Skip to main content Accessibility help
×
Home
  • Print publication year: 2007
  • Online publication date: August 2009

14 - Fundamentals of device construction

Summary

Fundamentals of ECD construction

All electrochromic devices are electrochemical cells, so each contains a minimum of two electrodes separated by an ion-containing electrolyte. Since the colour and optical-intensity changes occurring within the electrochromic cell define its utility, the compositional changes within the ECD must be readily seen under workplace illumination. In practice, high visibility is usually achieved by fabricating the cell with one or more optically transparent electrodes (OTEs), as below.

Electrochromic operation of the ECD is effected via an external power supply, either by manipulation of current or potential. Applying a constant potential in ‘potentiostatic coloration’ is referred to in Chapter 3, while imposing a constant current is said to be ‘galvanostatic’. Galvanostatic coloration requires only two electrodes, but a true potentiostatic measurement requires three electrodes (Chapter 3), so an approximation to potentiostatic control, with two electrodes, is common.

The electrolyte between the electrodes is normally of high ionic conductivity (although see p. 386). In ECDs of types I and II, the electrolyte viscosity can be minimised to aid a rapid response. For example, a liquid electrolyte (that actually comprises the electrochromes) is employed in the world's best-selling ECD, the Gentex rear-view mirror described in Section 13.2. The electrolyte in a type-III cell is normally solid or at least viscoelastic, e.g. a semi-solid or polymer, as below.

In fact, virtually all the type-III cells in the literature are designed to remain solid during operation, as ‘all-solid-state devices’, or ‘ASSDs’.

References
Baucke, F. G. K.Electrochromic applications. Mater. Sci. Eng. B, 10, 1991, 285–92.
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Rivista della Staz. Sper. Vetro, 6, 1986, 119–22.
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Sol. Energy Mater., 16, 1987, 67–77.
Baucke, F. G. K.Reflecting electrochromic devices – construction, operation and application. Proc. Electrochem. Soc., 20–4, 1990, 298–311.
Baucke, F. G. K., Bange, K. and Gambke, T.Reflecting electrochromic devices. Displays, 9, 1988, 179–87.
Baucke, F. G. K.Beat the dazzlers. Schott Information, 1, 1983, 11–13.
Baucke, F. G. K.Reflectance control of automotive mirrors. Proc. SPIE, IS4, 1990, 518–38.
Baucke, F. G. K. and Duffy, J. A.Darkening glass by electricity. Chem. Br., 21, 1985, 643–6 and 653.
Baucke, F. G. K., Duffy, J. A. and Smith, R. I.Optical absorption of tungsten bronze thin films for electrochromic applications. Thin Solid Films, 186, 1990, 47–51.
Baucke, F. G. K. and Gambke, T.Electrochromic materials for optical switching devices. Adv. Mater., 2, 1990, 10–16.
Ashrit, P. V.Dry lithiation study of nanocrystalline, polycrystalline and amorphous tungsten trioxide thin-films. Thin Solid Films, 385, 2001, 81–8.
Ashrit, P. V., Benaissa, K., Bader, G., Girouard, F. E. and Truong, V.-V.Lithiation studies on some transition metal oxides for an all-solid thin film electrochromic system. Solid State Ionics, 59, 1993, 47–57.
Yonghong, Y., Jiayu, Z., Peifu, G. and Jinfa, T.Study on the WO3 dry lithiation for all-solid-state electrochromic devices. Sol. Energy Mater. Sol. Cells, 46, 1997, 349–55.
Yonghong, Y., Jiayu, Z., Peifu, G. and Jinfa, T.Study on the dry lithiation of WO3 films. Acta Energiae Solaris Sinica, 19, 1998, 371–375 [in Chinese]; as cited at www.engineering village 372.org (accessed 16 December 2004).
Ashrit, P. V.Structure dependent electrochromic behaviour of WO3 thin films under dry lithiation. Proc. SPIE, 3789, 1999, 158–69.
Taj, A. and Ashrit, P. V.Dry lithiation of nanostructured sputter deposited molybdenum oxide thin films. J. Mater. Sci., 39, 2004, 3541–4.
Azens, A. and Granqvist, C. G.Electrochromic smart windows: energy efficiency. J. Solid State Electrochem., 7, 2003, 64–8.
Azens, A., Kullman, L. and Granqvist, C. G.Ozone coloration of Ni and Cr oxide films. Sol. Energy Mater. Sol. Cells, 76, 2003, 147–53.
Linford, R. G. Electrical and electrochemical properties of ion conducting polymers. In Scrosati, B. (ed.), Applications of Electroactive Polymers, London, Chapman and Hall, 1993, pp. 1–28.
Livage, J. and Ganguli, D.Sol–gel electrochromic coatings and devices: a review. Sol. Energy Mater. Sol. Cells, 68, 2001, 365–81.
Byker, H. J.Electrochromics and polymers. Electrochim. Acta, 46, 2001, 2015–22.
Mitsui Chemicals Inc. Ion conductive macromolecular gel electrolyte and solid battery using ion-conductive macromolecular gel electrolyte. Japanese Patent 2000-207934-A, 2000.
Deb, S. K.Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag., 27, 1973, 801–22.
Oi, T., Miyake, K. and Uehara, K.Electrochromism of WO3/LiAlF4/LiIn thin-film overlayers. J. Appl. Phys., 53, 1982, 1823.
Goldner, R. B., Haas, T., Seward, G., Wong, G., Norton, P., Foley, G., Berera, G., Wei, G., Schulz, S. and Chapman, R.Thin film solid state ionic materials for electrochromic smart windowTM glass. Solid State Ionics, 28–30, 1988, 1715–21.
Goldner, R. B. Electrochromic smart windowTM glass. In Chowdari, B. V. R. and Radhakrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Co., 1988, pp. 379–89.
Goldner, R. B., Arntz, F. O., Berera, G., Haas, T. E., Wei, G., Wong, K. K. and Yu, P. C.A monolithic thin-film electrochromic window. Solid State Ionics, 53–6, 1992, 617–27.
Goldner, R. B., Arntz, F. O., Dickson, K., Goldner, M. A., Haas, T. E., Liu, T. Y., Slaven, S., Wei, G., Wong, K. K. and Zerigian, P.Some lessons learned from research on a thin film electrochromic window. Solid State Ionics, 70–1, 1994, 613–18.
Kuwabara, K. and Noda, Y.Potential wave-form measurements of an electrochromic device, WO3/Sb2O5/C, at coloration–bleaching processes using a new quasi-reference electrode. Solid State Ionics, 61, 1993, 303–8.
Vaivars, G., Kleperis, J. and Lusis, A.Antimonic acid hydrate xerogels as proton electrolytes. Solid State Ionics, 61, 1993, 317–21.
Lusis, A.Solid state ionics and optical materials technology for energy efficiency, solar energy conversion and environmental control. Proc. SPIE, 1536, 1991, 116–24.
Granqvist, C. G., Azens, A., Hjelm, A., Kullman, L., Niklasson, G. A., Rönnow, D., Mattson, Strømme M., Veszelei, M. and Vaivars, G.Recent advances in electrochromics for smart windows applications. Sol. Energy, 63, 1998, 199–216.
Corbella, C., Vives, M., Pinyol, A.et al. Influence of the porosity of RF sputtered Ta2O5 thin films on their optical properties for electrochromic applications. Solid State Ionics, 165, 2003, 15–22.
Hutchins, M. G., Butt, N. S., Topping, A. J., Porqueras, I., Person, C. and Bertran, E.Tantalum oxide thin film ionic conductors for monolithic electrochromic devices. Proc. SPIE, 4458, 2001, 120–7.
Kitao, M., Akram, H., Machida, H. and Urabe, K.Ta2O5 electrolyte films and solid-state EC cells. Proc. SPIE, 1728, 1992, 165–72.
Kitao, M., Akram, H., Urabe, K. and Yamada, S.Properties of solid-state electrochromic cells using Ta2O5 electrolyte. J. Electron. Mater., 21, 1992, 419–22.
Klingler, M., Chu, W. F. and Weppner, W.Three-layer electrochromic system. Sol. Energy Mater. Sol. Cells, 39, 1995, 247–55.
Özer, N., He, Y. and Lampert, C. M.Ionic conductivity of tantalum oxide films prepared by sol–gel process for electrochromic devices. Proc. SPIE, 2255, 1994, 456–66.
Sone, Y., Kishimoto, A. and Kudo, T.Amorphous tantalum oxide proton conductor derived from peroxo-polyacid and its application for EC device. Solid State Ionics, 70–1, 1994, 316–20.
Cantao, M. P., Laurenco, A., Gorenstein, A., Torresi, Córdoba S. I. and Torresi, R. M.Inorganic oxide solid state electrochromic devices. Mater. Sci. Eng. B, 26, 1994, 157–61.
Howe, A. T., Sheffield, S. H., Childs, P. E. and Shilton, M. G.Fabrication of films of hydrogen uranyl phosphate tetrahydrate and their use as solid electrolytes in electrochromic displays. Thin Solid Films, 67, 1980, 365–70.
Azens, A., Kullman, L., Vaivars, G., Nordborg, H. and Granqvist, C. G.Sputter-deposited nickel oxide for electrochromic applications. Solid State Ionics, 113–15, 1998, 449–56.
Larsson, A.-L. and Niklasson, G. A.Infrared emittance modulation of all-thin-film electrochromic devices. Mater. Lett., 58, 2004, 2517–20.
Larsson, A.-L. and Niklasson, G. A.Optical properties of electrochromic all-solid-state devices. Sol. Energy Mater. Sol. Cells, 84, 2004, 351–60.
Sluis, P. and Mercier, V. M. M.Solid state Gd–Mg electrochromic devices with ZrO2Hx electrolyte. Electrochim. Acta, 46, 2001, 2167–71.
Mercier, V. M. M. and Sluis, P.Toward solid-state switchable mirrors using a zirconium oxide proton conductor. Solid State Ionics, 145, 2001, 17–24.
Randin, J.-P.Ion-containing polymers as semisolid electrolytes in WO3-based electrochromic devices. J. Electrochem. Soc., 129, 1982, 1215–20.
Kim, E., Rhee, S. B., Shin, J.-S., Lee, K.-Y. and Lee, M.-H.All solid-state electrochromic window based on poly(aniline N-butylsulfonate)s. Synth. Met., 85, 1997, 1367–8.
Pennisi, A. and Simone, F.An electrochromic device working in absence of ion storage counter-electrode. Sol. Energy Mater. Sol. Cells, 39, 1995, 333–40.
Choy, J.-H., Kim, Y.-I., Kim, B.-W., Campet, G., Portier, J. and Huong, P. V.Grafting mechanism of electrochromic PAA–WO3 composite film. J. Solid State Chem., 142, 1999, 368–73.
Choy, J.-H., Kim, Y.-I., Park, N.-G., Campet, G. and Grenier, J.-C.New solution route to poly(acrylic acid)/WO3 hybrid film. Chem. Mater., 12, 2000, 2950–6.
Ohno, H. and Yamazaki, H.Preparation and characteristics of all solid-state electrochromic display with cation-conductive polymer electrolytes. Solid State Ionics, 59, 1993, 217–22.
Randin, J.-P.Chemical and electrochemical stability of WO3 electrochromic films in liquid electrolytes. J. Electron. Mater., 7, 1978, 47–63.
Monk, P. M. S., Turner, C. and Akhtar, S. P.Electrochemical behaviour of methyl viologen in a matrix of paper. Electrochim. Acta, 44, 1999, 4817–26.
Zukowska, G., Williams, J., Stevens, J. R., Jeffrey, K. R., Lewera, A. and Kulesza, P. J.The application of acrylic monomers with acidic groups to the synthesis of proton-conducting polymer gels. Solid State Ionics, 167, 2004, 123–30.
Inaba, H., Iwaku, M., Nakase, K., Yasukawa, H., Seo, I. and Oyama, N.Electrochromic display device of tungsten trioxide and Prussian blue films using polymer gel electrolyte of methacrylate. Electrochim. Acta, 40, 1995, 227–32.
Syrrakou, E., Papaefthimiou, S. and Yianoulis, P.Environmental assessment of electrochromic glazing production. Sol. Energy Mater. Sol. Cells, 85, 2005, 205–40.
Nishikawa, M., Ohno, H., Kobayashi, T., Tsuchida, E. and Hirohashi, R.All solid-state electrochromic device containing poly[oligo(oxyethylene) methylmethacrylate]/LiClO4 hybrid polymer ion conductor. J. Soc. Photogr. Sci. Technol. Jpn., 81, 1988, 184–90 [in Japanese].
Bohnke, O., Frand, G., Rezrazi, M., Rousselot, C. and Truche, C.Fast ion transport in new lithium electrolytes gelled with PMMA, 1: influence of polymer concentration. Solid State Ionics, 66, 1993, 97–104.
Deepa, M., Sharma, N., Agnihotry, S. A., Singh, S., Lal, T. and Chandra, R.Conductivity and viscosity of liquid and gel electrolytes based on LiClO4, LiN(CF3SO2)2 and PMMA. Solid State Ionics, 152–3, 2002, 253–8.
Stevens, J. R., Such, K., Cho, N. and Wieczorek, W.Polyether-PMMA adhesive electrolytes for electrochromic applications. Sol. Energy Mater. Sol. Cells, 39, 1995, 223–37.
Su, L., Fang, J., Xiao, Z. and Lu, Z.An all-solid-state electrochromic display device of Prussian blue and WO3 particulate film with a PMMA gel electrolyte. Thin Solid Films, 306, 1997, 133–6.
Su, L., Lu, Z. and Xiao, Z.All solid-state electrochromic device with PMMA gel electrolyte. Mater. Chem. Phys., 52, 1998, 180–3.
Tsutsumi, N., Ueda, Y. and Kiyotsukuri, T.Measurement of the internal electric field in a poly(vinylidene fluoride)/poly(methyl methacrylate) blend. Polymer, 33, 1992, 3305–7.
Vondrak, J., Reiter, J., Velicka, J. and Sedlarikova, M.PMMA-based aprotic gel electrolytes. Solid State Ionics, 170, 2004, 79–82.
Rauh, R. D., Wang, F., Reynolds, J. R. and Meeker, D. L.High coloration efficiency electrochromics and their application to multi-color devices. Electrochim. Acta, 46, 2001, 2023–9.
Reynolds, J. R., Kumar, A., Reddinger, J. L., Sankaran, B., Sapp, S. A. and Sotzing, G. A.Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices. Synth. Met., 85, 1997, 1295–8.
Sönmez, G., Schwendeman, I., Schottland, P., Zong, K. and Reynolds, J. R.N-Substituted poly(3,4-propylenedioxypyrrole)s: high gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules, 36, 2003, 639–47.
Sotzing, G. A., Reddinger, J. L., Reynolds, J. R. and Steel, P. J.Redox active electrochromic polymers from low oxidation monomers containing 3,4-ethylenedioxythiophene (EDOT). Synth. Met., 84, 1997, 199–201.
Welsh, D. M., Kumar, A., Morvant, M. C. and Reynolds, J. R.Fast electrochromic polymers based on new poly(3,4-alkylenedioxythiophene) derivatives. Synth. Met., 102, 1999, 967–8.
Pennisi, A., Simone, F., Barletta, G., Di Marco, G. and Lanza, M.Preliminary test of a large electrochromic window. Electrochim. Acta, 44, 1999, 3237–43.
Varshney, P., Deepa, M., Agnihotry, S. A. and Ho, K. C.Photo-polymerized films of lithium ion conducting solid polymer electrolyte for electrochromic windows (ECWs). Sol. Energy Mater. Sol. Cells, 79, 2003, 449–58.
Pedone, P., Armand, M. and Deroo, D.Voltammetric and potentiostatic studies of the interface WO3/polyethylene oxide–H3PO4. Solid State Ionics, 28–30, 1988, 1729–32.
Agnihotry, S. A., Ahmad, S., Gupta, D. and Ahmad, S.Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica. Electrochim. Acta, 49, 2004, 2343–9.
Agnihotry, S. A., Nidhi, P. and Sekhon, S. S.Li+ conducting gel electrolyte for electrochromic windows. Solid State Ionics, 136–7, 2000, 573–6.
Aliev, A. E. and Shin, H. W.Image diffusion and cross-talk in passive matrix electrochromic displays. Displays, 23, 2002, 239–47.
Andrei, M., Roggero, A., Marchese, L. and Passerini, S.Highly conductive solid polymer electrolyte for smart windows. Polymer, 35, 1994, 3592–7.
Antinucci, M., Chevalier, B. and Ferriolo, A.Development and characterisation of electrochromic devices on polymeric substrates. Sol. Energy Mater. Sol. Cells, 39, 1995, 271–87.
Asano, T., Kubo, T. and Nishikitani, Y.Durability of electrochromic windows fabricated with carbon-based counterelectrode. Proc. SPIE, 3788, 1999, 84–92.
Kuwabara, K., Sugiyama, K. and Ohno, M.All-solid-state electrochromic device, 1: electrophoretic deposition film of proton conductive solid electrolyte. Solid State Ionics, 44, 1991, 313–18.
Kuwabara, K., Ohno, M. and Sugiyama, K.All-solid-state electrochromic device, 2: characterization of transition-metal oxide thin films for counter electrode. Solid State Ionics, 44, 1991, 319–23.
Nishio, K. and Tsuchiya, T.Electrochromic thin films prepared by sol–gel process. Sol. Energy Mater. Sol. Cells, 68, 2001, 279–93.
Scrosati, B.Ion conducting polymers and related electrochromic devices. Mol. Cryst. Liq. Cryst., 190, 1990, 161–70.
Lianyong, S., Hong, W. and Zuhong, L.All solid-state electrochromic smart window of electrodeposited WO3 and Prussian blue film with PVC gel electrolyte. Supramol. Sci., 5, 1998, 657–9.
Su, L., Xiao, Z. and Lu, Z.All solid-state electrochromic window of electrodeposited WO3 and prussian blue film with PVC gel electrolyte. Thin Solid Films, 320, 1998, 285–9.
Chopra, K. L., Major, S. and Pandya, D. K.Transparent conductors: a status review. Thin Solid Films, 102, 1983, 1–46.
Lynam, N. R.Transparent electronic conductors. Proc. Electrochem. Soc., 90–2, 1990, 201–31.
Granqvist, C. G.Transparent conductive electrodes for electrochromic devices – a review. Appl. Phys. A, 57, 1993, 19–24.
Granqvist, C. G. and Hultåker, A.Transparent and conducting ITO films: new developments and applications. Thin Solid Films, 411, 2002, 1–5.
Ohta, H., Nomura, K., Hiramatsu, H., Ueda, K., Kamiya, T., Hirano, M. and Hosono, H.Frontier of transparent oxide semiconductors. Solid-State Electron., 47, 2003, 2261–7.
Di Marco, G., Lanza, M., Pennisi, A. and Simone, F.Solid state electrochromic device: behaviour of different salts on its performance, Solid State Ionics, 127, 2000, 23–9.
Papaefthimiou, S., Leftheriotis, G. and Yianoulis, P.Study of WO3 films with textured surfaces for improved electrochromic performance. Solid State Ionics, 139, 2001, 135–44.
Vroon, Z. A. E. P. and Spee, C. I. M. A.Sol–gel coatings on large area glass sheets for electrochromic devices. J. Non-Cryst. Solids, 218, 1997, 189–95.
Michalak, F. M. and Owen, J. R.Parasitic currents in electrochromic devices. Solid State Ionics, 86–8, 1996, 965–70.
Ho, K.-C., Singleton, D. E. and Greenberg, C. B.Effect of cell size on the performance of electrochromic windows. Proc. Electrochem. Soc., 90–2, 1990, 349–64.
Nagai, J., Kamimori, T. and Mizuhashi, M.Transmissive electrochromic device. Proc. SPIE, 562, 1985, 39–45.
Jeong, D. J., Kim, W.-S. and Sung, Y. E.Improved electrochromic response time of nickel hydroxide thin films by ultra-thin nickel metal underlayer. Jpn. J. Appl. Phys., 40, 2001, L708–10.
He, T., Ma, Y., Cao, Y., Yang, W. and Yao, J.Enhanced electrochromism of WO3 thin film by gold nanoparticles. J. Electroanal. Chem., 514, 2001, 129–32.
Yao, J. N., Yang, Y. A. and Loo, B. H.Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films. J. Phys. Chem. B, 102, 1998, 1856–60.
Haranahalli, A. R. and Holloway, P. H.The influence of metal overlayers on electrochromic behavior of tungsten trioxide films. J. Electronic Mater., 10, 1981, 141–72.
Haranahalli, A. R. and Dove, D. B.Influence of a thin gold surface layer on the electrochromic behavior of WO3 films. Appl. Phys. Lett., 36, 1980, 791–3.
Inoue, E., Kawaziri, K. and Izawa, A.Deposited Cr2O3 as a barrier in a solid-state WO3 electrochromic cell. Jpn. J. Appl. Phys., 16, 1977, 2065–6.
Stocker, R. J., Singh, S., Uitert, L. G. and Zydzik, G. J.Efficiency and humidity dependence of WO3–insulator electrochromic display structures. J. Appl. Phys., 50, 1979, 2993–4.
Yoshimura, T., Watanabe, M., Kiyota, K. and Tanaka, M.Electrolysis in electrochromic device consisting of WO3 and MgF2 thin films. Jpn. J. Appl. Phys., 21, 1982, 128–32.
Michalak, F. and Aldebert, P.A flexible electrochromic device based on colloidal tungsten oxide and polyaniline. Solid State Ionics, 85, 1996, 265–72.
Bessière, A., Badot, J.-C., Certiat, M.-C., Livage, J., Lucas, V. and Baffier, N.Sol–gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate. Electrochim. Acta, 46, 2001, 2251–6.
Bessière, A., Duhamel, C., Badot, J.-C., Lucas, V. and Certiat, M.-C.Study and optimization of a flexible electrochromic device based on polyaniline. Electrochim. Acta, 49, 2004, 2051–5.
Coleman, J. P., Lynch, A. T., Madhukar, P. and Wagenknecht, J. H.Printed, flexible electrochromic displays using interdigitated electrodes. Sol. Energy Mater. Sol. Cells, 56, 1999, 395–418.
Mecerreyes, D., Marcilla, R., Ochoteco, E., Grande, H., Pomposo, J. A., Vergaz, R. and Pena, Sarchez J. M.A simplified all-polymer flexible electrochromic device. Electrochim. Acta, 49, 2004, 3555–9.
Pichot, F., Ferrere, S., Pitts, J. R. and Gregg, B. A.Flexible photoelectrochromic windows. J. Electrochem. Soc., 146, 1999, 4324–6.
Azens, A., Gustavsson, G., Karmhag, R. and Granqvist, C. G.Electrochromic devices on polyester foil. Solid State Ionics, 165, 2003, 1–5.
Paoli, M.-A., Nogueira, A. F., Machado, D. A. and Longo, C.All-polymeric electrochromic and photoelectrochemical devices: new advances. Electrochim. Acta, 46, 2001, 4243–9.
Liu, J. and Coleman, J. P.Nanostructured metal oxides for printed electrochromic displays. Mater. Sci. Eng. A, 286, 2000, 144–8.
Azens, A., Avendaño, E., Backholm, J., Berggren, L., Gustavsson, G., Karmhag, R., Niklasson, G. A., Roos, A. and Granqvist, C. G.Flexible foils with electrochromic coatings: science, technology and applications. Sol. Energy Mater. Sol. Cells, 119, 2005, 214–23.
Bertran, E., Corbella, C., Vives, M., Pinyol, A., Person, C. and Porqueras, I.RF sputtering deposition of Ag/ITO coatings at room temperature. Solid State Ionics, 165, 2003, 139–48.
Hultåker, A., Jarrendahl, K., Lu, J., Granqvist, C. G. and Niklasson, G. A.Electrical and optical properties of sputter deposited tin doped indium oxide thin films with silver additive. Thin Solid Films, 392, 2001, 305–10.
Brotherston, I. D., Mudigonda, D. S. K., Osborn, J. M., Belk, J., Chen, J., Loveday, D. C., Boehme, J. L., Ferraris, J. P. and Meeker, D. L.Tailoring the electrochromic properties of devices via polymer blends, copolymers, laminates and patterns. Electrochim. Acta, 44, 1999, 2993–3004.
Yu, P. C., Backfisch, D. L., Slobodnik, J. B. and Rukavina, T. G., PPG Industries Ohio, Inc. Fabrication of electrochromic device with plastic substrates. US Patent 06136161, 2000.
Rousselot, C., Gillet, P. A. and Bohnke, O.Electrochromic thin films deposited onto polyester substrates. Thin Solid Films, 204, 1991, 123–31.
Liu, G. and Richardson, T. J.Sb–Cu–Li electrochromic mirrors. Sol. Energy Mater. Sol. Cells, 86, 2005, 113–21.
Edwards, M. O. M., Andersson, M., Gruszecki, T., Petterson, H., Thunman, R., Thuraisingham, G., Vestling, L. and Hagfeldt, A.Charge–discharge kinetics of electric-paint displays. J. Electroanal. Chem., 565, 2004, 175–84.
Edwards, M. O. M., Boschloo, G., Gruszecki, T., Petterson, H., Sohlberg, R. and Hagfeldt, A.‘Electric-paint displays’ with carbon counter electrodes. Electrochim. Acta, 46, 2001, 2187–93.
Edwards, M. O. M., Gruszecki, T., Pettersson, H., Thuraisingham, G. and Hagfeldt, A.A semi-empirical model for the charging and discharging of electric-paint displays. Electrochem. Commun., 4, 2002, 963–7.
Nishikitani, Y., Asano, T., Uchida, S. and Kubo, T.Thermal and optical behavior of electrochromic windows fabricated with carbon-based counterelectrode. Electrochim. Acta, 44, 1999, 3211–17.
Wang, J., Tian, B. M., Nascomento, V. B. and Angnes, L.Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim. Acta, 43, 1998, 3459–65.
Yu, P., Popov, B. N., Ritter, J. A. and White, R. E.Determination of the lithium ion diffusion coefficient in graphite. J. Electrochem. Soc., 146, 1999, 8–14.
Backfisch, D. L., PPG Industries Ohio, Inc. Method for laminating a composite device. US Patent 06033518, 2000.
Backfisch, D. L., PPG Industries Ohio, Inc. Method for sealing a laminated electrochromic device edge. US Patent 05969847, 2000.
Tonar, W. L., Bauer, F. T., Bostwick, D. J. and Stray, J. A., Gentex Corporation. Clip for use with transparent conductive electrodes in electrochromic devices. US Patent 06064509, 2000.
Pettersson, H., Gruszecki, T., Johansson, L.-H., Edwards, M. O. M., Hagfeldt, A. and Matuszczyk, T.Direct-driven electrochromic displays based on nanocrystalline electrodes. Displays, 25, 2004, 223–30.