Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2007
  • Online publication date: August 2009

10 - Conjugated conducting polymers


Introduction to conjugated conducting polymers

Historical background and applications

The history of conjugated conducting polymers or ‘synthetic metals’ can be traced back to 1862, when Letheby, a professor of chemistry in the College of London Hospital, reported the electrochemical synthesis of a ‘thick layer of dirty bluish-green pigment’ (presumably a form of ‘aniline black’ or poly(aniline)) by oxidation of aniline in sulfuric acid at a platinum electrode. However, widespread interest in these fascinating materials did not take place until after 1977, following the discovery of the metallic properties of poly(acetylene), which led to the award of the 2000 Nobel Prize in Chemistry to Shirakawa, Heeger and MacDiarmid. Since 1977, electroactive conducting polymers have been intensively investigated for their conducting, semiconducting and electrochemical properties. Numerous electronic applications have been proposed and some realised, including electrochromic devices (ECDs), electroluminescent organic light-emitting diodes (OLEDs), photovoltaic elements for solar-energy conversion, sensors and thin-film field-effect transistors.

Types of electroactive conducting polymers

Poly(acetylene), (CH)x, is the simplest form of conjugated conducting polymer, with a conjugated π system extending over the polymer chain. Its electrical conductivity exhibits a twelve order of magnitude increase when doped with iodine. However, due to its intractability and air sensitivity, poly(acetylene) has seen few applications and most research on conjugated conductive polymers has been carried out with materials derived from aromatic and heterocyclic aromatic structures.

Letheby, H. XXIX. On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc., 15, 1862, 161–3.
Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. and Heeger, A. J.Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun., 1977, 578–80.
Chiang, C. K., Druy, M. A., Gau, S. C., Heeger, A. J., Louis, E. J., MacDiarmid, A. G., Park, Y. W. and Shirakawa, H.Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J. Am. Chem. Soc., 100, 1978, 1013–15.
Chiang, C. K., Fincher, C. R. jr, Park, Y. W., Heeger, A. J., Shirakawa, H., Louis, E. J., Gan, S. C. and MacDiarmid, A. G.Electrical conductivity in doped polyacetylene. Phys. Rev. Lett., 39, 1977, 1098–101.
MacDiarmid, A. G.Nobel lecture: synthetic metals: a novel route for organic polymers. Rev. Mod. Phys., 73, 2001, 701–12.
Shirakawa, H., MacDiarmid, A. G. and Heeger, A. J.Focus article. Twenty-five years of conducting polymers. Chem. Commun., 2003, 1–4.
Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L. and Holmes, A. B.Light-emitting diodes based on conjugated polymers. Nature (London), 347, 1990, 539–41.
Kraft, A., Grimsdale, A. C. and Holmes, A. B.Electroluminescent conjugated polymers – seeing polymers in a new light. Angew, Chem., Int. Ed. Engl., 37, 1998, 403–28.
Brabec, C. J., Sariciftci, N. S. and Hummelen, J. C.Plastic solar cells. Adv. Funct. Mater., 1, 2001, 15–26.
McQuade, D. Tyler, Pullen, A. E. and Swager, T. M.Conjugated polymer-based chemical sensors. Chem. Rev., 100, 2000, 2537–74.
Knobloch, A., Manuelli, A., Bernds, A. and Clemens, W.Fully printed integrated circuits from solution processable polymers. J. Appl. Phys., 96, 2004, 2286–91.
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995, ch. 9.
Heinze, J.Electronically conducting polymers. Top. Curr. Chem., 152, 1990, 1–47.
Evans, G. P. In Gerischer, H. and Tobias, C. W. (eds.), Advances in Electrochemical Science and Engineering, Weinheim, VCH, 1990, vol. 1, pp. 1–74.
Mastragostino, M. In Scrosati, B. (ed.), Applications of Electroactive Polymers, London, Chapman and Hall, 1993, ch. 7.
Roncali, J.Conjugated poly(thiophenes): synthesis, functionalization, and applications, Chem. Rev., 92, 1992, 711–38.
Higgins, S. J.Conjugated polymers incorporating pendant functional groups – synthesis and characterisation. Chem. Soc. Rev., 26, 1997, 247–57.
Skotheim, T. A., Elsebaumer, R. L. and Reynolds, J. R. (eds.), Handbook of Conducting Polymers, 2nd edn, New York, Marcel Dekker, 1998; Skotheim, T. A. and Reynolds, J. R. (eds.), Handbook of Conducting Polymers (3rd edn.) CRC Press, Taylor & Francis Group, Boca Raton, 2007.
Roncali, J.Electrogenerated functional conjugated polymers as advanced electrode materials. J. Mater. Chem., 9, 1999, 1875–93.
Bard, A. J. and Faulkner, L. R. Electrode reactions with coupled homogeneous chemical reactions. In Electrochemical Methods: Fundamentals and Applications, 2nd edn, New York, Wiley, 2001, ch. 12, pp. 471–533.
Street, G. B., Clarke, T. C., Geiss, R. H., Lee, V. Y., Nazzal, A. I., Pfluger, P. and Scott, J. C.Characterization of polypyrrole. J. Phys., 44(C3), 1983, 599–606.
Ferraris, J. P., Henderson, C., Torres, D. and Meeker, D.Synthesis, spectroelectrochemistry and application in electrochromic devices of n-dopable and p-dopable conducting polymer. Synth. Met., 72, 1995, 147–52.
Wegner, G.The state of order and the relevance of phase transitions in conducting polymers. Mol. Cryst. Liq. Cryst., 106, 1984, 269–88.
Gazard, M. Application of polyheterocycles to electrochromic display devices. In Skotheim, T. A. (ed.), Handbook of Conducting Polymers, New York, Marcel Dekker, 1986, vol. 1, ch. 19.
Mastragostino, M. Electrochromic devices. In Scrosati, B. (ed.), Applications of Electroactive Polymers, London, Chapman and Hall, 1993, ch. 7.
Hyodo, K.Electrochromism of conducting polymers. Electrochim. Acta, 39, 1994, 265–72.
Mortimer, R. J.Organic electrochromic materials. Electrochim. Acta, 44, 1999, 2971–81.
Mortimer, R. J. Electrochromic polymers. In Kroschwitz, J. I. (ed.), Encyclopedia of Polymer Science & Technology, 3rd edn, New York, John Wiley & Sons, 2004, vol. 9, pp. 591–614.
Sonmez, G.Polymeric electrochromics. Chem. Commun., 2005, 5251–9.
Mortimer, R. J., Dyer, A. L. and Reynolds, J. R.Electrochromic organic and polymeric materials for display applications. Displays, 27, 2006, 2–18.
Barbarella, G., Melucci, M. and Sotgiu, G.The versatile thiophene: an overview of recent research on thiophene-based materials. Adv. Mater., 17, 2005, 1581–93.
Mastragostino, M., Arbizzani, C., Bongini, A., Barbarella, G. and Zambianchi, M.Polymer-based electrochromic devices, 1: poly(3-methylthiophenes). Electrochim. Acta, 38, 1993, 135–40.
Kirchmeyer, S. and Reuter, K.Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem., 15, 2005, 2077–88.
Giglioti, M., Trivinho-Strixino, F., Matsushima, J. T., Bulhões, L. O. S. and Pereira, E. C.Electrochemical and electrochromic response of poly(thiophene-3-acetic acid) films. Sol. Energy Mater., Sol. Cells, 82, 2004, 413–420.
Galal, A., Cunningham, D. D., Karagözler, A. E., Lewis, E. T., Nkansah, A., Burkhardt, A., Ataman, O. Y., Zimmer, H. and Mark, H. B.Electrochemical synthesis, characterization and spectroelectrochemical studies of some conducting poly(heterolene) films. Proc. Electrochem. Soc., 90–2, 1990, 179–91.
Mastragostino, M., Arbizzani, C., Ferloni, P. and Marinangeli, A.Polymer-based electrochromic devices, Solid State Ionics, 53–56, 1992, 471–8.
Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds, J. R.Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater., 12, 2000, 481–94.
Groenendaal, L., Zotti, G., Aubert, P.-H., Waybright, S. M. and Reynolds, J. R.Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater., 15, 2003, 855–79.
Jonas, F. and Schrader, L.Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met., 41–3, 1991, 831–6.
Heywang, G. and Jonas, F.Poly(alkylenedioxythiophene)s – new, very stable conducting polymers. Adv. Mater., 4, 1992, 116–18.
Roncali, J., Blanchard, P. and Frère, P.3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J. Mater. Chem., 15, 2005, 1598–610.
Sapp, S. A., Sotzing, G. A. and Reynolds, J. R.High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater., 10, 1998, 2101–8.
Gaupp, C. L., Welsh, D. M. and Reynolds, J. R.Poly(ProDOT-Et-2): a high-contrast, high-coloration efficiency electrochromic polymer. Macromol. Rapid Commun., 23, 2002, 885–9.
Welsh, D. M., Kumar, A., Meijer, E. W. and Reynolds, J. R.Enhanced contrast ratios and rapid switching in electrochromics based on poly(3,4-propylenedioxythiophene) derivatives. Adv. Mater., 11, 1999, 1379–82.
Kumar, A., Welsh, D. M., Morvant, M. C., Piroux, F., Abboud, K. A. and Reynolds, J. R.Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high-contrast ratios. Chem. Mater., 10, 1998, 896–902.
Sankaran, B. and Reynolds, J. R.High-contrast electrochromic polymers from alkyl-derivatised poly(3,4-ethylenedioxythiophenes). Macromolecules, 30, 1997, 2582–8.
Welsh, D. M., Kloeppner, L. J., Madrigal, L., Pinto, M. R., Thompson, B. C., Schanze, K. S., Abboud, K. A., Powell, D. and Reynolds, J. R.Regiosymmetric dibutyl-substituted poly(3,4-propylenedioxythiophene)s as highly electron-rich electroactive and luminescent polymers. Macromolecules, 35, 2002, 6517–25.
Kumar, A. and Reynolds, J. R.Soluble alkyl-substituted poly(ethylenedioxythiophene)s as electrochromic materials. Macromolecules, 29, 1996, 7629–30.
Reeves, B. D., Grenier, C. R. G., Argun, A. A., Cirpan, A., McCarley, T. D. and Reynolds, J. R.Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies. Macromolecules, 37, 2004, 7559–69.
Cirpan, A., Argun, A. A., Grenier, C. R. G., Reeves, B. D. and Reynolds, J. R.Electrochromic devices based on soluble and processable dioxythiophene polymers. J. Mater. Chem., 13, 2003, 2422–8.
Sotzing, G. A., Reynolds, J. R. and Steel, P. J.Electrochromic conducting polymers via electrochemical polymerization of bis(2-(3,4-ethylenedioxy)thienyl) monomers. Chem. Mater., 8, 1996, 882–9.
Sotzing, G. A., Reddinger, J. L., Katritzky, A. R., Soloducho, J., Musgrave, R. and Reynolds, J. R.Multiply colored electrochromic carbazole-based polymers. Chem. Mater., 9, 1997, 1578–87.
Irvin, J. A., Schwendeman, I., Lee, Y., Abboud, K. A. and Reynolds, J. R.Low-oxidation-potential conducting polymers derived from 3,4-ethylenedioxythiophene and dialkoxybenzenes. J. Polym. Sci. Polym. Chem., 39, 2001, 2164–78.
Gaupp, C. L. and Reynolds, J. R.Multichromic copolymers based on 3,6-bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole derivatives. Macromolecules, 36, 2003, 6305–15.
Dubois, C. J., Abboud, K. A. and Reynolds, J. R.Electrolyte-controlled redox conductivity in n-type doping in poly(bis-EDOT-pyridine)s. J. Phys. Chem. B, 108, 2004, 8550–7.
Dubois, C. J., Larmat, F., Irvin, D. J. and Reynolds, J. R.Multi-colored electrochromic polymers based on BEDOT-pyridines. Synth. Met., 119, 2001, 321–2.
Sonmez, G., Shen, C. K. F., Rubin, Y. and Wudl, F.A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era. Angew. Chem. Int. Ed. Eng., 43, 2004, 1498–502.
Sonmez, G., Sonmez, H. B., Shen, C. K. F. and Wudl, F.Red, green and blue colors in polymeric electrochromics. Adv. Mater., 16, 2004, 1905–8.
Sonmez, G. and Wudl, F.Completion of the three primary colours: the final step toward plastic displays. J. Mater. Chem., 15, 2005, 20–2.
Sonmez, G., Sonmez, H. B., Shen, C. K. F., Jost, R. W., Rubin, Y. and Wudl, F.A processable green polymeric electrochromic. Macromolecules, 38, 2005, 669–75.
Rauh, R. D., Peramunage, D. and Wang, F.Electrochemistry and electrochromism in star conductive polymers. Proc. Electrochem. Soc., 2003–17, 2003, 176–81.
Rauh, R. D., Wang, F., Reynolds, J. R. and Meeker, D. L.High coloration efficiency electrochromics and their application to multi-color devices. Electrochim. Acta, 46, 2001, 2023–9.
Wang, F., Wilson, M. S., Rauh, R. D., Schottland, P., Thompson, B. C. and Reynolds, J. R.Electrochromic linear and star branched poly(3,4-ethylenedioxythiophene-didodecyloxybenzene) polymers. Macromolecules, 33, 2000, 2083–91.
Wang, F., Wilson, M. S., Rauh, R. D., Schottland, P. and Reynolds, J. R.Electroactive and conducting star-branched poly(3-hexylthiophene)s with a conjugated core. Macromolecules, 32, 1999, 4272–8.
Genies, E. M., Bidan, G. and Diaz, A. F.Spectroelectrochemical study of polypyrrole films. J. Electroanal. Chem., 149, 1983, 103–13.
Diaz, A. F., Castillo, J. I., Logan, J. A. and Lee, W. I.Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem., 129, 1981, 115–32.
Wong, J. Y., Langer, R. and Ingber, D. E.Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc. Natl. Acad. Sci. USA, 91, 1994, 3201–4.
Schottland, P., Zong, K., Gaupp, C. L., Thompson, B. C., Thomas, C. A., Giurgiu, I., Hickman, R., Abboud, K. A. and Reynolds, J. R.Poly(3,4-alkylenedioxypyrrole)s: highly stable electronically conducting and electrochromic polymers. Macromolecules, 33, 2000, 7051–61.
Gaupp, C. L., Zong, K. W., Schottland, P., Thompson, J. R., Thomas, C. A. and Reynolds, J. R.Poly(3,4-ethylenedioxypyrrole): organic electrochemistry of a highly stable electrochromic polymer. Macromolecules, 33, 2000, 1132–3.
Sonmez, G., Schwendeman, I., Schottland, P., Zong, K. W. and Reynolds, J. R.N-substituted poly(3,4-propylenedioxypyrrole)s: high gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules, 36, 2003, 639–47.
Schwendeman, I., Hickman, R., Sonmez, G., Schottland, P., Zong, K., Welsh, D. M. and Reynolds, J. R.Enhanced contrast dual polymer electrochromic devices. Chem. Mater., 14, 2002, 3118–22.
Diaz, A. F. and Logan, J. A.Electroactive polyaniline films. J. Electroanal. Chem., 111, 1980, 111–14.
Kobayashi, T., Yoneyama, H. and Tamura, H.Polyaniline film-coated electrodes as electrochromic display devices. J. Electroanal. Chem., 161, 1984, 419–23.
MacDiarmid, A. G. and Epstein, A. J.Polyanilines – a novel class of conducting polymers. Faraday Discuss. Chem. Soc., 88, 1989, 317–32.
Ray, A., Richter, A. F., MacDiarmid, A. G. and Epstein, A. J.Polyaniline – protonation deprotonation of amine and imine sites. Synth. Met., 29, 1989, 151–6.
Rourke, F. and Crayston, J. A.Cyclic voltammetry and morphology of polyaniline-coated electrodes containing [Fe(CN)6]3 −/4 − ions. J. Chem. Soc., Faraday Trans., 89, 1993, 295–302.
Hjertberg, T., Salaneck, W. R., Lundstrom, I., Somasiri, N. L. D. and MacDiarmid, A. G.A C-13 CP-MAS NMR investigation of polyaniline. J. Polym. Sci., Polym. Lett., 23, 1985, 503–8.
Watanabe, A., Mori, K., Iwasaki, Y., Nakamura, Y. and Niizuma, S.Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules, 20, 1987, 1793–6.
Mortimer, R. J.Spectroelectrochemistry of electrochromic poly(o-toluidine) and poly(m-toluidine) films. J. Mater. Chem., 5, 1995, 969–73.
Ramirez, S. and Hillman, A. R.Electrochemical quartz crystal microbalance studies of poly(ortho-toluidine) films exposed to aqueous perchloric acid solutions. J. Electrochem. Soc., 145, 1998, 2640–7.
Wang, L., Wang, Q. Q. and Cammarata, V.Electro-oxidative polymerization and spectroscopic characterization of novel amide polymers using diphenylamine coupling. J. Electrochem. Soc., 145, 1998, 2648–54.
Stepp, J. and Schlenoff, J. B.Electrochromism and electrocatalysis in viologen polyelectrolyte multilayers. J. Electrochem. Soc., 144, 1997, L155–7.
DeLongchamp, D. and Hammond, P. T.Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices. Adv. Mater., 13, 2001, 1455–9.
Cutler, C. A., Bouguettaya, M. and Reynolds, J. R.PEDOT polyelectrolyte based electrochromic films via electrostatic adsorption. Adv. Mater., 14, 2002, 684–8.
Argun, A. A., Cirpan, A. and Reynolds, J. R.The first truly all-polymer electrochromic devices. Adv. Mater., 15, 2003, 1338–41.
Mecerreyes, D., Marcilla, R., Ochoteco, E., Grande, H., Pomposo, J. A., Vergaz, R. and Pena, Sánchez J. M.A simplified all-polymer flexible electrochromic device. Electrochim. Acta, 49, 2004, 3555–9.
Jang, G.-W., Chen, C. C., Gumbs, R. W., Wei, Y. and Yeh, J.-M.Large-area electrochromic coatings – composites of polyaniline and polyacrylate-silica hybrid set gel materials. J. Electrochem. Soc., 143, 1996, 2591–6.
Shannon, K. and Fernandez, J. E.Preparation and properties of water-soluble, poly(styrene-sulfonic acid)-doped polyaniline. J. Chem. Soc., Chem. Commun., 1994, 643–4.
Paoli, M. A., Duek, E. R. and Rodrigues, M. A.Poly(aniline) cellulose-acetate composites – conductivity and electrochromic properties. Synth. Met., 41, 1991, 973–8.
Tassi, E. L., Paoli, M. A., Panero, S. and Scrosati, B.Electrochemical, electrochromic and mechanical-properties of the graft copolymer of polyaniline and nitrilic rubber. Polymer, 35, 1994, 565–72.
Gao, Z., Bobacka, J., Lewenstam, A. and Ivaska, A.Electrochemical-behavior of polypyrrole film polymerized in indigo carmine solution. Electrochim. Acta, 39, 1994, 755–62.
Li, Y. and Dong, S.Indigo-carmine-modified polypyrrole film electrode. J. Electroanal. Chem., 348, 1993, 181–8.
Girotto, E. M. and Paoli, M. A.Polypyrrole color modulation and electrochromic contrast enhancement by doping with a dye. Adv. Mater., 10, 1998, 790–3.
Duek, E. A. R., Paoli, M.-A. and Mastragostino, M.An electrochromic device based on polyaniline and Prussian blue. Adv. Mater., 4, 1992, 287–91.
Duek, E. A. R., Paoli, M.-A. and Mastragostino, M.A solid-state electrochromic device based on polyaniline, Prussian blue and an elastomeric electrolyte. Adv. Mater., 5, 1993, 650–2.
Morita, M.Electrochromic behavior and stability of polyaniline composite films combined with Prussian blue. J. Appl. Poly. Sci., 52, 1994, 711–19.
Jelle, B. P., Hagen, G. and Nodland, S.Transmission spectra of an electrochromic window consisting of polyaniline, Prussian blue and tungsten oxide. Electrochim. Acta, 38, 1993, 1497–500.
Jelle, B. P. and Hagen, G.Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. J. Electrochem. Soc., 140, 1993, 3560–4.
Leventis, N. and Chung, Y. C.Polyaniline–Prussian blue novel composite-material for electrochromic applications. J. Electrochem. Soc., 137, 1990, 3321–2.
Jelle, B. P. and Hagen, G.Correlation between light absorption and electric charge in solid state electrochromic windows. J. Appl. Electrochem., 29, 1999, 1103–10.
Jelle, B. P. and Hagen, G.Performance of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Sol. Energy Mater. Sol. Cells, 58, 1999, 277–86.
Tung, T.-C. and Ho, K. C.A complementary electrochromic device containing 3,4-ethylenedioxythiophene and Prussian blue. Proc. Electrochem. Soc., 2003–17, 2003, 254–65.
Ferraris, J. P., Mudiginda, D. S. K., Meeker, D. L., Boehme, J., Loveday, D. C., Dan, T. M. and Brotherston, I. D. Color tailoring techniques for electroactive polymer-based electrochromic devices. Meeting Abstracts, volume 2003–01, Electrochromics Materials and Applications Symposium, at the 203rd Electrochemical Society Meeting, Paris, France, 27 April–2 May, 2003, Abstract No. 1329.
Thompson, B. C., Schottland, P., Zong, K. and Reynolds, J. R.In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater., 12, 2000, 1563–71.
Thompson, B. C., Schottland, P., Sonmez, G. and Reynolds, J. R.In situ colorimetric analysis of electrochromic polymer films and devices. Synth. Met., 119, 2001, 333–4.