Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-22T05:34:58.064Z Has data issue: false hasContentIssue false

4 - Phase separation kinetics

Published online by Cambridge University Press:  10 February 2010

Rashmi C. Desai
Affiliation:
University of Toronto
Raymond Kapral
Affiliation:
University of Toronto
Get access

Summary

Growth of order from disorder is a natural phenomenon which is seen in a variety of systems. An important class of such phenomena involves the kinetics of phase ordering and phase separation. The examples of such growth processes that were described in Chapter 2 had common characteristics. Now, we discuss the experimental results that point to common features of the kinetics of phase separation processes. A combination of techniques from nonequilibrium statistical mechanics and nonlinear dynamics is used to study the formation and evolution of spatial structures. Substantial progress in our understanding of the kinetics of domain growth during a first-order phase transition has been made over the past few decades. The knowledge gained in these studies forms the underpinning of the descriptions of many such processes which create order from disorder.

Kinetics of phase ordering and phase separation

Phase separation is usually initiated by a rapid change or quench in a thermodynamic variable (often temperature and sometimes pressure), which places a disordered system in a post-quench initial nonequilibrium state. The system then evolves towards an inhomogeneous ordered state of coexisting phases, which is its final equilibrium state. Depending on the nature of the quench, the post-quench state may be either thermodynamically unstable or metastable (see Fig. 2.1). In the former case, the onset of separation is spontaneous, and the kinetics that follows is known as spinodal decomposition. For the metastable case, nonlinear fluctuations are needed to initiate the separation process. The system is said to undergo phase separation through homogeneous nucleation if the system is pure. Phase separation occurs by heterogeneous nucleation if the system has impurities or surfaces which initiate nucleation events.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×