Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T21:22:33.116Z Has data issue: false hasContentIssue false

1 - Introduction to electrochromism

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, A. J. and Faulkner, L. R.Electrochemical Methods: Fundamentals and Applications (2nd edn.), New York, Wiley, 2002.Google Scholar
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995.CrossRefGoogle Scholar
[Online] at jchemed.chem.wisc.edu/Journal/Issues/1997/Aug/abs962.html (accessed 27 January 2006).
Forslund, B., A simple laboratory demonstration of electrochromism, J. Chem. Ed., 74, 1997, 962–3. The demonstration employed tungsten trioxide, electro-deposited from aqueous sodium tungstate onto SnO2 coated electrodes.CrossRef
[Online] at www.ifm.liu.se/biorgel/research/div/electrochromic.html (accessed 27 January 2006).
[Online] at www.aps.org/apsnews/0697/11962g.html (accessed 27 January 2006).
Murga, L. F. and Ondrechen, M. J.Theory of the Stark Effect in protein systems containing an electron donor–acceptor couple. J. Inorg. Biochem., 70, 1998, 245–52.CrossRefGoogle Scholar
Bamfield, P.Chromic Phenomena: Technological Applications of Colour Chemistry, Cambridge, Royal Society of Chemistry, 2001.Google Scholar
Loew, L. M., Scully, L., Simpson, L. M. and Waggoner, A. S.Evidence for a charge shift electrochromic mechanism in a probe of membrane potential. Nature (London), 281, 1979, 497–9.CrossRefGoogle Scholar
Huesmann, H., Gabrielli, G. and Caminati, G.Monolayers and Langmuir–Blodgett films of the electrochromic dye Di-8-ANEPPS. Thin Solid Films, 327–329, 1998, 804–7.CrossRefGoogle Scholar
Professor L. M. Loew, 1999, personal communication.
Vredenberg, W. J.Electrogenesis in the photosynthetic membrane: fields, facts and features. Bioelectrochem. Bioenergy, 44, 1997, 1–11.CrossRefGoogle Scholar
Platt, J. R.Electrochromism, a possible change of color producible in dyes by an electric field. J. Chem. Phys., 34, 1961, 862–3.CrossRefGoogle Scholar
Tiede, D. M., Utschig, L., Hanson, D. K. and Gallo, D. M.Resolution of electron and proton transfer events in the electrochromism associated with quinone reduction in bacterial reaction centers. Photosyn. Res., 55, 1998, 267–73.CrossRefGoogle Scholar
Tiede, D. M., Vazquez, J., Cordova, J. and Marone, P. A.Structural and function changes in photosynthetic bacterial reaction center proteins induced by incorporating different metal ions. Biochemistry, 35, 1996, 10763–73.CrossRefGoogle Scholar
Miksovska, J., Maróti, P., Tandori, J., Schiffer, M., Hanson, D. K. and Sebban, P.Modulation of the free energy level of QA− by distant electrostatic interactions in the photosynthetic reaction center. Biochemistry, 35, 1996, 15411–17.CrossRefGoogle Scholar
Crimi, M., Fregni, V., Altimari, A. and Melandri, B. A.Unreliability of carotenoid electrochromism for the measure of electrical potential differences induced by ATP hydrolysis in bacterial chromatophores. FEBS Lett., 367, 1995, 167–72.CrossRefGoogle ScholarPubMed
O'Shea, P.Physical landscapes in biological membranes. Philos. Trans. R. Soc. London, Ser. A Math. Phys. Eng. Sci., 363, 2005, 575–88.CrossRefGoogle ScholarPubMed
Asawakarn, T., Cladera, J. and O'Shea, P.Effects of the membrane dipole potential on the interaction of Saquinavir with phospholipid membranes and plasma membrane receptors of Caco-2 cells. J. Biol. Chem., 276, 2001, 38457–63.CrossRefGoogle ScholarPubMed
Cladera, J. and O'Shea, P. Generic techniques for fluorescence measurements of protein–ligand interactions: real-time kinetics and spatial imaging. In Harding, S. E. and Chowdhry, B. (eds.), Protein–Ligand Interactions, Oxford, Oxford University Press, 2001, pp. 169–200.Google Scholar
Ross, E., Bedlack, R. S. and Loew, L. M.Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys. J., 67, 1994, 208–16.Google Scholar
Montana, V., Farkas, D. L. and Loew, L. M.Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry, 28, 1989, 4536–9.CrossRefGoogle ScholarPubMed
Wall, J. S., Golding, C., Veen, M. and O'Shea, P. S.The use of fluoresceinphosphatidylethanolamine as a real-time probe for peptide–membrane interactions. Mol. Memb. Biol., 12, 1995, 181–90.CrossRefGoogle ScholarPubMed
[Online] at www.glass.ie/ (accessed 27 January 2006).
Georg, A., Graf, W., Neumann, R. and Wittwer, V.The role of water in gasochromic WO3 films. Thin Solid Films, 384, 2001, 269–75.CrossRefGoogle Scholar
Georg, A.Graf, W.Neumann, R. and Wittwer, V.Stability of gasochromic WO3 films, Sol. Energy Mater. Sol. Cells, 63, 2000, 165–176.CrossRefGoogle Scholar
Georg, A., Graf, W., Neumann, R. and Wittwer, V.Mechanism of the gasochromic coloration of porous WO3 films. Solid State Ionics, 127, 2000, 319–328.CrossRefGoogle Scholar
Georg, A., Graf, W., Schweiger, D., Wittwer, V., Nitz, P. and Wilson, H. R.Switchable glazing with a large dynamic range in total solar energy transmittance (TSET). Sol. Energy, 62, 1998, 215–228.CrossRefGoogle Scholar
Opara Krašovec, U., Orel, B., Georg, A. and Wittwer, V.The gasochromic properties of sol–gel WO3 films with sputtered Pt catalyst. Sol. Energy, 68, 2000, 541–551.CrossRefGoogle Scholar
Schweiger, D., Georg, A., Graf, W. and Wittwer, V.Examination of the kinetics and performance of a catalytically switching (gasochromic) device. Sol. Energy Mater. Sol. Cells, 54, 1998, 99–108.CrossRefGoogle Scholar
Shanak, H., Schmitt, H., Nowoczin, J. and Ziebert, C.Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations. Solid State Ionics, 171, 2004, 99–106.CrossRefGoogle Scholar
Wittwer, V., Datz, M., Ell, J., Georg, A., Graf, W. and Walze, G.Gasochromic windows. Sol. Energy Mater. Sol. Cells, 84, 2004, 305–14.CrossRefGoogle Scholar
[Online] at www.gyriconmedia.com/smartpaper/faq.asp (accessed 27 January 2006).
[Online] at www2.parc.com/dhl/projects/gyricon (accessed 27 January 2006).
Granqvist, G. C.Handbook of Inorganic Electrochromic Materials, Amsterdam, Elsevier, 1995.Google Scholar
Agnihotry, S. A.Electrochromic devices: present and forthcoming technology. Bull. Electrochem., 12, 1996, 707–12.Google Scholar
Bange, K., Gambke, T. and Sparschuh, G. Optically active thin-film coatings. In Hummel, R. E. and Guenther, K. H. (eds.), Handbook of Optical Properties, Boca Raton, FL, CRC Press, 1995, pp. 105–34.Google Scholar
Granqvist, C. G.Electrochromism and smart window design. Solid State Ionics, 53–6, 1992, 479–89.CrossRefGoogle Scholar
Granqvist, C. G.Electrochromic materials: microstructure, electronic bands, and optical properties. Appl. Phys. A, 56, 1993, 3–12.CrossRefGoogle Scholar
Granqvist, C. G.Electrochromics and smart windows. Solid State Ionics, 60, 1993, 213–14.CrossRefGoogle Scholar
Granqvist, C. G.Electrochromic materials and devices. Proc. SPIE, 2968, 1997, 158–166.CrossRefGoogle Scholar
Granqvist, C. G. Electrochromism and electrochromic devices. In Gellings, P. J. and Bouwmeester, H. J. M. (eds.), The CRC Book of Solid State Electrochemistry. Boca Raton, FL, CRC Press, 1997, pp. 587–615.Google Scholar
Granqvist, C. G.Progress in solar energy materials: examples of work at Uppsala University. Renewable Energy, 15, 1998, 243–250.CrossRefGoogle Scholar
Granqvist, C. G., Azens, A., Hjelm, A., Kullman, L., Niklasson, G. A., Rönnow, D., Strømme Mattson, M., Veszelei, M. and Vaivers, G.Recent advances in electrochromics for smart windows applications, Sol. Energy, 63, 1998, 199–216.CrossRefGoogle Scholar
Granqvist, C. G. and Wittwer, V.Materials for solar energy conversion: an overview. Sol. Energy Mater. Sol. Cells, 54, 1998, 39–48.CrossRefGoogle Scholar
Granqvist, C. G.Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells, 60, 2000, 201–62.CrossRefGoogle Scholar
Granqvist, C. G., Avendaño, E. and Azens, A.Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films, 442, 2003, 201–11.CrossRefGoogle Scholar
Granqvist, C. G.Solar energy materialsAdv. Mater., 15, 2003, 1789–1803.CrossRefGoogle Scholar
Granqvist, C. G., Avendaño, E. and Azens, A.Advances in electrochromic materials and devices. Mater. Sci. Forum, 455–456, 2004, 1–6.CrossRefGoogle Scholar
Green, M.The promise of electrochromic systems. Chem. Ind., 1996, 641–4.Google Scholar
Greenberg, C. B. Chromogenic materials: electrochromic. In Krosch, J. I. (ed.), Kirk-Othmer Encyclopedia of Chemical Technology (fourth edn.), New York, Wiley, 1991, vol. 6, pp. 312–21.Google Scholar
Greenberg, C. B.Optically switchable thin films: a review. Thin Solid Films, 251, 1994, 81–93.CrossRefGoogle Scholar
Lampert, C. M.Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells, 52, 1998, 207–21.CrossRefGoogle Scholar
Lampert, C. M.Progress in switching mirrors. Proc. SPIE, 4458, 2001, 95–103.CrossRefGoogle Scholar
Lampert, C. M.Chromogenic smart materials. Materials Today, 7, 2004, 28–35.CrossRefGoogle Scholar
Monk, P. M. S. Electrochromism and electrochromic materials for displays. In Nalwa, H. S. (ed.), Handbook of Advanced Electronic and Photonic Materials, San Diego, Academic Press, 2001, vol. 7, pp. 105–59.Google Scholar
Monk, P. M. S. Electrochromism and electronic display devices. In Nalwa, H. S. and Rohwer, L. S. (eds.), Handbook of Luminescent Display Materials and Devices, San Diego, Academic Press, 2002, vol. 3, pp. 261–370.Google Scholar
Mortimer, R. J.Electrochromic materials. Chem. Soc. Rev., 26, 1997, 147–56.CrossRefGoogle Scholar
Rosseinsky, D. R. and Mortimer, R. J.Electrochromic systems and the prospects for devices. Adv. Mater., 13, 2001, 783–93.3.0.CO;2-D>CrossRefGoogle Scholar
Rowley, N. M. and Mortimer, R. J.New electrochromic materials. Sci. Prog., 85, 2002, 243–62.CrossRefGoogle ScholarPubMed
Mortimer, R. J., Dyer, A. L. and Reynolds, J. R.Electrochromic organic and polymeric materials for display applications. Displays, 27, 2006, 1–18.CrossRefGoogle Scholar
Passerini, S., Pileggi, R. and Scrosati, B.Laminated electrochromic devices: an emerging technology. Electrochim. Acta, 37, 1992, 1703–6.CrossRefGoogle Scholar
Scrosati, B. Properties of selected electrochromic materials. In Chowdari, B. V. R. and Radharkrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Co., 1992, pp. 321–36.CrossRefGoogle Scholar
Somani, P. R. and Radhakrishnan, S.Electrochromic materials and devices: present and future. Mater. Chem. Phys., 77, 2003, 117–33.CrossRefGoogle Scholar
Yamamoto, T. and Hayashida, N.π-Conjugated polymers bearing electronic and optical functionalities: preparation, properties and their applications. Reactive and Functional Polymers, 37, 1998, 1–17.CrossRefGoogle Scholar
Volke, J. and Volkeova, V.Electrochromismus a zavádení elektrochromní techniky [‘Electrochromism and electrochromic technology’]. Chem. Listy, 90, 1996, 137–46 [in Czech: the abstract and title are in English].Google Scholar
McGourty, C. ‘Thinking’ windows cut the dazzle. Daily Telegraph, 2 April 1991.
Hadfield, P.Tunable sunglasses that can fade in the shade. New Scientist, 22 March 1993, 22.Google Scholar
Hunkin, T.Just give me the fax. New Scientist, 13 February 1993, 33–7.Google Scholar
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Through a glass darkly. Chem. Br., 31, 1995, 380–382.Google Scholar
Bowonder, B., Sarnot, S. L., Rao, M. S. and Rao, D. P.Electronic display technologies – state of the art, Electron. Inform. Plan., 21, 1994, 683–746.Google Scholar
Durst, R. A., Baumner, A. J., Murray, R. W., Buck, R. P. and Andrieux, C. P.Chemically modified electrodes: recommended terminology and definitions. Pure Appl. Chem., 69, 1997, 1317–23.CrossRefGoogle Scholar
Chang, I. F., Gilbert, B. L. and Sun, T. I.Electrochemichromic systems for display applications. J. Electrochem. Soc., 122, 1975, 955–62.CrossRefGoogle Scholar
Compton, R. G., Waller, A. M., Monk, P. M. S. and Rosseinsky, D. R.Electron paramagnetic resonance spectroscopy of electrodeposited species from solutions of 1,1′-bis (p-cyanophenyl)-4,4′-bipyridilium (cyanophenylparaquat, CPQ). J. Chem. Soc., Faraday Trans., 86, 1990, 2583–6.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, P. M. S.Electrochromic cyanophenylparaquat (CPQ: 1,1′-bis-cyanophenyl-4,4′-bipyridilium) studied voltammetrically, spectroelectrochemically and by ESR. Sol. Energy Mater. Sol. Cells, 25, 1992, 201–10.CrossRefGoogle Scholar
Rosseinsky, D. R., Monk, P. M. S. and Hann, R. A.Anion-dependent aqueous electrodeposition of electrochromic 1,1′-bis-cyanophenyl-4,4′-bipyridilium (cyanophenylparaquat) radical cation by cyclic voltammetry and spectroelectrochemical studies. Electrochim. Acta, 35, 1990, 1113–23.CrossRefGoogle Scholar
Monk, P. M. S.The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine, Chichester, Wiley, 1998.Google Scholar
Grant, B., Clecak, N. J. and Oxsen, M.Study of the electrochromism of methoxyfluorene compounds. J. Org. Chem., 45, 1980, 702–5.CrossRefGoogle Scholar
Faughnan, B. W. and Crandall, R. S. Electrochromic devices based on WO3, in Pankove, J. L. (ed.), Display Devices, Berlin, Springer-Verlag, 1980, pp. 181–211.CrossRefGoogle Scholar
Ziegler, J. P. and Howard, B. M.Applications of reversible electrodeposition electrochromic devices. Sol. Energy Mater. Sol. Cells, 39, 1995, 317–31.CrossRefGoogle Scholar
Barclay, D. J., Dowden, A. C., Lowe, A. C. and Wood, J. C.Viologen-based electrochromic light scattering display. Appl. Phys. Lett., 42, 1983, 911–13.CrossRefGoogle Scholar
Barclay, D. J., Bird, C. L., Kirkman, D. H., Martin, D. H. and Moth, F. T.An integrated electrochromic data display. SID Digest, 1980, 124–5.Google Scholar
Mathew, J. G. H., Sapers, S. P., Cumbo, M. J., O'Brien, N. A, Sargent, R. B., Raksha, V. P., Lahaderne, R. B. and Hichwa, B. P.Large area electrochromics for architectural applications. J. Non-Cryst. Solids, 218, 1997, 342–6.CrossRefGoogle Scholar
Siddle, J., Pilkington PLC, personal communication, 1991.
Munro, B., Kramer, S., Zapp, P., Krug, H. and Schmidt, H.All sol–gel electrochromic system for plate glass. J. Non-Cryst. Solids, 218, 1997, 185–8.CrossRefGoogle Scholar
Özer, N.Reproducibility of the coloration processes in TiO2 films. Thin Solid Films, 214, 1992, 17–24.CrossRefGoogle Scholar
Sato, Y.Characterization of thermally oxidized iridium oxide films. Vacuum, 41, 1990, 1198–200.CrossRefGoogle Scholar
Canon, K. K.Electrochromic device, Jpn. Kokai Tokkyo Koho, Japanese Patent JP 6,004,925, as cited in Chem. Abs. 102: P 212,797, 1985.Google Scholar
Welsh, D. M., Kumar, A., Morvant, M. C. and Reynolds, J. R.Fast electrochromic polymers based on new poly(3,4-alkylenedioxythiophene) derivatives. Synth. Met., 102, 1999, 967–8.CrossRefGoogle Scholar
Cummins, D., Boschloo, G., Ryan, M., Corr, D., Rao, S. N. and Fitzmaurice, D.Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B, 104, 2000, 11449–59.CrossRefGoogle Scholar
Knapp, R. C., Turnbull, R. R. and Poe, G. B., Gentex Corporation. Reflectance control of an electrochromic element using a variable duty cycle drive. US Patent 06084700, 2000.
Monk, P. M. S., Fairweather, R. D., Ingram, M. D. and Duffy, J. A.Pulsed electrolysis enhancement of electrochromism in viologen systems: influence of comproportionation reactions. J. Electroanal. Chem., 359, 1993, 301–6.CrossRefGoogle Scholar
Electrochromic displays. In Howells, E. R. (ed.), Technology of Chemicals and Materials for the Electronics Industry, Chichester, Ellis Horwood, 1984, pp. 266–76.Google Scholar
Protsenko, E. G., Klimisha, G. P., Krainov, I. P., Kramarenko, S. F. and Distanov, B. G.Deposited Doc., SPSTL 971, Khp-D81, 1981, as cited in Chem. Abs. 98: 170, 310.
Ottaviani, M., Panero, S., Morizilli, S., Scrosati, B. and Lazzari, M.The electrochromic characteristics of titanium oxide thin film. Solid State Ionics, 20, 1986, 197–202.CrossRefGoogle Scholar
Monk, P. M. S., Duffy, J. A. and Ingram, M. D.Pulsed enhancement of the rate of coloration for tungsten trioxide based electrochromic devices. Electrochim. Acta, 43, 1998, 2349–57.CrossRefGoogle Scholar
Schierbeck, K. L., Donnelly Corporation. Digital electrochromic mirror system. US Patent, 06089721, 2000.
Statkov, L. I.Peculiarities of the mechanism of the electrochromic coloring of oxide films upon pulsed electrochemical polarization. Russ. J. Appl. Chem., 70, 1997, 653–4.Google Scholar
Ho, K.-C., Singleton, D. E. and Greenberg, C. B.The influence of terminal effects on the performance of electrochromic windows. J. Electrochem. Soc., 137, 1990, 3858–64.CrossRefGoogle Scholar
Aoki, K. and Tezuki, Y.Chronoamperometric response to potentiostatic doping at polypyrrole-coated microdisk electrodes. J. Electroanal. Chem., 267, 1989, 55–66.CrossRefGoogle Scholar
Ingram, M. D., Duffy, J. A. and Monk, P. M. S.Chronoamperometric response of the cell ITO | HxWO3 | PEO–H3PO4 (MeCN) | ITO. J. Electroanal. Chem., 380, 1995, 77–82.CrossRefGoogle Scholar
Cinnsealach, R., Boschloo, G., Nagaraja, Rao, S. and Fitzmaurice, D.Electrochromic windows based on viologen-modified nanostructured TiO2 films. Sol. Energy Mater. Sol. Cells, 55, 1998, 215–23.CrossRefGoogle Scholar
Schoot, C. J., Ponjeé, J. J., Dam, H. T., Doorn, R. A. and Bolwijn, P. J.New electrochromic memory device. Appl. Phys. Lett., 23, 1973, 64–5.CrossRefGoogle Scholar
Bullock, J. N., Bechinger, C., Benson, D. K. and Branz, H. M.Semi-transparent amorphous-SiC:H solar cells for self-powered photovoltaic-electrochromic devices. J. Non-Cryst. Solids, 198–200, 1996, 1163–7.CrossRefGoogle Scholar
Cohen, C.Electrochromic display rivals liquid crystals for low-power needs. Electronics, 11, 1981, 65–6.Google Scholar
Goldner, R. B., Arntz, F. O., Dickson, K., Goldner, M. A., Haas, T. E., Liu, T. Y., Slaven, S., Wei, G., Wong, K. K. and Zerigian, P.Some lessons learned from research on a thin film electrochromic window. Solid State Ionics, 70–71, 1994, 613–18.CrossRefGoogle Scholar
Goldner, R. B., Haas, T., Arntz, F. O., Slaven, S. and Wong, G.Nuclear reaction analysis profiling as direct evidence for lithium ion mass transport in thin film ‘rocking chair’ structures. Appl. Phys. Lett., 62, 1993, 1699–701.CrossRefGoogle Scholar
Bader, G., Ashrit, P. V. and Truong, V.-V.Transmission and reflection ellipsometry of thin films and multilayer systems. Appl. Opt., 37, 1998, 1146–1151.CrossRefGoogle ScholarPubMed
Jelle, B. P. and Hagen, G.Transmission spectra of an electrochromic window based on polyaniline, Prussian blue, and tungsten oxide. J. Electrochem. Soc., 140, 1993, 3560–5.CrossRefGoogle Scholar
Jelle, B. P., Hagen, G., Hesjevik, S. M. and Ødegård, R.Transmission through an electrochromic window based on polyaniline, tungsten oxide and a solid polymer electrolyte. Mater. Sci. Eng. B, 13, 1992, 239–41.CrossRefGoogle Scholar
Jelle, B. P., Hagen, G. and Nodland, S.Transmission spectra of an electrochromic window consisting of polyaniline, Prussian blue and tungsten oxide, Electrochim. Acta, 38, 1993, 1497–500.CrossRefGoogle Scholar
Jelle, B. P., Hagen, G. and Ødegård, R.Transmission spectra of an electrochromic window based on polyaniline, tungsten oxide and a solid polymer electrolyte. Electrochim. Acta, 37, 1992, 1377–80.CrossRefGoogle Scholar
Jelle, B. P., Hagen, G., Sunde, S. and Ødegård, R.Dynamic light modulation in an electrochromic window consisting of polyaniline, tungsten oxide and a solid polymer electrolyte. Synth. Met., 54, 1993, 315–20.CrossRefGoogle Scholar
Jelle, B. P. and Hagen, G.Performance of an electrochromic window based on polyaniline, prussian blue and tungsten oxide, Sol. Energy Mater. Sol. Cells, 58, 1999, 277–86.CrossRefGoogle Scholar
Jelle, B. P. and Hagen, G.Electrochemical multilayer deposition of polyaniline and Prussian blue and their application in solid state electrochromic windows. J. Appl. Electrochem., 28, 1998, 1061–65.CrossRefGoogle Scholar
Jelle, B. P., Hagen, G. and Birketveit, O.Transmission properties for individual electrochromic layers in solid state devices based on polyaniline, Prussian Blue and tungsten oxide. J. Appl. Electrochem., 28, 1998, 483–9.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, P. M. S.Studies of tetra-(bipyridilium) salts as possible polyelectrochromic materials. J. Appl. Electrochem., 24, 1994, 1213–21.CrossRefGoogle Scholar
Yasuda, A. and Seto, J.Electrochemical studies of molecular electrochromism. Sol. Energy Mater. Sol. Cells, 25, 1992, 257–68.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×