Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-09T06:51:11.522Z Has data issue: false hasContentIssue false

6 - Air flow, sediment transport, erosion, and deposition

from PART 3 - Fundamentals of fluid flow, sediment transport, erosion, and deposition

Published online by Cambridge University Press:  05 June 2012

John Bridge
Affiliation:
State University of New York, Binghamton
Robert Demicco
Affiliation:
State University of New York, Binghamton
Get access

Summary

Introduction

Air flow is a significant agent of erosion, sediment transport, and deposition over subaerial surfaces that lack a protective cover of vegetation, such as deserts, sandy beaches, floodplains exposed after floods, and outwash plains of glacial meltwater streams. The mechanics of air flow, sediment transport, erosion, and deposition have been studied in the field and in wind tunnels, and are similar to those of unidirectional water flows (e.g., Allen, 1982a; Greeley and Iverson, 1985; Pye and Tsoar, 1990; Nickling, 1994; Lancaster, 1995, 2005). To avoid repetition of material in Chapter 5, emphasis will be placed on the differences between air flows and water flows and the associated sedimentary processes.

Mechanics of air flow

Air has much lower density than water (1.3 kg m− 3 versus 1,000 kg m− 3), and much lower viscosity than water (1.78 × 10− 5 N s m− 3 versus 1.00 × 10− 3 N s m− 3). The density of air increases as temperature decreases and increases as pressure increases because air is compressible. Air speeds regularly exceed water speeds by an order of magnitude. For example, a river in flood may have a mean flow velocity of 1 m s− 1, where as a strong wind may be tens of m s− 1. This means that air flows are always turbulent, and resistance to motion is due to turbulent shear stress entirely.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×