Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-12T19:44:31.547Z Has data issue: false hasContentIssue false

2 - Early Differentiation of the Earth: An Isotopic Perspective

Published online by Cambridge University Press:  23 November 2009

Ian Jackson
Affiliation:
Australian National University, Canberra
Get access

Summary

Introduction

During the past 4.5 billion years the Earth has undergone a complex process of differentiation that has resulted in the formation of a metallic core, a magnesium-rich silicate mantle, and a siliceous continental crust. One of the major challenges for the Earth sciences is not only to document the present-day chemical and physical states of these distinctive regions, but also to unravel the complex series of events associated with their origin and long-term evolution. Isotope geochemistry can provide important constraints on many of these events, as the formation and subsequent differentiation of the Earth were accompanied by chemical fractionation of the parent–daughter elements that comprise many of the naturally occurring radioactive-decay systems. The isotopic compositions of these daughter elements will therefore yield constraints on the timing and magnitude of fractionation events and thus provide insights into the processes responsible for the differentiation of the Earth. In the first part of this chapter we shall show how isotopic systematics, particularly the isotopic compositions of Pb and Sr preserved in ancient terrestrial samples, can be used to constrain the timescales for the Earth's accretion and the formation of its core. The second part of this chapter discusses the constraints on the formation and evolution of the continental crust and upper mantle that are provided by the Sm-Nd isotopic systematics of early Archaean rocks.

Probably the most fundamental question associated with the formation of the Earth is its age.

Type
Chapter
Information
The Earth's Mantle
Composition, Structure, and Evolution
, pp. 127 - 158
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×