Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T08:57:26.252Z Has data issue: false hasContentIssue false

6 - FINITE-ELEMENT FORMULATION

Published online by Cambridge University Press:  05 June 2014

Ahmed A. Shabana
Affiliation:
University of Illinois, Chicago
Get access

Summary

In the classical finite-element formulation for beams and plates, infinitesimal rotations are used as nodal coordinates. As a result, beams and plates are not considered as isoparametric elements. Rigid body motion of these non-isoparametric elements does not result in zero strains and exact modeling of the rigid body inertia using these elements cannot be obtained. In this chapter, a formulation for the large reference displacement and small deformation analysis of deformable bodies using nonisoparametric finite elements is presented. This formulation, in which infinitesimal rotations are used as nodal coordinates, leads to exact modeling of the rigid body dynamics and results in zero strains under an arbitrary rigid body motion. It is crucial in this formulation that the assumed displacement ield of the element can describe an arbitrary rigid body translation. Using this property and an intermediate element coordinate system, a concept similar to the parallel axis theorem used in rigid body dynamics can be applied to obtain an exact modeling of the rigid body inertia for deformable bodies that have complex geometrical shapes. More discussion on the use of the parallel axis theorem in modeling the inertia of rigid bodies with complex geometry is presented in Chapter 8 of this book.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×