers, G.Recent advances in electrochromics for smart windows applications, Sol. Energy, 63, 1998, 199–216.
Granqvist, C. G. and Wittwer, V.Materials for solar energy conversion: an overview. Sol. Energy Mater. Sol. Cells, 54, 1998, 39–48.
Granqvist, C. G.Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells, 60, 2000, 201–62.
Granqvist, C. G., Avendaño, E. and Azens, A.Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films, 442, 2003, 201–11.
Granqvist, C. G.Solar energy materialsAdv. Mater., 15, 2003, 1789–1803.
Granqvist, C. G., Avendaño, E. and Azens, A.Advances in electrochromic materials and devices. Mater. Sci. Forum, 455–456, 2004, 1–6.
Green, M.The promise of electrochromic systems. Chem. Ind., 1996, 641–4.
Greenberg, C. B. Chromogenic materials: electrochromic. In Krosch, J. I. (ed.), Kirk-Othmer Encyclopedia of Chemical Technology (fourth edn.), New York, Wiley, 1991, vol. 6, pp. 312–21.
Greenberg, C. B.Optically switchable thin films: a review. Thin Solid Films, 251, 1994, 81–93.
Lampert, C. M.Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells, 52, 1998, 207–21.
Lampert, C. M.Progress in switching mirrors. Proc. SPIE, 4458, 2001, 95–103.
Lampert, C. M.Chromogenic smart materials. Materials Today, 7, 2004, 28–35.
Monk, P. M. S. Electrochromism and electrochromic materials for displays. In Nalwa, H. S. (ed.), Handbook of Advanced Electronic and Photonic Materials, San Diego, Academic Press, 2001, vol. 7, pp. 105–59.
Monk, P. M. S. Electrochromism and electronic display devices. In Nalwa, H. S. and Rohwer, L. S. (eds.), Handbook of Luminescent Display Materials and Devices, San Diego, Academic Press, 2002, vol. 3, pp. 261–370.
Mortimer, R. J.Electrochromic materials. Chem. Soc. Rev., 26, 1997, 147–56.
Rosseinsky, D. R. and Mortimer, R. J.Electrochromic systems and the prospects for devices. Adv. Mater., 13, 2001, 783–93.
Rowley, N. M. and Mortimer, R. J.New electrochromic materials. Sci. Prog., 85, 2002, 243–62.
Mortimer, R. J., Dyer, A. L. and Reynolds, J. R.Electrochromic organic and polymeric materials for display applications. Displays, 27, 2006, 1–18.
Passerini, S., Pileggi, R. and Scrosati, B.Laminated electrochromic devices: an emerging technology. Electrochim. Acta, 37, 1992, 1703–6.
Scrosati, B. Properties of selected electrochromic materials. In Chowdari, B. V. R. and Radharkrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Co., 1992, pp. 321–36.
Somani, P. R. and Radhakrishnan, S.Electrochromic materials and devices: present and future. Mater. Chem. Phys., 77, 2003, 117–33.
Yamamoto, T. and Hayashida, N.π-Conjugated polymers bearing electronic and optical functionalities: preparation, properties and their applications. Reactive and Functional Polymers, 37, 1998, 1–17.
Volke, J. and Volkeova, V.Electrochromismus a zavádení elektrochromní techniky [‘Electrochromism and electrochromic technology’]. Chem. Listy, 90, 1996, 137–46 [in Czech: the abstract and title are in English].
McGourty, C. ‘Thinking’ windows cut the dazzle. Daily Telegraph, 2 April 1991.
Hadfield, P.Tunable sunglasses that can fade in the shade. New Scientist, 22 March 1993, 22.
Hunkin, T.Just give me the fax. New Scientist, 13 February 1993, 33–7.
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Through a glass darkly. Chem. Br., 31, 1995, 380–382.
Bowonder, B., Sarnot, S. L., Rao, M. S. and Rao, D. P.Electronic display technologies – state of the art, Electron. Inform. Plan., 21, 1994, 683–746.
Durst, R. A., Baumner, A. J., Murray, R. W., Buck, R. P. and Andrieux, C. P.Chemically modified electrodes: recommended terminology and definitions. Pure Appl. Chem., 69, 1997, 1317–23.
Chang, I. F., Gilbert, B. L. and Sun, T. I.Electrochemichromic systems for display applications. J. Electrochem. Soc., 122, 1975, 955–62.
Compton, R. G., Waller, A. M., Monk, P. M. S. and Rosseinsky, D. R.Electron paramagnetic resonance spectroscopy of electrodeposited species from solutions of 1,1′-bis (p-cyanophenyl)-4,4′-bipyridilium (cyanophenylparaquat, CPQ). J. Chem. Soc., Faraday Trans., 86, 1990, 2583–6.
Rosseinsky, D. R. and Monk, P. M. S.Electrochromic cyanophenylparaquat (CPQ: 1,1′-bis-cyanophenyl-4,4′-bipyridilium) studied voltammetrically, spectroelectrochemically and by ESR. Sol. Energy Mater. Sol. Cells, 25, 1992, 201–10.
Rosseinsky, D. R., Monk, P. M. S. and Hann, R. A.Anion-dependent aqueous electrodeposition of electrochromic 1,1′-bis-cyanophenyl-4,4′-bipyridilium (cyanophenylparaquat) radical cation by cyclic voltammetry and spectroelectrochemical studies. Electrochim. Acta, 35, 1990, 1113–23.
Monk, P. M. S.The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine, Chichester, Wiley, 1998.
Grant, B., Clecak, N. J. and Oxsen, M.Study of the electrochromism of methoxyfluorene compounds. J. Org. Chem., 45, 1980, 702–5.
Faughnan, B. W. and Crandall, R. S. Electrochromic devices based on WO3, in Pankove, J. L. (ed.), Display Devices, Berlin, Springer-Verlag, 1980, pp. 181–211.
Ziegler, J. P. and Howard, B. M.Applications of reversible electrodeposition electrochromic devices. Sol. Energy Mater. Sol. Cells, 39, 1995, 317–31.
Barclay, D. J., Dowden, A. C., Lowe, A. C. and Wood, J. C.Viologen-based electrochromic light scattering display. Appl. Phys. Lett., 42, 1983, 911–13.
Barclay, D. J., Bird, C. L., Kirkman, D. H., Martin, D. H. and Moth, F. T.An integrated electrochromic data display. SID Digest, 1980, 124–5.
Mathew, J. G. H., Sapers, S. P., Cumbo, M. J., O'Brien, N. A, Sargent, R. B., Raksha, V. P., Lahaderne, R. B. and Hichwa, B. P.Large area electrochromics for architectural applications. J. Non-Cryst. Solids, 218, 1997, 342–6.
Siddle, J., Pilkington PLC, personal communication, 1991.
Munro, B., Kramer, S., Zapp, P., Krug, H. and Schmidt, H.All sol–gel electrochromic system for plate glass. J. Non-Cryst. Solids, 218, 1997, 185–8.
Özer, N.Reproducibility of the coloration processes in TiO2 films. Thin Solid Films, 214, 1992, 17–24.
Sato, Y.Characterization of thermally oxidized iridium oxide films. Vacuum, 41, 1990, 1198–200.
Canon, K. K.Electrochromic device, Jpn. Kokai Tokkyo Koho, Japanese Patent JP 6,004,925, as cited in Chem. Abs. 102: P 212,797, 1985.
Welsh, D. M., Kumar, A., Morvant, M. C. and Reynolds, J. R.Fast electrochromic polymers based on new poly(3,4-alkylenedioxythiophene) derivatives. Synth. Met., 102, 1999, 967–8.
Cummins, D., Boschloo, G., Ryan, M., Corr, D., Rao, S. N. and Fitzmaurice, D.Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B, 104, 2000, 11449–59.
Knapp, R. C., Turnbull, R. R. and Poe, G. B., Gentex Corporation. Reflectance control of an electrochromic element using a variable duty cycle drive. US Patent 06084700, 2000.
Monk, P. M. S., Fairweather, R. D., Ingram, M. D. and Duffy, J. A.Pulsed electrolysis enhancement of electrochromism in viologen systems: influence of comproportionation reactions. J. Electroanal. Chem., 359, 1993, 301–6.
Electrochromic displays. In Howells, E. R. (ed.), Technology of Chemicals and Materials for the Electronics Industry, Chichester, Ellis Horwood, 1984, pp. 266–76.
Protsenko, E. G., Klimisha, G. P., Krainov, I. P., Kramarenko, S. F. and Distanov, B. G.Deposited Doc., SPSTL 971, Khp-D81, 1981, as cited in Chem. Abs. 98: 170, 310.
Ottaviani, M., Panero, S., Morizilli, S., Scrosati, B. and Lazzari, M.The electrochromic characteristics of titanium oxide thin film. Solid State Ionics, 20, 1986, 197–202.
Monk, P. M. S., Duffy, J. A. and Ingram, M. D.Pulsed enhancement of the rate of coloration for tungsten trioxide based electrochromic devices. Electrochim. Acta, 43, 1998, 2349–57.
Schierbeck, K. L., Donnelly Corporation. Digital electrochromic mirror system. US Patent, 06089721, 2000.
Statkov, L. I.Peculiarities of the mechanism of the electrochromic coloring of oxide films upon pulsed electrochemical polarization. Russ. J. Appl. Chem., 70, 1997, 653–4.
Ho, K.-C., Singleton, D. E. and Greenberg, C. B.The influence of terminal effects on the performance of electrochromic windows. J. Electrochem. Soc., 137, 1990, 3858–64.
Aoki, K. and Tezuki, Y.Chronoamperometric response to potentiostatic doping at polypyrrole-coated microdisk electrodes. J. Electroanal. Chem., 267, 1989, 55–66.
Ingram, M. D., Duffy, J. A. and Monk, P. M. S.Chronoamperometric response of the cell ITO | HxWO3 | PEO–H3PO4 (MeCN) | ITO. J. Electroanal. Chem., 380, 1995, 77–82.
Cinnsealach, R., Boschloo, G., Nagaraja, Rao, S. and Fitzmaurice, D.Electrochromic windows based on viologen-modified nanostructured TiO2 films. Sol. Energy Mater. Sol. Cells, 55, 1998, 215–23.
Schoot, C. J., Ponjeé, J. J., Dam, H. T., Doorn, R. A. and Bolwijn, P. J.New electrochromic memory device. Appl. Phys. Lett., 23, 1973, 64–5.
Bullock, J. N., Bechinger, C., Benson, D. K. and Branz, H. M.Semi-transparent amorphous-SiC:H solar cells for self-powered photovoltaic-electrochromic devices. J. Non-Cryst. Solids, 198–200, 1996, 1163–7.
Cohen, C.Electrochromic display rivals liquid crystals for low-power needs. Electronics, 11, 1981, 65–6.
Goldner, R. B., Arntz, F. O., Dickson, K., Goldner, M. A., Haas, T. E., Liu, T. Y., Slaven, S., Wei, G., Wong, K. K. and Zerigian, P.Some lessons learned from research on a thin film electrochromic window. Solid State Ionics, 70–71, 1994, 613–18.
Goldner, R. B., Haas, T., Arntz, F. O., Slaven, S. and Wong, G.Nuclear reaction analysis profiling as direct evidence for lithium ion mass transport in thin film ‘rocking chair’ structures. Appl. Phys. Lett., 62, 1993, 1699–701.
Bader, G., Ashrit, P. V. and Truong, V.-V.Transmission and reflection ellipsometry of thin films and multilayer systems. Appl. Opt., 37, 1998, 1146–1151.
Jelle, B. P. and Hagen, G.Transmission spectra of an electrochromic window based on polyaniline, Prussian blue, and tungsten oxide. J. Electrochem. Soc., 140, 1993, 3560–5.
Jelle, B. P., Hagen, G., Hesjevik, S. M. and Ødegård, R.Transmission through an electrochromic window based on polyaniline, tungsten oxide and a solid polymer electrolyte. Mater. Sci. Eng. B, 13, 1992, 239–41.
Jelle, B. P., Hagen, G. and Nodland, S.Transmission spectra of an electrochromic window consisting of polyaniline, Prussian blue and tungsten oxide, Electrochim. Acta, 38, 1993, 1497–500.
Jelle, B. P., Hagen, G. and Ødegård, R.Transmission spectra of an electrochromic window based on polyaniline, tungsten oxide and a solid polymer electrolyte. Electrochim. Acta, 37, 1992, 1377–80.
Jelle, B. P., Hagen, G., Sunde, S. and Ødegård, R.Dynamic light modulation in an electrochromic window consisting of polyaniline, tungsten oxide and a solid polymer electrolyte. Synth. Met., 54, 1993, 315–20.
Jelle, B. P. and Hagen, G.Performance of an electrochromic window based on polyaniline, prussian blue and tungsten oxide, Sol. Energy Mater. Sol. Cells, 58, 1999, 277–86.
Jelle, B. P. and Hagen, G.Electrochemical multilayer deposition of polyaniline and Prussian blue and their application in solid state electrochromic windows. J. Appl. Electrochem., 28, 1998, 1061–65.
Jelle, B. P., Hagen, G. and Birketveit, O.Transmission properties for individual electrochromic layers in solid state devices based on polyaniline, Prussian Blue and tungsten oxide. J. Appl. Electrochem., 28, 1998, 483–9.
Rosseinsky, D. R. and Monk, P. M. S.Studies of tetra-(bipyridilium) salts as possible polyelectrochromic materials. J. Appl. Electrochem., 24, 1994, 1213–21.
Yasuda, A. and Seto, J.Electrochemical studies of molecular electrochromism. Sol. Energy Mater. Sol. Cells, 25, 1992, 257–68.