Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-17T21:35:20.047Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  29 June 2023

Rafael Palacios
Affiliation:
Imperial College of Science, Technology and Medicine, London
Carlos E. S. Cesnik
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Dynamics of Flexible Aircraft
Coupled Flight Mechanics, Aeroelasticity, and Control
, pp. 475 - 499
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A.. Handbook of Mathematical Functions. Dover, 9th edition, New York, 1972.Google Scholar
Abzug, M. J. and Larrabee, E. E.. Airplane Stability and Control, A History of the Technologies That Made Aviation Possible. Cambridge University Press, Cambridge, UK, 2nd edition, 2002.Google Scholar
Afonso, F., Vale, J., Oliveira, E., Lau, F., and Suleman, A.. A review on non-linear aeroelasticity of high aspect-ratio wings. Progress in Aerospace Sciences, 89(3):4057, February 2017. doi:10.1016/j.paerosci.2016.12.004.Google Scholar
Ahmad, N. and Proctor, F.. Mesoscale simulation data for initializing fast-time wake transport and decay models. In 51st AIAA Aerospace Sciences Meeting, Grapevine, Texas, USA, January 2013. doi:10.2514/6.2013-510.Google Scholar
Albano, E. and Rodden, W. P.. A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flow. AIAA Journal, 7(2):279285, 1969. doi:10.2514/3.5086.Google Scholar
Anderson, B. D. O. and Moore, J. B.. Optimal Filtering. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1979.Google Scholar
Anderson, B. D. O. and Moore, J. B.. Optimal Control. Dover Publications, Mineola, New York, USA, 1990.Google Scholar
Anon. Aeroelastic effects from a flight mechanics standpoint. In 34th Meeting of the AGARD Flight Mechanics Panel, Marseille, France, 2125 April 1969. NATO Advisory Group for Aerospace Research and Development.Google Scholar
Antoulas, A.C. Approximation of Large-Scale Dynamical Systems. Society for Industrial and Applied Mathematics, 2005. doi:10.1137/1.9780898718713.Google Scholar
Argentina, M., Skotheim, J., and Mahadevan, L.. Settling and swimming of flexible fluid-lubricated foils. Physical Review Letters, 99(22):2245034, 2007. doi:10.1103/Phys-RevLett.99.224503.Google Scholar
Argyris, J. An excursion into large rotations. Computers Methods in Applied Mechanics and Engineering, 32:85155, 1982. doi:10.1016/0045-7825(82)90069-X.Google Scholar
Artola, M., Goizueta, N., Wynn, A., and Palacios, R.. Aeroelastic control and estimation with a minimal nonlinear modal description. AIAA Journal, 59(7):26972713, 2021a. doi:10.2514/1.J060018.CrossRefGoogle Scholar
Artola, M., Goizueta, N., Wynn, A., and Palacios, R.. Proof of concept for a hardware-in-the-loop nonlinear control framework for very flexible aircraft. In AIAA Science and Technology Forum and Exposition, Nashville, Tennessee, USA, 48 January 2021b. doi:10.2514/6.2021-1392.Google Scholar
Artola, M., Wynn, A., and Palacios, R.. A generalised Kelvin-Voigt damping model for geometrically-nonlinear beams. AIAA Journal, 59(1):356365, 2021c. doi:10.2514/1.J059767.Google Scholar
Artola, M., Wynn, A, and Palacios, R.. Modal-based nonlinear model predictive control for 3D very flexible structures. IEEE Transactions in Automatic Control, 2022. doi:10.1109/TAC.2021.3071326.Google Scholar
Ashley, H. H. Engineering Analysis of Flight Vehicles. Addison-Wesley Aerospace Series. Addison-Wesley Publishing Co., Reading, Massachusetts, USA, 1974.Google Scholar
Avin, O., Raveh, D. E., Drachinsky, A., Ben-Shmuel, Y., and Tur, M.. Experimental aeroe-lastic benchmark of a very flexible wing. AIAA Journal, 60(3):17451768, 2022. doi:10.2514/1.J060621.Google Scholar
Bairstow, L. and Fage, A.. Oscillations of the tail plane and body of an aeroplane in flight. Reports and Memoranda 276, Part II, British Advisory Committee for Aeronautics, 1916.Google Scholar
Bairstow, L., Jones, B. M, and Thomson, A. W. H.. Investigation into the stability of an aeroplane, with an examination into the conditions necessary in order that the symmetric and antisymmetric oscillations can be considered independently. Reports and Memoranda 7, British Advisory Committee for Aeronautics, 1913.Google Scholar
Baker, M. L., Mingori, D. L., and Goggin, P. J.. Approximate subspace iteration for constructing internally balanced reduced order models of unsteady aerodynamic systems. In 37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Salt Lake City, Utah, USA, 1517 April 1996. doi:10.2514/6.1996-1441.Google Scholar
Balachandran, B. and Magrab, E. B.. Vibrations. Cambridge University Press, Cambridge, UK, 3rd edition, 2018.Google Scholar
Baldelli, D. H., Chen, P. C., and Panza, J.. Unified aeroelastic and flight dynamic formulation via rational function approximations. Journal of Aircraft, 43(3):763772, 2006. doi:10.2514/1.16620.Google Scholar
Ballhaus, W. F. and Goorjian, P. M.. Computation of unsteady transonic flows by the indicial method. AIAA Journal, 16(2):117124, 1978. doi:10.2514/3.60868.Google Scholar
Bartley-Cho, J. D. and Henderson, A.. Design and analysis of HiLDA/AEI aeroelastic wind tunnel model. In AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, USA, 1821 August 2008. doi:10.2514/6.2008-7191.Google Scholar
Barzgaran, B., Quenzer, J. D., Mesbahi, M., Morgansen, K. A., and Livne, E.. Real-time model predictive control for gust load alleviation on an aeroelastic wind tunnel test article. In AIAA Science and Technology Forum and Exposition, Nashville, Tennessee, USA, 48 January 2021. doi:10.2514/6.2021-0500.Google Scholar
Batchelor, G. K. The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge, UK, 1953.Google Scholar
Bauchau, O. A., Epple, A., and Heo, S.. Interpolation of finite rotations in flexible multi-body dynamics simulations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 222(4):353366, 2008. doi:10.1243/14644193JMBD155.Google Scholar
Bauchau, O. A. Flexible Multibody Dynamics, volume 176 of Solid Mechanics and Its Applications. Springer Netherlands, Dordrecht, The Netherlands, 2011. doi:10.1007/978-94-007-0335-3.Google Scholar
Bazilevs, Y., Takizawa, K, and Tezduyar, T. E.. Computational Fluid-Structure Interaction: Methods and Applications. John Wiley & Sons, Chichester, UK, 2013.Google Scholar
Beal, T. R. Digital simulation of atmospheric turbulence for Dryden and von Kármán models. Journal of Guidance, Control, and Dynamics, 16(1):132138, 1993. doi:10.2514/3.11437.Google Scholar
Beck, M. S. Correlation in instruments: cross correlation flowmeters. Journal of Physics E: Scientific Instruments, 14(1):719, 1981. doi:10.1088/0022-3735/14/1/001.CrossRefGoogle Scholar
Bell, T. M., Klein, P. M., K. Lundquist, J., and Waugh, S.. Remote sensing and radiosonde datasets collected in the San Luis Valley during the LAPSE-RATE campaign. Earth System Science Data, 13(3):10411051, March 2021. doi:10.5194/ essd-13-1041-2021.Google Scholar
Bendiksen, O. O. Transonic limit cycle flutter of high-aspect-ratio swept wings. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, USA, 14 May 2006. doi:10.2514/1.29547.Google Scholar
Benner, P., Kürschner, P., and Saak, J.. Frequency-limited balanced truncation with low-rank approximations. SIAM Journal on Numerical Analysis, 38(1):A471A499, 2016. doi:10.1137/15M1030911.Google Scholar
Beran, P. S., Khot, N. S., E. Eastep, F., Snyder, R. D., and Zweber, J. V.. Numerical analysis of store-induced limit-cycle oscillation. Journal of Aircraft, 41(6):13151326, 2004.Google Scholar
Beranek, J., L. Nicolai, M. Buonanno, E. Burnett, C. Atkinson, B. Holm-Hansen, and Flick, P. M.. Conceptual design of a multi-utility aeroelastic demonstrator. In 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Fort Worth, Texas, USA, 1315 September 2010. doi:10.2514/6.2010-9350.Google Scholar
Bhardwaj, M. K., Kapania, R. K., Y. Reichenbach, E., and Guruswamy, G. P.. Computational fluid dynamics/computational structural dynamics interaction methodology for aircraft wings. AIAA Journal, 36(12):21792186, 1998.Google Scholar
Bieniek, D. and Luckner, R.. Simulation of aircraft encounters with perturbed vortices considering unsteady aerodynamic effects. Journal of Aircraft, 51(3):705718, 2014. doi:10.2514/1.C032383.CrossRefGoogle Scholar
Birnbaum, W. Die tragende Wirbelfläche als Hilfsmittel zur Behandlung des ebenen Problems der Tragflügeltheorie. ZAMM, 3(4):290297, 1923.Google Scholar
Birnbaum, W. Das ebene Problem des schlagenden Flügels (The Plane Problem of the Flapping Wing–also NACA TM 1364, 1954). ZAMM, 4:277298, 1924.CrossRefGoogle Scholar
Bisplinghoff, R. L., Ashley, H., and Halfman, R. L.. Aeroelasticity. Addison-Wesley, Reading, Massachusetts, USA, 1955.Google Scholar
Blair, M. A compilation of the mathematics leading to the doublet-lattice method. Report 9227812, Air Force Research Laboratories, Dayton, Ohio, USA, March 1992.Google Scholar
Blaylock, M., Chow, R., Cooperman, A., and van Dam, C. P.. Comparison of pneumatic jets and tabs for active aerodynamic load control. Wind Energy, 17(9):13651384, 2014. doi:10.1002/we.1638.Google Scholar
Block, J. J. and Strganac, T. W.. Applied active control for a nonlinear aeroelastic structure. Journal of Guidance, Control and Dynamics, 21(6), 1998.Google Scholar
Bock, H. G. and Krämer-Eis, P.. A multiple shooting method for numerical computation of open and closed loop controls in nonlinear systems. IFAC Proceedings, 17(2):411415, July 1984. doi:10.1016/S1474-6670(17)61005-X.Google Scholar
Böswald, M., Govers, Y., Vollan, A., and Basien, M.. Solar Impulse – How to validate the numerical model of a superlight aircraft with A340 dimensions! In Proceedings of ISMA 2010–International Conference on Noise and Vibration Engineering, Katholieke Universiteit Leuven, Leuven, Belgium, 2010, pp. 24512466.Google Scholar
Boyd, S. and Vandenberghe, L. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.Google Scholar
Brandt, S. A., Bertin, J. J., Stiles, R. J., and Whitford, R. Introduction to Aeronautics. AIAA Educational Series, Reston, Virginia, USA, 2nd edition, 2006. doi:10.2514/4.862007.Google Scholar
Breitsamter, C. Wake vortex characteristics of transport aircraft. Progress in Aerospace Sciences, 47(2):89134, 2011. doi:10.1016/j.paerosci.2010.09.002.CrossRefGoogle Scholar
Britt, R. T., Jacobson, S. B., and Arthurs, T. D.. Aeroservoelastic analysis of the B-2 bomber. Journal of Aircraft, 37(5):745752, 2000. doi:10.2514/2.2674.Google Scholar
Brown, S. A. Displacement extrapolations for CFD + CSM aeroelastic analysis. In 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, USA, 0710 April 1997.Google Scholar
Broyden, C. G. A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 19(92):577593, 1965.Google Scholar
Brunton, S. L. and Kutz, J. N.. Data-Driven Science and Engineering. Cambridge University Press, Cambridge, UK, 2019. doi:10.1017/9781108380690.Google Scholar
Brunton, S. L. and Rowley, C. W.. Empirical state-space representations for Theodorsen’s lift model. Journal of Fluids and Structures, 38:174186, 2013.Google Scholar
Bryan, G. H. Stability in Aviation. MacMillian, London, UK, 1911.Google Scholar
Bryan, G. H. and Williams, W. E.. The longitudinal stability of aerial gliders. In Proceedings of the Royal Society of London, Series A, volume 73, London, UK, 1904.Google Scholar
Bryant, L. W. and Pugsley, A. G.. The lateral stability of highly loaded aeroplanes. Reports and Memoranda 1840, British Advisory Committee for Aeronautics, 1936.Google Scholar
Bryson, A. E. and Ho, Y. C.. Applied Optimal Control: Optimization, Estimation, and Control. Hemisphere Publishing Corporation, London, UK, 1979.Google Scholar
Buck, B. K. and Newman, B. A.. Aircraft acceleration prediction due to atmospheric disturbances with flight data validation. Journal of Aircraft, 43(1):7281, 2006. doi:10.2514/1.12074.Google Scholar
Burl, J. B. Linear Optimal Control – H2 and Methods. Addison-Wesley, Menlo Park, California, USA, 1999.Google Scholar
Burnett, E. L., Beranek, J. A., T. Holm-Hansen, B., Atkinson, C. J., and Flick, P. M.. Design and flight test of active flutter suppression on the X-56A multi-utility technology test-bed aircraft. The Aeronautical Journal, 120(1228):893909, 2016. doi:10.1017/aer.2016.41.Google Scholar
Burnham, D. C. and Hallock, J. N.. Chicago monostatic acoustic vortex sensing system. Technical report, National Information Service, Springfield, Virginia, USA, 1982.Google Scholar
Burris, P. M. and Bender, M. A.. Aircraft load alleviation and mode stabilization (LAMS) -B-52 systems analysis, synthesis, and design. Technical report AFFDL-TR-68-161, Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, USA, November 1969.Google Scholar
Campbell, C. W. Monte Carlo turbulence simulation using rational approximations to von Kármán spectra. AIAA Journal, 24(1):6266, 1986. doi:10.2514/3.9223.Google Scholar
Castrichini, A., T. Wilson, F. Saltari, F. Mastroddi, N. Viceconti, and Cooper, J. E.. Aeroelastics flight dynamics coupling effects of the semi-aeroelastic hinge device. Journal of Aircraft, 57(2):19, 2020. doi:10.2514/1.C035602.Google Scholar
Cea, A. and Palacios, R.. A non-intrusive geometrically nonlinear augmentation to generic linear aeroelastic models. Journal of Fluids and Structures, 101:103222, 2021. doi:10.1016/j.jfluidstructs.2021.103222.Google Scholar
Cea, A. and Palacios, R.. Assessment of geometrically nonlinear effects on the aeroelastic response of a transport aircraft configuration. Journal of Aircraft, 60(1):205220, January 2023. doi:10.2514/1.C036740.Google Scholar
Cesnik, C. E. S., Aeroelasticity of very flexible aircraft: Prof. Dewey Hodges’ three-decade contributions to the field. In Proc. AIAA Science and Technology Forum and Exposition (SciTech2023), National Harbor, Maryland, USA, 2327 January 2023.Google Scholar
Cesnik, C. E. S. and Brown, E. L.. Modeling of high aspect ratio active flexible wings for roll control. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, USA, 2225 April 2002. doi:10.2514/6.2002-1719.Google Scholar
Cesnik, C. E. S. and Brown, E. L.. Active warping control of a joined-wing airplane configuration. In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, USA, 710 April 2003. doi:10.2514/6.2003-1715.Google Scholar
Cesnik, C. E. S. and Su., W. Nonlinear aeroelastic modeling and analysis of fully flexible aircraft. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, Texas, 1821 April 2005. doi:10.2514/6.2005-2169.Google Scholar
Cesnik, C. E. S. and Hodges, D. H.. VABS: A new concept for composite rotor blade cross-sectional modeling. Journal of the American Helicopter Society, 42(1):2738, 1997.CrossRefGoogle Scholar
Cesnik, C. E. S., Hodges, D. H., and Sutyrin, V. G.. Cross-sectional analysis of composite beams including large initial twist and curvature effects. AIAA Journal, 34(9):19131920, 1996.Google Scholar
Cesnik, C. E. S., Senatore, P. J., Su, W., Atkins, E. M., and Shearer, C. M.. X-HALE: A very flexible unmanned aerial vehicle for nonlinear aeroelastic tests. AIAA Journal, 50(12):28202833, 2012. doi:10.2514/1.J051392.Google Scholar
Cesnik, C. E. S., Palacios, R, and Reichenbach, E. Y.. Re-examined structural design procedures for very flexible aircraft. Journal of Aircraft, 51(5):15801591, 2014. doi:10.2514/1.C032464.Google Scholar
Chevalier, H. L., Dornfeld, G. M., and Schwanz, R. C.. An analytical method for predicting the stability and control characteristics of large elastic airplanes at subsonic and supersonic speeds, Part II - Application. In 34th Meeting of the AGARD Flight Mechanics Panel, Marseille, France, 2125 April 1969. NATO Advisory Group for Aerospace Research and Development.Google Scholar
Christhilf, D. M., Moulin, B., Ritz, E., C. Chen, P., Roughen, K. M., and Perry III, B.. Characteristics of control laws tested on the semi-span supersonic transport (S4T) windtunnel model. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Waikiki, Hawaii, 2326 April 2012. doi:10.2514/6.2012-1555.Google Scholar
Cicala, P. Aerodynamic forces on an oscillating proile in uniform stream. Memorie della Reale Accademia delle Scienze, II-68:7398, 1935.Google Scholar
Claverias, S., Cerezo, J., Torralba, M. A., Reyes, M., Climent, H., and Karpel, M.. Wake vortex encounter loads numerical simulation. In International Forum on Aeroelasticity and Structural Dynamics, Bristol, UK, June 2013.Google Scholar
Collar, A. R. The expanding domain of aeroelasticity, The Journal ofthe Royal Aeronautical Society, 50(428):613636, August 1946. doi:10.1017/S0368393100120358.Google Scholar
Collar, A. R. The Second Lanchester Memorial Lecture: Aeroelasticity, retrospect and prospect. The Journal of the Royal Aeronautical Society, 63(577):115, 1959. doi:10.1017/ S0368393100070450.Google Scholar
Collar, A. R. The irst ifty years of aeroelasticity. Aerospace, 5(2):1220, 1978.Google Scholar
Connolly, J. W., Kopasakis, G., Chwalowski, P., Carlson, J.R., Sanetrik, M. D., Silva, W. A., and McNamara, J.. Aero-propulso-elastic analysis of a supersonic transport. Journal of Aircraft, 57(4):569585, July 2020. ISSN 1533-3868. doi:10.2514/1.C035531.Google Scholar
Cook, M. V. Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control. Butterworth-Heinemann, Waltham, Massachusetts, USA, 3rd edition, 2013.Google Scholar
Cook, R. G., Palacios, R., and Goulart, P. J.. Robust gust alleviation and stabilization of very flexible aircraft. AIAA Journal, 51(2):330340, 2013. doi:10.2514/1.j051697.Google Scholar
Cook, W. H. The Road to the 707. TYC Publishing Co., Bellevue, Washington, USA, 1991.Google Scholar
Cornman, L. B., Morse, C. S., and Cunning, G.. Real-time estimation of atmospheric turbulence severity from in-situ aircraft measurements. Journal of Aircraft, 31(1):171177, 1995. doi:10.2514/3.46697.CrossRefGoogle Scholar
Cottet, G.-H. and Koumoutsakos, P. D.. Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge, UK, 2000.Google Scholar
Cox, H. R. and Pugsley, A. G.. Theory of loss of lateral control due to wing twisting. Reports and Memoranda 1506, British Advisory Committee for Aeronautics, 1932.Google Scholar
Crisfield, M. A. and Jelenic, G.. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 455(1983): 11251147, 1999. doi:10.1098/rspa.1999.0352.CrossRefGoogle Scholar
Ronch, Da, McCracken, A., A. J., Badcock, K. J., Widhalm, M., and Campobasso, M. S.. Linear frequency domain and harmonic balance predictions of dynamic derivatives. Journal of Aircraft, 50(3):694707, 2013. doi:10.2514/1.C031674.CrossRefGoogle Scholar
Dawson, S. T. M. and Brunton, S. L.. Improved approximations to Wagner function using sparse identification of nonlinear dynamics. AIAA Journal, 60(3):117, 2021. doi:10.2514/1.j060863.Google Scholar
De Marco, A., Duke, E, and Berndt, J.. A general solution to the aircraft trim problem. In AIAA Modeling and Simulation Technologies Conference and Exhibit, Hilton Head, South Carolina, USA, 2023 August 2007. doi:10.2514/6.2007-6703.Google Scholar
del Carre, A. and Palacios, R.. Low-altitude dynamics of very flexible aircraft. In AIAA Science and Technology Forum and Exposition, San Diego, California, USA, 711 January 2019. AIAA Paper No. 20192038.Google Scholar
del Carre, A. and Palacios, R.. Simulation and optimization of takeoff maneuvers of very flexible aircraft. Journal of Aircraft, 57(6):10971110, November 2020. doi:10.2514/1.C035901.Google Scholar
del Carre, A., Muñoz-Simón, A., Goizueta, N, and Palacios, R.. SHARPy: A dynamic aeroelastic simulation toolbox for very flexible aircraft and wind turbines. Journal of Open Source Software, 4(44):1885, December 2019a. doi:10.21105/joss.01885.Google Scholar
del Carre, A., Teixeira, P., Palacios, R., and Cesnik, C. E. S.. Nonlinear response of a very flexible aircraft under lateral gust. In International Forum on Aeroelasticity and Structural Dynamics, Savannah, Georgia, USA, 1013 June 2019b. IFASD Paper 2019-090.Google Scholar
Derkevorkian, A., Masri, S. F., Alvarenga, J., Boussalis, H., Bakalyar, J., and Richards, W. L.. Strain-based deformation shape-estimation algorithm for control and monitoring applications. AIAA Journal, 51(9):22312240, 2013. doi:10.2514/1.J052215.CrossRefGoogle Scholar
Deskos, G., del Carre, A., and Palacios, R.. Assessment of low-altitude atmospheric turbulence models for aircraft aeroelasticity. Journal of Fluids and Structures, 95:102981, May 2020. doi:10.1016/j.jfluidstructs.2020.102981.Google Scholar
Diehl, M., Magni, L, and De Nicolao, G.. Efficient NMPC of unstable periodic systems using approximate infinite horizon closed loop costing. Annual Reviews in Control, 28(1):3745, January 2004. doi:10.1016/j.arcontrol.2004.01.011.Google Scholar
Dillsaver, M. J., E. S. Cesnik, C., and Kolmanovsky, I. V.. Gust load alleviation control for very flexible aircraft. In AIAA Atmospheric Flight Mechanics Conference, Portland, Oregon, USA, August 2011. doi: 10.2514/6.2011-6368.Google Scholar
Dillsaver, M. J., E. S. Cesnik, C., and Kolmanovsky, I. V.. Gust response sensitivity characteristics of very flexible aircraft. In AIAA Atmospheric Flight Mechanics Conference, Minneapolis, Minnesota, 0811 August 2012. doi:10.2514/6.2012-4576.Google Scholar
Disney, T. E. The C-5A active load alleviation system. In AIAA Aircraft Systems and Technology Meeting, Los Angeles, California, USA, 47 August 1975. American Institute of Aeronautics and Astronautics. AIAA Paper 75-991.Google Scholar
Dizy, J., Palacios, R, and Pinho, S. T.. Homogenisation of slender periodic composite structures. International Journal of Solids and Structures, 50:14731481, May 2013. doi:10.1016/j.ijsolstr.2013.01.017.CrossRefGoogle Scholar
Dowell, E. H., Dusto, A. R., and Hall, K. C.. Eigenmode analysis in unsteady aerodynamics: Reduced order models. Applied Mechanics Reviews, 50(6):371387, 1997. doi:10.1115/1.3101718.Google Scholar
Dowell, E. H. and Tang, D. Dynamics of Very High Dimensional Systems. World Scientific Publishing Company, Singapore, 2003.Google Scholar
Dowell, E. H., Clark, R., Cox, D., Curtis Jr., H. C., Edwards, J. W., Hall, K. H., Peters, D. A., Scanlan, R., Simiu, E., Sisto, F, and Strganac, T. W.. A Modern Course in Aeroelasticity. Kluwer Academic Publishers, Dordrecht, The Netherlands, 4th edition, 2004.Google Scholar
Doyle, J. Guaranteed margins for LQG regulators. IEEE Transactions on Automatic Control,23 (4):756757, 1978. doi:10.1109/TAC.1978.1101812.Google Scholar
Drela, M. Integrated simulation model for preliminary aerodynamic, structural, and control-law design of aircraft. In 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Louis, St, Missouri, USA, 1215 April 1999. doi:10.2514/6.1999-1394.Google Scholar
Drela, M. Flight Vehicle Aerodynamics. The MIT Press, Cambridge, Massachusetts, USA, 2014.Google Scholar
Drewiacki, D., Silvestre, F. J., and Guimarães Neto, A. B.. Influence of airframe flexibility on pilot-induced oscillations. Journal of Guidance, Control, and Dynamics, 42(7):15371550, 2019. doi:10.2514/1.G004024.Google Scholar
Duessler, S., Goizueta, N., Muñoz-Simón, A., and Palacios, R.. Modelling and numerical enhancements on a UVLM for nonlinear aeroelastic simulation. In AIAA Science and Technology Forum and Exposition, San Diego, California, USA, 37 January 2022. doi:10.2514/6.2021-0363.Google Scholar
Dullerud, G. E. and Paganini, F. A Course in Robust Control Theory: A Convex Approach, volume 36. Springer Science & Business Media, New York, USA, 2013.Google Scholar
Duncan, W. J. A suggested investigation on wing flutter. A.R.C. Report 4281 (O.159), November 1939.Google Scholar
Duncan, W. J. and Collar, A. R.. Calculations of the resistance derivatives of flutter theory. Reports and Memoranda 1500, British Advisory Committee for Aeronautics, 1932.Google Scholar
Duncan, W. J. and McMillan, G. A.. Reversal of aileron control due to wing twist. Reports and Memoranda 1499, British Advisory Committee for Aeronautics, 1932.Google Scholar
Dusto, A. R. An analytical method for predicting the stability and control characteristics of large elastic airplanes at subsonic and supersonic speeds, part I - Analysis. In 34th Meeting of the AGARD Flight Mechanics Panel, Marseille, France, 2125 April 1969. NATO Advisory Group for Aerospace Research and Development.Google Scholar
EASA. Certification Specifications for Large Aeroplanes (CS-25), 2017. European Aviation Safety Agency.Google Scholar
Eichenbaum, F. D. A general theory of aircraft response to three-dimensional turbulence. Journal of Aircraft, 8(5):353360, 1971. doi:10.2514/3.59108.Google Scholar
Enns, D. F. Model reduction with balanced realization: An error bound and a frequency weighted generalization. In Proceedings of the 23rd Conference on Decision and Control, Las Vegas, Nevada, USA, December 1984. doi:10.1109/CDC.1984.272286.Google Scholar
Erickson, A. L. and Mannes, R. L.. Wind-tunnel investigation on transonic aileron flutter. Technical report, National Advisory Commitee for Aeronautics, Moffett Field, California, USA, 1949. NACA-RM-A9B28.Google Scholar
Etkin, B. Dynamics of Atmospheric Flight. Addison-Wesly Aerospace Series. John Wiley & Sons, New York, New York, USA, 1972.Google Scholar
Etkin, B. Turbulent wind and its effect on flight. Journal of Aircraft, 18(5):327345, 1981. doi:10.2514/3.57498.Google Scholar
Eversman, W. and Tewari, A.. Consistent rational-function approximation for unsteady aerodynamics. Journal of Aircraft, 28(9):545552, September 1991. doi:10.2514/3.46062.CrossRefGoogle Scholar
FAA. Airworthiness Standards: Transport Category Airplanes. U.S. Code of Federal Regulations, 14 CFR Part 25, Appendix G. Federal Aviation Administration, Government Printing Office, Washington, DC, USA, 2011.Google Scholar
Farhat, C. CFD-based nonlinear computational aeroelasticity. In Stein, E., de Borst, R., and Hughes, T. J. R., editors, Encyclopedia of Computational Mechanics, chapter 13. John Wiley & Sons, Chichester, England, UK, November 2004. doi:10.1002/0470091355.ecm063.Google Scholar
Farhat, C., van der Zee, K. G., and Geuzaine, P.. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 195(1718):1973-2001, 2006. doi:10.1016/j.cma.2004.11.031.Google Scholar
Fellowes, A., Wilson, T., Kemble, G., Havill, C., and Wright, J.. Wing box non-linear structural damping. In International Forum on Aeroelasticity and Structural Dynamics, Paris, France, 2729 June 2011. IFASD Paper 2011-11.Google Scholar
Fournier, H., Massioni, P., Tu, M. Pham, , Bako, L., Vernay, R., and Colombo, M.. Robust gust load alleviation of flexible aircraft equipped with LIDAR. Journal of Guidance, Control, and Dynamics, 45(1):5872, 2022. doi:10.2514/1.G006084.Google Scholar
Franklin, G. F., Powell, J. D., and Workman, M. L.. Digital Control ofDynamic Systems. Addison-Wesley, Menlo Park, California, USA, 3rd edition, 1998.Google Scholar
Frazer, R. A. and Duncan, W. J.. The flutter of aeroplane wings. Reports and Memoranda 1155, British Advisory Committee for Aeronautics, August 1928.Google Scholar
Frederick, M., Kerrigan, E. C., and J. M. R. Graham. Gust alleviation using rapidly deployed trailing-edge flaps. Journal of Wind Engineering and Industrial Aerodynamics, 98(12):712723, 2010. doi:10.1016/j.jweia.2010.06.005.Google Scholar
Friedmann, P. P. The renaissance of aeroelasticity and its future. Journal of Aircraft, 36(1): 105121, 1999.Google Scholar
Friswell, M. I. and Mottershead, J. E.. Finite Element Model Updating in Structural Dynamics. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.Google Scholar
Fung, Y. C. An Introduction to the Theory of Aeroelasticity. Courier Dover Publications, Mineola, New York, USA, 2008.Google Scholar
Gage, S. Creating a unified graphical wind turbulence model from multiple specifications. In AIAA Modeling and Simulation Technologies Conference and Exhibit, Austin, Texas, USA, August 2003. doi:10.2514/6.2003-5529.Google Scholar
Gangsaas, D., Ly, U, and Norman, D.. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology. In 19th Aerospace Sciences Meeting, St Louis, Missouri, USA, January 1981. doi:10.2514/6.1981-21.Google Scholar
Garrick, I. E. On some reciprocal relations in the theory of nonstationary flows. Technical Note >TN 629, N.A.C.A., 1938.TN+629,+N.A.C.A.,+1938.>Google Scholar
Garrick, I. E. Nonsteady Wing Characteristics, Division F., Vol. VII High Speed Aerodynamics and Jet Propulsion; Aerodynamic Components of Aircraft at High Speeds, Eds. Donovan, AF and Lawrence, HR. Princeton University Press, Princeton, New Jersey, USA, 1957.Google Scholar
Garrick, I. E. and Reed, W. H.. Historical development of aircraft flutter. Journal of Aircraft, 18 (11):897912, 1981.Google Scholar
Gaunaa, M. Unsteady 2D potential-flow forces on a thin variable geometry airfoil undergoing arbitrary motion. Technical report Risø-R-1478(EN), Risø National Laboratory, Denmark, 2006.Google Scholar
Gawronski, W. K. Advanced Structural Dynamics and Active Control of Structures. Springer Verlag, New York, New York, USA, 2004.Google Scholar
Gawronski, W. K. and Juang, J. N.. Model reduction in limited time and frequency intervals. International Journal of Systems Science, 21(2):349376, 1990. doi:10.1080/00207729008910366.CrossRefGoogle Scholar
Géradin, M. and Cardona, A. Flexible Multibody Dynamics: A Finite Element Approach. Chichester, UK John Wiley & Sons, 2001.Google Scholar
Géradin, M. and Rixen, D. Mechanical Vibrations – Theory and Applications to Structural Dynamics. John Wiley & Sons, Chichester, UK 2nd edition, 1997.Google Scholar
Glauert, H. Theoretical relationships for the lift and drag of an aerofoil structure. The Journal of the Royal Aeronautical Society, 27:512518, 1923.Google Scholar
Glauert, H. The force and moment of an oscillating aerofoil. Reports and Memoranda 1242, British Advisory Committee for Aeronautics, 1929.Google Scholar
Goizueta, N., Wynn, A, and Palacios, R.. Parametric Krylov-based order reduction of aircraft aeroelastic models. In AIAA Science and Technology Forum and Exposition, Nashville, Tennessee, USA, 48 January 2021.Google Scholar
Goizueta, N., Wynn, A., Palacios, R., Drachinsky, A., and Raveh, D. E.. Flutter predictions for very flexible wing wind tunnel test. Journal of Aircraft, 59(4):10821097, July 2022, doi:10.2514/1.C036710.Google Scholar
Goland, M. The lutter of a uniform cantilever wing. Journal of Applied Mechanics, 12(4): 197208, December 1945.Google Scholar
Goldstein, H., Poole, C. P., and Safko, J. Classical Mechanics. Pearson Education, Third Edition, 2014, London, UK, 2011.Google Scholar
Gonzalez-Salcedo, A., Aparicio-Sanchez, M., Munduate, X., Palacios, R., Graham, J. M. R., Pires, O., and Mendez, B.. A computationally-efficient panel code for unsteady airfoil modelling including dynamic stall. In 35th Wind Energy Symposium, Grapevine, Texas, USA, 913 January 2017. doi:10.2514/6.2017-2000.Google Scholar
Grauer, J. A. and Boucher, M.. System identification of flexible aircraft: lessons learned from the X-56A phase 1 flight tests. In AIAA Science and Technology Forum and Exposition, Orlando, Florida, USA, 610 January 2020. doi:10.2514/6.2020-1017.Google Scholar
Greenwood, D. T. Principles of Dynamics. Prentice-Hall, Upper Saddle River, New Jersey, USA, 1988.Google Scholar
Grouas, J. A very large aircraft, a challenging project for aeroelastics and loads. In International Forum on Aeroelasticity and Structural Dynamics, Madrid, Spain, 57 June 2001.Google Scholar
Gugercin, S. and Antoulas, A. C.. A survey of model reduction by balanced truncation and some new results. International Journal of Control, 77(8):748766, 2004. doi:10.1080/00207170410001713448.Google Scholar
Guimarães Neto, A. B., G. A. Silva, R., Paglione, P., and Silvestre, F. J.. Formulation of the flight dynamics of flexible aircraft using general body axes. AIAA Journal, 54(11):35163534, 2016. doi:10.2514/1.j054752.CrossRefGoogle Scholar
Haghighat, S., Liu, H. H. T. and Martins, J. R. R. A.. Model-predictive gust load alleviation controller for a highly lexible aircraft. Journal of Guidance, Control, and Dynamics, 35(6): 17511766, November 2012a. doi:10.2514/1.57013.CrossRefGoogle Scholar
Haghighat, S., Martins, J. R. R. A., and Liu, H. H. T.. Aeroservoelastic design optimization of a flexible wing. Journal of Aircraft, 49(2):432143, 2012b. doi:10.2514/1.C031344.Google Scholar
Hahn, K.-U. and König, R.. ATTAS flight test and simulation results of the advanced gust management system LARS. In AIAA Guidance, Navigation, and Control Conference, Hilton Head, South Carolina, USA, 1012 August 1992, AIAA Paper 92-4343-CP.Google Scholar
Hahn, K.-W. and Schwarz, C.. Alleviation of atmospheric flow disturbance effects on aircraft response. In 26th International Congress of the Aeronautical Sciences (ICAS), Anchorage, Alaska, USA, 1419 September 2008.Google Scholar
Hall, K. C. Eigenanalysis of unsteady flows about airfoils, cascades and wings. AIAA Journal, 32(12):24262432, December 1994. doi:10.2514/3.12309.CrossRefGoogle Scholar
Halsey, S. A., Goodall, R. M., D. Caldwell, B., and Pearson, J. T.. Filtering structural modes in aircraft: Notch filters vs. Kalman filters. In 16th IFAC World Congress, 38(1):205210, 2005. doi:10.3182/20050703-6-CZ-1902.00255.Google Scholar
Hansen, J. H., Duan, M., Kolmanovsky, I., and Cesnik, C. E. S.. Control allocation for maneuver and gust load alleviation of flexible aircraft. In AIAA Science and Technology Forum and Exposition, Orlando, Florida, USA, 610 January 2020. doi:10.2514/6.2020-1186.Google Scholar
Hariharan, N. and Leishman, J. G.. Unsteady aerodynamics of a lapped airfoil in subsonic low by indicial concepts. Journal of Aircraft, 33(5):855868, 1996.Google Scholar
Hassard, B. D., N.D. Kazarinoff, and Wan, Y. H.. Theory and Applications of Hopf Bifurcation. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, UK, 1981.Google Scholar
Hassig, H. J. An approximate true damping solution of the flutter equation by determinant iteration. Journal of Aircraft, 8(11):885889, 1971. doi:10.2514/3.44311.CrossRefGoogle Scholar
Hesse, H. Consistent Aeroelastic Linearisation and Reduced-order Modelling in the Dynamics of Manoeuvring Flexible Aircraft. PhD thesis, Imperial College London, UK, 2013.Google Scholar
Hesse, H. and Palacios, R.. Consistent structural linearisation in lexible-body dynamics with large rigid-body motion. Computers & Structures, 110111:1-14, November 2012. doi:10.1016/j.compstruc.2012.05.011.Google Scholar
Hesse, H. and Palacios, R.. Reduced-order aeroelastic models for dynamics of maneuvering flexible aircraft. AIAA Journal, 52(8):17171732, 2014. doi:10.2514/1.j052684.Google Scholar
Hesse, H. and Palacios, R.. Dynamic load alleviation in wake vortex encounters. Journal of Guidance, Control, and Dynamics, 39(4):801813, 2016. doi:10.2514/1.G000715.Google Scholar
Hoadley, S. T. and Karpel, M.. Application of aeroservoelastic modeling using minimum-state unsteady aerodynamic approximations. Journal of Guidance, Control, and Dynamics, 14(6): 12671276, November 1991. doi:10.2514/3.20783.Google Scholar
Hoblit, F. M. Gust Loads on Aircraft: Concepts and Applications. AIAA Education Series, Reston, Virginia, USA, 1988.Google Scholar
Hodges, D. H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. International Journal of Solids and Structures, 26(11):12531273, 1990. doi:10.1016/0020-7683(90)90060-9.Google Scholar
Hodges, D. H. Nonlinear Composite Beam Theory. American Institute of Aeronautics and Astronautics, Reston, Virginia, USA, January 2006. doi:10.2514/4.866821.Google Scholar
Hodges, D. H. and Pierce, G. A.. Introduction to Structural Dynamics and Aeroelasticity. Cambridge University Press, New York, New York, USA, 2nd edition, 2014.Google Scholar
Hodges, D. H. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA Journal, 41(6):11317, 2003. doi:10.2514/2.2054.Google Scholar
Hönlinger, H., H. Zimmermann, O. Sensburg, and Becker, J.. Structural aspects of active control technology. In AGARD-CP-560, Turin, Italy, 913 May 1994. NATO Advisory Group for Aerospace Research and Development.Google Scholar
Horn, R. A. and Johnson, C. R.. Matrix Analysis. Cambridge University Press, Cambridge, UK, 2012.Google Scholar
Houbolt, J. C. Atmospheric turbulence. AIAA Journal, 11(4):421437, 1973.Google Scholar
Hsiao, K. M., Lin, J. Y., and Lin, W. Y.. A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams. Computer Methods in Applied Mechanics and Engineering, 169(12):1–18, 1999. doi:10.1016/S0045-7825(98)00152-2.Google Scholar
Hunsaker, J. C. and Wilson, E. B.. Report on behavior of aeroplanes in gusts. Technical report, National Advisory Committee for Aeronautics, 1917.Google Scholar
ICAO. Manual of the ICAO Standard Atmosphere, 3rd edition, 1993. International Civil Aviation Organization, Doc 7488-CD.Google Scholar
Jacobson, S., Britt, R. T., Freim, D., and Kelly, P.. Residual pitch oscillation (RPO) flight test and analysis on the B-2 bomber. In 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Long Beach, California, USA, 2023 April 1998. doi:10.2514/6.1998-1805.Google Scholar
Johnson, W. Theory of Helicopter. Princeton University Press, Mineola, New York, USA, 1980.Google Scholar
Jones, J. G. Measured statistics of multicomponent gust patterns in atmospheric turbulence. Journal of Aircraft, 44(5):15591567, 2007.Google Scholar
Jones, J. R. and Cesnik, C. E. S.. Nonlinear aeroelastic analysis of the X-56A multiutility aeroelastic demonstrator. In 15th AIAA Dynamics Specialists Conference, San Diego, California, USA, 48 January 2016. doi:10.2514/6.2016-1799.Google Scholar
Jones, J. R. Development of a Very Flexible Testbed Aircraft for the Validation of Nonlinear Aeroelastic Codes. PhD thesis, University of Michigan, Ann Arbor, Michigan, USA 2017.Google Scholar
Jones, J. R. and Cesnik, C. E. S.. Preliminary flight test correlations of the X-HALE aeroelastic experiment. Aeronautical Journal, 119(1217):855870, 2015. doi:10.1017/S0001924000010952.Google Scholar
Jones, R. T. Operational treatment of the nonuniform lift theory to airplane dynamics. Technical Note 667, N.A.C.A., 1938.Google Scholar
Joseph, C. and Mohan, R.. Closed-form expressions of lift and moment coeficients for generalized camber using thin-airfoil theory. AIAA Journal, 59(10):17, 2021. doi:10.2514/1.j060859.Google Scholar
Joukowski, N. On the flight of birds (in Russian). Obshchestvo liubitelei estestvoznaniia, antropologit i etnografii, 73:2943, 1891.Google Scholar
Juang, J. N. and Pappa, R. S.. An eigensystem realization algorithm for modal parameter iden-tiication and model reduction. Journal of Guidance, Control, and Dynamics, 8(5):620627, 1985.doi:10.2514/3.20031.Google Scholar
Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.. Spectral characteristics of surface-layer turbulence. Quarterly Journal of the Royal Meteorological Society, 98(417):563589, 1972. doi:10.1002/qj.49709841707.Google Scholar
Kang, L. H., Kim, D. K., and Han, J. H.. Estimation of dynamic structural displacements using iber Bragg grating strain sensors. Journal of Sound and Vibration, 305(3):534542, 2007.CrossRefGoogle Scholar
Karpel, M. Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling. Journal of Aircraft, 19(3):221227, 1982. doi:10.2514/3.57379.Google Scholar
Karpel, M. Time-domain aeroservoelasticity modeling using weighted unsteady aerodynamic forces. Journal of Guidance, Navigation and Control, 13(1):3037, January 1990.Google Scholar
Karpel, M. Procedures and models for aeroservoelastic analysis and design. Zeitschrift fur Angewandte Mathematik und Mechanik, 81(9):57992, 2001. doi:10.1002/1521-4001(200109)81:9<579::AID-ZAMM579>3.0.CO;2-Z.Google Scholar
Karpel, M. and Brainin, L.. Stress considerations in reduced-size aeroelastic optimization. AIAA Journal, 33(4):716722, 1995. doi:10.2514/3.12447.Google Scholar
Karpel, M. and Sheena, Z.. Structural optimization for aeroelastic control effectiveness. Journal of Aircraft, 26(5):493495, May 1989. doi:10.2514/3.45791.Google Scholar
Karpel, M., Yaniv, S, and Livshits, D. S.. Integrated solution for computational static aeroelastic problems. In AIAA, NASA, and ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, Washington, USA, 1996. doi:10.2514/6.1996-4012.Google Scholar
Karpel, M., B. Moulin, E. Presente, L. AnguitaMaderuelo, C., and Climent, H.. Dynamic gust loads analysis for transport aircraft with nonlinear control effects. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, Illinois, USA, 710 April 2008. doi:10.2514/6.2008-1994.Google Scholar
Katz, J. and Plotkin, A. Low-Speed Aerodynamics. Cambridge Aerospace Series. Cambridge University Press, New York, New York, USA, 2nd edition, 2001.CrossRefGoogle Scholar
Kayran, A. Küssner’s function in the sharp-edged gust problem-A correction. Journal of Aircraft, 43(5):15961598, 2006. doi:10.2514/1.2029.Google Scholar
Kehoe, M. W. A historical overview of flight flutter testing. Technical Memorandum TM-4720, NASA, 1995.Google Scholar
Kelley, N. D. and Jonkman, B. J.. Overview of the TurbSim stochastic inflow turbulence simulator. Technical report NREL/TP-500-41137, National Renewable Energy Laboratory 2007.Google Scholar
Kennedy, G. J., K. W. Kenway, G., and Martins, J. R. R. A.. High aspect ratio wing design: Optimal aerostructural tradeoffs for the next generation of materials. In AIAA Science and Technology Forum and Exposition, National Harbor, Maryland, USA, 1317 January 2014. doi:10.2514/6.2014-0596.CrossRefGoogle Scholar
Kier, T. M. An integrated loads analysis model including unsteady aerodynamic effects for position and attitude dependent gust fields. In International Forum on Aeroelasticity and Structural Dynamics, Paris, France, 2729 June 2011. IFASD Paper 2011-052.Google Scholar
Kier, T. M. An integrated loads analysis model for wake vortex encounters. In International Forum on Aeroelasticity and Structural Dynamics, Bristol, UK, 2426 June 2013.Google Scholar
Kim, K. and Strganac, T. W.. Nonlinear responses of a cantilever wing with a external store. In 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, USA, 710 April 2003. doi:10.2514/6.2003-1708.CrossRefGoogle Scholar
Kirk, D. E. Optimal Control Theory. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1970.Google Scholar
Kitson, R. C., Lupp, C. A., and Cesnik, C. E. S.. Modeling and simulation of flexible jet transport aircraft with high-aspect-ratio wings. In 15th Dynamics Specialists Conference, San Diego, California, USA, 48 January 2016. doi:10.2514/6.2016-2046.Google Scholar
Klöckner, A., M. LeitnerSchlabe, D., and Looye, G.. Integrated modelling of an unmanned high-altitude solar-powered aircraft for control law design analysis. In 2nd CEAS Specialist Conference on Guidance, Navigation & Control, The Netherlands, 1214 April 2013.Google Scholar
Ko, J., Strganac, T. W., and Kurdila, A. J.. Stability and control of a structurally nonlinear aeroelastic system. Journal of Guidance, Control, and Dynamics, 21(5):718725, 1998.Google Scholar
Kopf, M., Bullinger, E., Giesseler, H. G., Adden, S., and Findeisen, R.. Model predictive control for aircraft load alleviation: Opportunities and challenges. In 2018 Annual American Control Conference, pages 24172424, Milwaukee, Minnesota, USA, 27-29 June 2018. doi:10.23919/ACC.2018.8430956.Google Scholar
KraftJr, C. C. Initial results of a flight investigation on a gust-alleviation system. N.A.C.A. Technical Note 3612, Washington, DC, USA, April 1956.Google Scholar
Kroll, N., M. Abu-Zurayk, D. Dimitrov, T. Franz, T. Führer, T. Gerhold, S. Görtz, R. Heinrich, C. Ilic, J. Jepsen, J. Jägersküpper, M. Kruse, A. Krumbein, S. Langer, D. Liu, R. Lie-pelt, L. Reimer, M. Ritter, A. Schwöppe, J. Scherer, F. Spiering, R. Thormann, V. Togiti,Google Scholar
Vollmer, D., and Wendisch, J. H.. DLR project Digital-X: Towards virtual aircraft design and flight testing based on high-fidelity methods. CEAS Aeronautical Journal, 7(1):327, 2016. doi:10.1007/sl3272-015-0179-7.Google Scholar
Krzysiak, A. and Narkiewicz, J.. Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies. Journal of Aircraft, 43(2):407418, 2006.Google Scholar
Kuchemann, D. A simple method for calculating the span and chordwise loading on straight and swept wings of any given aspect ratio at subsonic speeds. Technical report, Aeronautical Research Council, 1952. R.A.E. Report No. 2476.Google Scholar
Kumar, D. and Cesnik, C. E. S.. Performance enhancement in dynamic stall condition using active camber deformation. Journal of American Helicopter Society, 60(2):112, 2015. doi:10.4050/JAHS.60.022001.Google Scholar
Küssner, H. G. Schwingungen von Flugzeugflugeln (Flutter of aircraft wings). Luftfahrtforschung, 4:4162, June 1929.Google Scholar
Küssner, H. G. Zusammenfassender Bericht Über den instationären Auftrieb von Flügeln (Comprehensive report on the non-stationary lift of wings). Luftfahrtforschung, 13(12):410424, 1936.Google Scholar
Kwakernaak, H. and Sivan, R. Linear Optimal Control Systems. John Wiley & Sons, New York, New York, USA, 1972.Google Scholar
Lahooti, M., Palacios, R, and Sherwin, S. J.. Thick strip method for efficient large-eddy simulations of flexible wings in stall. In AIAA Science and Technology Forum and Exposition, Nashville, Tennessee, USA, 48 January 2021. doi:10.2514/6.2021-0363.Google Scholar
Lanchester, F. W. Aerodonetics. Archibald Constable & Co. Ltd., London, 1908.Google Scholar
Lanchester, F. W. Torsional vibrations of the tail of aeroplane. Reports and Memoranda 276, British Advisory Committee for Aeronautics, 1916.Google Scholar
Lavretsky, E. and Wise, K. A.. Robust and Adaptive Control. Advanced Textbooks in Control and Signal Processing. Springer London, London, UK 2013. doi:10.1007/978-1-4471-4396-3.Google Scholar
Le, K. C. Vibrations of Shells and Rods. Springer-Verlag, Berlin, Germany 1999.Google Scholar
Lee, T. and Basu, S.. Measurement of unsteady boundary layer developed on an oscillating airfoil using multiple hot-film sensors. Experiments in Fluids, 25(2):108117, 1998. doi:10.1007/s003480050214.Google Scholar
Leishman, J. G. Principles of Helicopter Aerodynamics. Cambridge Aerospace Series. Cambridge University Press, New York, New York USA, 2nd edition, 2006.Google Scholar
Levien, R. The elastica: A mathematical history. Technical report UCB/EECS-2008-103, EECS Department, University of California, Berkeley, California, USA August 2008.Google Scholar
Lewis, F. L., Xie, L., and Popa, D. Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory. Automation and Control Engineering. Taylor & Francis, Boca Raton, Florida, USA 2nd edition, 2008.Google Scholar
Li, D., Guo, S, and Xiang, J.. Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities. Journal of Sound and Vibration, 329(22):47564771, 2010. doi:10.1016/j.jsv.2010.06.006.Google Scholar
Li, H. and Ekici, K.. A novel approach for lutter prediction of pitch-plunge airfoils using an efficient one-shot method. Journal of Fluids and Structures, 82:651671, 2018. doi:10.1016/j.jfluidstructs.2018.08.012.Google Scholar
Li, H. and Ekici, K.. Aeroelastic modeling of the AGARD 445.6 wing using the harmonic-balance-based one-shot method. AIAA Journal, 57(11):48854902, 2019. doi:10.2514/ 1.J058363.Google Scholar
Lind, R. and Brenner, M. Robust Aeroservoelastic Stability Analysis: Flight Test Applications. Advances in Industrial Control. Springer-Verlag, London, UK, 2012.Google Scholar
Livne, E. Aircraft active flutter suppression: State of the art and technology maturation needs. Journal of Aircraft, 55(1):410452, 2018. doi:10.2514/1.C034442.Google Scholar
Livne, E. and Weisshaar, T.. Aeroelasticity of nonconventional airplane configurations-Past and future. Journal of Aircraft, 40(6):10471065, 2003. doi:10.2514/2.7217.Google Scholar
Lockyer, A. J., Drake, A., Bartley-Cho, J., Vartio, E., Solomon, D., and Shimko, T.. High lift over drag active (HiLDA) wing. Technical report, U.S. Air Force Research Laboratories, Wright Patterson Air Force Base, Ohio, USA 2005. AFRL-VA-WP-TR-2005-3066.Google Scholar
Lomax, T. L. Structural Loads Analysis for Commercial Transport Aircraft: Theory and Practice. AIAA Education Series. American Institute of Aeronautics and Astronautics, Reston, Virginia, USA, 1996.Google Scholar
Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge, UK, 1927.Google Scholar
Love, M. H., Zink, P. S., A. Wieselmann, P., and Youngren, H.. Body freedom flutter of high aspect ratio flying wings. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, Texas, USA, 1821 April 2005. doi:10.2514/6.2005-1947.CrossRefGoogle Scholar
Lu, K. J. and Kota, S.. Design of compliant mechanisms for morphing structural shapes. Journal of Intelligent Material Systems and Structures, 14(6):379391, 2003. doi:10.1177/1045389X03035563.Google Scholar
Lucia, D. J. The SensorCraft configurations: A non-linear aeroservoelastic challenge for aviation. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pages 17681774, Austin, Texas, USA, 18-21 April 2005. AIAA Paper 20051943.Google Scholar
Lupp, C. A. and Cesnik, C. E. S.. A gradient-based lutter constraint including geometrically nonlinear deformations. In AIAA Science and Technology Forum and Exposition, San Diego, California, USA, 711 April 2019. doi:10.2514/6.2019-1212.Google Scholar
MacNeal, R. H. and McCormick, C. W.. The NASTRAN computer program for structural analysis. Computers & Structures, 1:389112, 1972.Google Scholar
Magni, L., Raimondo, D. M., and Allgower, F, editors. Nonlinear Model Predictive Control,volume 384 of Lecture Notes in Control and Information Sciences. Springer, Berlin, Germany, 2009. doi:10.1007/978-3-642-01094-1.CrossRefGoogle Scholar
Mann, J. The spatial structure of neutral atmospheric surface-layer turbulence. Journal of Fluid Mechanics, 273:141168, 1994. doi:10.1017/S0022112094001886.Google Scholar
Mann, J. Wind field simulation. Probabilistic Engineering Mechanics, 13(4):269282, 1998. doi:10.1016/S0266-8920(97)00036-2.Google Scholar
Manwell, J. F., McGowan, J. G., and Anthony, L. Wind Energy Explained: Theory, Design and Application. John Wiley & Sons, Chichester, UK, 2nd edition, 2009.Google Scholar
Maraniello, S. and Palacios, R.. Optimal rolling maneuvers with very lexible wings. AIAA Journal, 55(9):29642979, 2017. doi:10.2514/1.J055721.CrossRefGoogle Scholar
Maraniello, S. and Palacios, R.. State-space realizations and internal balancing in potential-flow aerodynamics with arbitrary kinematics. AIAA Journal, 57(6):23082321, 2019. doi:10.2514/1.J058153.Google Scholar
Maraniello, S. and Palacios, R.. Parametric reduced-order modeling of the unsteady vortex-lattice method. AIAA Journal, 58(5):22062220, 2020. doi:10.2514/1.j058894.Google Scholar
Marsden, J. E. and Hughes, T. J. R.. Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983Google Scholar
Martinez, J. R., Flick, P. M., Perdzock, J., Dale, G., and Davis, M. B.. An overview of SensorCraft capabilities and key enabling technologies. In AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, USA, August 2008. doi:10.2514/6.2008-7185.Google Scholar
Matsuzaki, Y., T. UedaMiyazawa, Y., and Matsushita, H.. Gust load alleviation of a transport-type wing: Test and analysis. Journal of Aircraft, 26(4):322327, 1989. doi:10.2514/3.45763.Google Scholar
Mayo, A. J. and Antoulas, A. C.. A framework for the solution of the generalized realization problem. Linear Algebra and Its Applications, 425(2-3):634662, 2007. doi:10.1016/j.laa.2007.03.008.Google Scholar
McCroskey, W. J. Unsteady airfoils. Annual Review of Fluid Mechanics, 14(1):285311, 1982.Google Scholar
Meirovitch, L. Hybrid state equations of motion for flexible bodies in terms of quasicoordinates. Journal of Guidance, Control, and Dynamics, 14(5):10081013, 1991. doi:10.2514/3.20743.Google Scholar
Meirovitch, L. and Tuzcu, I.. Unified theory for the dynamics and control of maneuvering flexible aircraft. AIAA Journal, 42(4):714727, April 2004. doi:10.2514/1.1489. MIL-HDBK-1797. Flying Qualities of Piloted Aircraft. U.S. Department of Defense, December 1997.Google Scholar
MIL-HDBK-516B. Airworthiness Certification Criteria. U.S. Department of Defense, 2005.Google Scholar
MIL-STD-1540C. Test Requirements for Launch, Upper-Stage, and Space Vehicles. U.S. Department of Defense, September 1994.Google Scholar
Millikan, W. F. Progress in dynamic stability and control research. Journal of the Aeronautical Sciences, 14(9):493519, 1947. doi:10.2514/8.1434.Google Scholar
Milne, R. D. Dynamics of the deformable aeroplane, Parts I and II. Report 3345, Aeronautical Research Council, London, UK 1962.Google Scholar
Milne, R. D. Some remarks on the dynamics of deformable bodies. AIAA Journal, 6(3):556558, 1968.Google Scholar
Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 26(1):1732, 1981. doi:10.1109/TAC.1981.1102568.CrossRefGoogle Scholar
Morino, L. and Bernardini, G.. Singularities in BIEs for the Laplace equation; Joukowski trailing-edge conjecture revisited. Engineering Analysis with Boundary Elements, 25(9): 805818, October 2001. doi:10.1016/S0955-7997(01)00063-7.Google Scholar
Mouyon, P. and Imbert, N.. Identification of a 2D turbulent wind spectrum. Aerospace Science and Technology, 6(8):599605, 2002. doi:10.1016/S1270-9638(02)01198-7.Google Scholar
Muñoz Simón, A., Palacios, R, and Wynn, A.. Some modelling improvements for prediction of wind turbine rotor loads in turbulent wind. Wind Energy, 22(2):333353, 2022. doi:10.1002/we.2675.Google Scholar
Munk, M. M. General theory of thin wing sections. N.A.C.A. Report No. 142, 1922.Google Scholar
Muñoz-Esparza, D., B. Kosovicvan Beeck, J., and Mirocha, J.. A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers. Physics of Fluids, 27(3):035102, 2015. doi:10.1063/1.4913572.Google Scholar
Murrow, H. N., Pratt, K. M., and Houbolt, J. C.. N.A.C.A./NASA research related to evolution of U.S. gust design criteria. In 30th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Mobile, Alabama, USA, 0305 April 1989. doi:10.2514/6.1989-1373.Google Scholar
Murua, J., Palacios, R, and Peiro, J.. Camber effects in the dynamic aeroelasticity of compliant airfoils. Journal of Fluids and Structures, 26:527543, 2010. doi:10.1016/j. jfluidstructs.2010.01.009.Google Scholar
Murua, J., Palacios, R, and Graham, J. M. R.. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics. Progress in Aerospace Sciences, 55:4672, November 2012. doi:10.1016/j.paerosci.2012.06.001.Google Scholar
Murua, J., P. Martinez, H. Climentvan Zyl, L. H., and Palacios, R.. T-tail flutter: Potential-flow modelling, experimental validation and flight tests. Progress in Aerospace Sciences, 71: 5484, November 2014. doi:10.1016/j.paerosci.2014.07.002.Google Scholar
Nelson, R. C. Flight Stability and Automatic Control. McGraw-Hill, Boston, Massachusetts, USA, 2nd edition, 1998.Google Scholar
Ng, B. F., Palacios, R., Kerrigan, E. C., M. R. Graham, J., and Hesse, H.. Aerodynamic load control in horizontal axis wind turbines with combined aeroelastic tailoring and trailing-edge flaps. WindEnergy, 19(2):243263, 2015. doi:10.1002/we.1830.Google Scholar
Ng, B. F., Palacios, R., and Graham, J. M. R.. Model-based aeroelastic analysis and blade load alleviation of offshore wind turbines. International Journal of Control, 90(1):1536, 2017. doi:10.1080/00207179.2015.1068456.Google Scholar
Nguyen, N., K. TrinhNguyen, D., and Tuzcu, I.. Nonlinear aeroelasticity of flexible wing structure coupled with aircraft flight dynamics. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, USA, 2326 April 2012. doi:10.2514/6.2012-1792.CrossRefGoogle Scholar
Nguyen, N., J. FugateXiong, J., and Kaul, U.. Flutter analysis of the transonic truss-braced wing aircraft using transonic correction. In AIAA Science and Technology Forum and Exposition, San Diego, California, USA, 711 January 2019. doi:10.2514/6.2019-0217.Google Scholar
Nickel, K. and Wohlfahrt, M. Tailless Aircraft in Theory and Practice. Butterworth-Heinemann, Oxford, England, 1994.Google Scholar
Niu, M. C. Y. Airframe Structural Design: Practical Design Information. Hong Kong Conmilit Press, Hong Kong, 2nd edition, 1999.Google Scholar
Nocedal, J. and Wright, S. J.. Numerical Optimization. Springer, New York, New York, USA, 2nd edition, 2006.Google Scholar
Noll, T. E., M Brown, J., E Perez-Davis, M., D Ishmael, S., Tiffany, G. C, and Gaier, M.. Investigation of the Helios prototype aircraft mishap. Mishap Report: Volume 1, NASA, January 2004.Google Scholar
Norris, G. and Wagner, M. Boeing 787 Dreamliner. Zenith Press, Minneapolis, Minnesota, USA, 2009.Google Scholar
Oliver, M., J. Rodriguez Ahlquist, J. M. Carreno, H. ClimentDe Diego, R., and De Alba, J.. A400M GVT: The challenge of nonlinear modes in very large GVT. In International Forum on Aeroelasticity and Structural Dynamics, Seattle, Washington, USA, June 2225 2009.Google Scholar
Ouellette, J. A. and Valdez, F. D.. Generation and calibration of linear models of aircraft with highly coupled aeroelastic and flight dynamics. In AIAA Science and Technology Forum and Exposition, Orlando, Florida, USA, 610 January 2020. doi:10.2514/6.2020-1016.Google Scholar
Pak, C. and Truong, S.. Creating a test-validated finite-element model of the X-56A aircraft structure. Journal of Aircraft, 52(5):16441667, 2015. doi:10.2514/1.C033043.Google Scholar
Palacios, R. Nonlinear normal modes in an intrinsic theory of anisotropic beams. Journal of Sound and Vibration, 330(8):17721792, 2011.Google Scholar
Palacios, R. and Cea, A.. Nonlinear modal condensation of large finite element models: Application of Hodges’s intrinsic theory. AIAA Journal, 57(10):42554268, 2019. doi:10.2514/1.J057556.Google Scholar
Palacios, R. and Cesnik, C. E. S.. Cross-sectional analysis of non-homogeneous anisotropic active slender structures. AIAA Journal, 43(12):26242638, 2005.Google Scholar
Palacios, R., H. ClimentKarlsson, A., and Winzell, B.. Assessment of strategies for correcting linear unsteady aerodynamics using CFD or experimental results. In International Forum on Aeroelasiticy and Structural Dynamics, Madrid, Spain, 57 June 2001.Google Scholar
Palacios, R., Murua, J, and Cook, R.. Structural and aerodynamic models in the nonlinear flight dynamics of very flexible aircraft. AIAA Journal, 48(11):26482659, November 2010. doi:10.2514/1.J050513.Google Scholar
Panchal, J. and Benaroya, H.. Review of control surface freeplay. Progress in Aerospace Sciences, 127:100729, November 2021. doi:10.1016/j.paerosci.2021.100729.Google Scholar
Pankonien, A. M., Suh, P. M., R. Schaefer, J., and Mitchell, R. M.. Deadbands tell no tails: X-56A dynamic actuation requirements. In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Virtual conference, 15 September 2020. doi:10.1115/smasis2020-2427.CrossRefGoogle Scholar
Parenteau, M. and Laurendeau, E.. A general modal frequency-domain vortex lattice method for aeroelastic analyses. Journal of Fluids and Structures, 99:103146, 2020. doi:10.1016/j.jfluidstructs.2020.103146.Google Scholar
Pasinetti, G. and Mantegazza, P.. Single finite states modeling of aerodynamic forces related to structural motions and gusts. AIAA Journal, 37(5):604612, 1999. doi:10.2514/2.760.CrossRefGoogle Scholar
Patil, M. J. From fluttering wings to flapping flight: The energy connection. Journal of Aircraft, 40(2):270276, 2003. doi:10.2514/2.3119.Google Scholar
Patil, M. J. and Hodges, D. H.. Flight dynamics of highly flexible flying wings. Journal of Aircraft, 43(6):17901798, 2006. doi:10.2514/1.17640.CrossRefGoogle Scholar
Patil, M. J., Hodges, D. H., and Cesnik, C. E. S.. Nonlinear aeroelastic analysis of aircraft with high-aspect-ratio wings. In 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Long Beach, California, USA, 2023 April 1998. doi:10.2514/6.1998-1955.Google Scholar
Patil, M. J., Hodges, D. H., and Cesnik, C. E. S.. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. Journal of Aircraft, 38(1):8894, 2001. doi:10.2514/2.2738.Google Scholar
Payne, C. B. A flight investigation of some effects of automatic control on gust loads. N.A.C.A.Google Scholar
Research Memorandum L53E14a, Washington, DC, USA, July 1953.Google Scholar
Penzl, T. Numerical solution of generalized Lyapunov equations. Advances in Computational Mathematics, 8(1):3318, 1998. doi:10.1023/A:1018979826766.CrossRefGoogle Scholar
Penzl, T. Algorithms for model reduction of large dynamical systems. Linear Algebra and Its Applications, 415(2-3):322343, 2006. doi:10.1016/j.laa.2006.01.007.Google Scholar
Pereira, M. F. V., Kolmanovsky, I., Cesnik, C. E. S., and Vetrano, F.. Model predictive control for maneuver load alleviation in flexible airliners. In International Forum on Aeroelasticity and Structural Dynamics, Savannah, Georgia, USA, 913 June 2019a. IFASD Paper No 2019-018.Google Scholar
Pereira, M. F. V., Kolmanovsky, I., Cesnik, C. E. S., and Vetrano, F.. Model predictive control architectures for maneuver load alleviation in very flexible aircraft. In AIAA Science and Technology Forum and Exposition, San Diego, California, USA, 711 January 2019b. doi:10.2514/6.2019-159.Google Scholar
Pereira, M. F. V., Kolmanovsky, I., Cesnik, C. E. S., and Vetrano, F.. Time-distributed scenario-based model predictive control approach for flexible aircraft. In AIAA Science and Technology Forum and Exposition, Nashville, Tennessee, USA, 48 January 2021. doi:10.2514/6.2021-0502.Google Scholar
Pereira, M. F. V., Kolmanovsky, I, and C. E. S. Cesnik. Nonlinear model predictive control with aggregated constraints, Automatica, 146:11061149, December 2022a. doi: 10.1016/j.automatica.2022.110649.Google Scholar
Pereira, M. F. V., M. Duan, C. E. S. Cesnik, , Kolmanovsky, I., and Vetrano, F.. Model predictive control for very flexible aircraft based on linear parameter varying reduced-order models, In International Forum on Structural Dynamics and Aeroelasticity, Madrid, Spain, 1317 June 2022b.Google Scholar
Pereira, M. F. V., G. B. Chaves, R. M. Bertolin, I. Kolmanovsky, and Cesnik, C. E. S.. Experimental validation of model predictive controllers for load alleviation in very flexible aircraft, In International Forum on Structural Dynamics and Aeroelasticity, Madrid, Spain, 1317 June 2022c.Google Scholar
Perkins, C. D. Development of airplane stability and control technology. Journal of Aircraft,7 (4):290301, 1970. doi:10.2514/3.44167.CrossRefGoogle Scholar
Pesmajoglou, S. D. and Graham, J. M. R.. Prediction of aerodynamic forces on horizontal axis wind turbines in free yaw and turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 86(1):114, 2000. doi:10.1016/S0167-6105(99)00125-7.Google Scholar
Peters, D. A. and M. J. Johnson. Finite-state airloads for deformable airfoils on fixed and rotating wings. In ASME Symposium on Aeroelasticity and Fluid-Structure Interaction, volume 44, page 128, Fairfield, New Jersey, USA, November 1994.Google Scholar
Phillips, W. B. Loads implications of gust-alleviation systems. N.A.C.A. Technical Note 4056, Washington, DC, USA, June 1957.Google Scholar
Pope, S. B. Turbulent Flows. Cambridge University Press, New York, New York, USA, 2000.Google Scholar
Possio, C. L’azione aerodinamica sul profilo oscillante in un fluido compressibile a velocita iposonora. L’Aerotecnica, 18(4):441458, 1938.Google Scholar
Pratt, K. G. A revised formula for the calculation of gust loads. Technical Note 2964, National Advisory Committee for Aeronautics, Langley Aeronautical Laboratory, 1953.Google Scholar
Press, H., Meadows, M. T., and Hadlock, I.. Estimates of probability distribution of root-mean- square gust velocity of atmospheric turbulence from operational gust-load data by random- process theory. Technical Note 3362, N.A.C.A. 1955.Google Scholar
Preumont, A. Vibration Control of Active Structures: An Introduction. Springer International Publishing, Berlin, Germany, 4th edition, 2018.Google Scholar
Pugsley, A. G. The influence of wing elasticity upon longitudinal stability. Reports and Memoranda 1548, British Advisory Committee for Aeronautics, January 1933.Google Scholar
Quero, D., Vuillemin, P, and Poussot-Vassal, C.. A generalized state-space aeroservoe-lastic model based on tangential interpolation. Aerospace, 6(1):9, 2019. doi:10.3390/ aerospace6010009.Google Scholar
Quero, D., Vuillemin, P, and Poussot-Vassal, C.. A generalized eigenvalue solution to the flutter stability problem with true damping: The p-L method. Journal of Fluids and Structures, 103: 103266, 2021. doi:10.1016/j.jfluidstructs.2021.103266.CrossRefGoogle Scholar
Rabadan, G. J., Schmitt, N. P., Pistner, T., and Rehm, W.. Airborne LIDAR for automatic feedforward control of turbulent in-flight phenomena. Journal of Aircraft, 47(2):392403, March-April 2010.Google Scholar
Ramesh, K., A. Gopalarathnam, K. Granlund, M. V. Ol, and Edwards, J. R.. Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. Journal of Fluid Mechanics, 751:500538, 2014. doi:10.1017/jfm.2014.297.Google Scholar
Raveh, D. E., Levy, Y., and Karpel, M.. Efficient aeroelastic analysis using computational unsteady aerodynamics. Journal of Aircraft, 38(3):547556, 2001. doi:10.2514/2.2795.Google Scholar
Rawlings, J. B., Mayne, D. Q., and Diehl, M. Model Predictive Control: Theory, Computation, and Design. Nob Hill Publishing, Madison, Wisconsin, USA, 2017.Google Scholar
Rea, J. B. Aeroelasticity and stability and control. Wright Air Development Center, WADC TR 55173, Ohio, USA, 1957.Google Scholar
Reddy,J.N. Energy Principles and Variational Methods in Applied Mechanics. John Wiley & Sons, Hoboken, New Jersey, USA, 2nd edition, 2002.Google Scholar
Reeh, A. D. and Tropea, C.. Behaviour of a natural laminar flow aerofoil in flight through atmospheric turbulence. Journal of Fluid Mechanics, 767:394429, 2015. doi:10.1017/jfm.2015.49.Google Scholar
Regan, C. D. and Jutte, C. V.. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft. Technical report, NASA Dryden Flight Research Center, Edwards, California, USA, April 2012.Google Scholar
Reimer, L., Ritter, M., Heinrich, R., and Krüger, W. R.. CFD-based gust load analysis for a free-flying flexible passenger aircraft in comparison to a DLM-based approach. In 22nd AIAA Computational Fluid Dynamics Conference, Dallas, Texas, USA, June 2015. doi:10.2514/6.2015-2455.Google Scholar
Reissner, E. On one-dimensional large-displacement finite-strain beam theory. Studies in Applied Mathematics, 52(2):8795, June 1973.Google Scholar
Reissner, H. Neurere probleme aus der flugzeugstatik. Zeitschrift für Flugtechnik und Motorluftschiffahrt, 17:137146, April 1926.Google Scholar
Ricci, S., Marchetti, L., Riccobene, L., De Gaspari, A., Toffol, F., Fonte, F., Mantegazza, P., Berg, J., Morgansen, K. A., and Livne, E.. An active flutter suppression (AFS) project: Overview, results and lessons learned. In AIAA Science and Technology Forum and Exposition, Virtual Event, 1121 January 2021. doi:10.2514/6.2021-0908.Google Scholar
Ricciardi, A. P., Patil, M. J., A. Canfield, R., and Lindsley, N.. Evaluation of quasi-static gust loads certification methods for high-altitude long-endurance aircraft. Journal of Aircraft, 50 (2):457468, 2013. doi:10.2514/1.C031872.Google Scholar
Richardson, J. R., Atkins, E. M., T. Kabamba, P., and Girard, A. R.. Envelopes for flight through stochastic gusts. Journal of Guidance Control and Dynamics, 36(5):14641476, 2013.doi:10.2514/1.57849.Google Scholar
Ripepi, M. and Mantegazza, P.. Improved matrix fraction approximation of aerodynamic transfer matrices. AIAA Journal, 51(5):11561173, 2013. doi:10.2514/1.J052009.CrossRefGoogle Scholar
Riso, C. and Cesnik, C. E. S.. Correlations between UM/NAST nonlinear aeroelastic simulations and the pre-Pazy wing experiment. In AIAA Science and Technology Forum and Exposition, Nashville, Tennessee, USA, 48 January 2021. doi:10.2514/6.2021-1712.Google Scholar
Riso, C. and Cesnik, C. E. S.. Investigation of geometrically nonlinear effects in the aeroelastic behavior of a very flexible wing, In AIAA Science and Technology Forum and Exposition (SciTech2023), National Harbor, Maryland, USA, 2327 January 2023.CrossRefGoogle Scholar
Riso, C., Sanghi, D., Cesnik, C. E. S., Vetrano, F., and Teufel, P.. Parametric roll maneuverability analysis of a high-aspect-ratio-wing civil transport aircraft, In AIAA Science and Technology Forum and Exposition (SciTech2020), 61st AIAA/ASCE/AHS/ASC Structures, StructuralDynamics, and Materials Conference, Orlando, Florida, USA, 610 January 2020. AIAA-2020-1191. doi:10.2514/6.2020-1191.Google Scholar
Rodden, W. P. The development of the doublet-lattice method. In International Forum on Aeroelasticity and Structural Dynamics, Rome, Italy, 1720 June 1997.Google Scholar
Ahlquist, Rodriguez, , J., Carreno, J. M., Climent, H., De Diego, R., and De Alba, J.. Assessment of nonlinear structural response in A400M GVT. In 28th International Modal Analysis Conference (IMAC 28), Jacksonville, Florida, USA, 2010.CrossRefGoogle Scholar
Roesler, B. T. and Epps, B. P.. Discretization requirements for vortex lattice methods to match unsteady aerodynamics theory. AIAA Journal, 56(6):24782483, 2018. doi:10.2514/ 1.j056400.Google Scholar
Roger, K. L. Airplane math modelling and active aeroelastic control design. In AGARD Structures and Materials Panel, Loughton, Essex, UK, 1977. AGARD-CP-228.Google Scholar
Roger, K. L. and Hodges, G. E.. Active flutter suppression-A flight test demonstration. Journal of Aircraft, 12(6):410450, June 1975.Google Scholar
Routh, E. J. A Treatise on the Stability of a Given State of Motion, Particularly Steady Motion. MacMillian, London, UK, 1877.Google Scholar
Rule, J. A., Cox, D. E., and Clark, R. L.. Aerodynamic model reduction through balanced realization. AIAA Journal, 42(5):10451048, May 2004. doi:10.2514/1.9596.Google Scholar
Ryan, J. J., Bosworth, J. T., J. Burken, J., and Suh, P. M.. Current and future research in active control of lightweight, flexible structures using the X-56 aircraft. In 52nd Aerospace Sciences Meeting, National Harbor, Maryland, USA, 1317 January 2014. doi:10.2514/6.2014-0597.Google Scholar
Sahoo, D. and C. E. S. Cesnik. Roll maneuver control of UCAV wing using anisotropic piezoelectric actuators. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, USA, 2225 April 2002. doi:10.2514/6.2002-1720.Google Scholar
Saltari, F., Riso, C., Matteis, G., and Mastroddi, F.. Finite-element-based modeling for flight dynamics and aeroelasticity of flexible aircraft. Journal of Aircraft, 54(6):23502366, 2017. doi:10.2514/1.c034159.Google Scholar
Sanghi, D., Riso, C, and Cesnik, C. E. S.. Conventional and unconventional control effectors for load alleviation in high-aspect-ratio-wing aircraft, In AIAA Science and Technology Forum and Exposition (SciTech2022), San Diego, California, USA, 37 January 2022.Google Scholar
Sanghi, D., C. Cesnik, E. S., and Riso, C.. Roll maneuvers of very flexible aircraft with flared folding wingtips, In AIAA Science and Technology Forum and Exposition (SciTech2023), National Harbor, Maryland, USA, 2327 January 2023.Google Scholar
Sarpkaya, T., Robins, R. E., and Delisi, D. P.. Wake-vortex eddy-dissipation model predictions compared with observations. Journal of Aircraft, 38(4):687692, July 2001. doi:10.2514/ 2.2820.Google Scholar
Schmidt, D. K. Modern Flight Dynamics. Mc-Graw Hill, New York, New York, USA, 2012.Google Scholar
Schmidt, D. K. Discussion: “The Lure of the Mean Axes” (Meirovitch, L., and Tuzcu, I., ASME J. Appl. Mech., 74(3), pp. 497504). Journal of Applied Mechanics, 82(12):125501, December 2015. doi:10.1115/1.4031567.Google Scholar
Scott, R. C., Castelluccio, M. A., A. Coulson, D., and Heeg, J.. Aeroservoelastic wind-tunnel tests of a free-flying, joined-wing SensorCraft model for gust load alleviation. In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pages 136, Denver, Colorado, USA, 4-7 April 2011. doi:10.2514/6.2011-1960.CrossRefGoogle Scholar
Scott, R. C., Vetter, T. K., B. Penning, K., Coulson, D. A., and J. Heeg. Aeroservoelastic testing of a sidewall mounted free flying wind-tunnel model. In AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, USA, 1821 August 2008. doi:10.2514/6.2008-7186.Google Scholar
Sears, W. R. Some aspects of non-stationary airfoil theory and its practical application. Journal of the Aeronautical Sciences, 8(3):104108, 1941.Google Scholar
Sears, W. R. Stories from a 20th Century Life. Parabolic Press Ltd, Stanford, California, USA, 1994.Google Scholar
Sears, W. R. and von Kármán, T.. Airfoil theory for non-uniform motion. Journal of the Aeronautical Sciences, 5:379390, 1938.Google Scholar
Shabana, A. A. Theory of Vibration. Volume II: Discrete and Continuous Systems. Mechanical Engineering Series. Springer US, New York, New York, USA, 1991a. doi:10.1007/978-1-4684-0380-0.CrossRefGoogle Scholar
Shabana, A. A. Theory of Vibration. Volume I: Introduction. Mechanical Engineering Series. Springer US, New York, New York, USA, 1991b. doi:10.1007/978-3-319-94271-1.Google Scholar
Shabana, A. A. Flexible multibody dynamics: Review of past and recent developments. Multibody System Dynamics, 1(2):189222, 1997. doi:10.1023/A:1009773505418.Google Scholar
Sharman, R. D., Trier, S. B., P. Lane, L., and Doyle, J. D.. Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophysical Research Letters, 39, 2012. doi:10.1029/2012GL051996.Google Scholar
Sharqi, B. and Cesnik, C. E. S.. Ground vibration testing on very flexible aircraft, In AIAA Science and Technology Forum and Exposition (SciTech2020), 61st AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, USA, 610 January 2020.Google Scholar
Sharqi, B. and Cesnik, C. E. S.. Finite element model updating for very flexible aircraft, Journal of Aircraft, 14 pages, October 2022. doi:10.2514/1.C036894Google Scholar
Shearer, C. M. Coupled Nonlinear Flight Dynamics, Aeroelasticity, and Control of Very Flexible Aircraft. PhD thesis, Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan, USA, 2006.Google Scholar
Shearer, C. M. and C. E. S. Cesnik. Nonlinear flight dynamics of very flexible aircraft. Journal of Aircraft, 44(5):15281545, 2007. doi:10.2514/1.27606.CrossRefGoogle Scholar
Shearer, C. M. and Cesnik, C. E. S.. Trajectory control for very flexible aircraft. Journal of Guidance, Control, and Dynamics, 31(2):340357, March-April 2008. doi:10.2514/1.29335.Google Scholar
Silva, W. A. Identification of linear and nonlinear aerodynamic impulse responses using digital filter techniques. In 22nd AIAA Atmospheric Flight Mechanics Conference, New Orleans, Louisiana, USA, August 1997. doi:10.2514/6.1997-3712.Google Scholar
Silva, W. A. Simultaneous excitation of multiple-input/multiple-output CFD-based unsteady aerodynamic systems. Journal of Aircraft, 45(4):12671274, 2008. doi:10.2514/1.34328.Google Scholar
Silva, W. A. and Bartels, R. E.. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code. Journal of Fluids and Structures, 19(6): 729745, 2004. doi:10.1016/j.jfluidstructs.2004.03.004.Google Scholar
Silva, W. A. and Dunn, S.. Higher-order spectral analysis of F-18 flight flutter data. In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, Texas, USA, 1821 April 2005. doi:10.2514/6.2005-2014.CrossRefGoogle Scholar
Silva, W. A., Beran, P. S., E. S. Cesnik, C., Guendel, R. E., Kurdila, A., and Prazenica, R. J.. Reduced-order modeling: Cooperative research and development at NASA Lan- gley Research Center. In International Forum on Aeroelasticity and Structural Dynamics, Madrid, Spain, 57 June 2001.Google Scholar
Simiriotis, N., and Palacios, R.. A numerical investigation on direct and data-driven flutter prediction methods. Journal of Fluids and Structures, 117:103835, 2023 doi:10.1016/j.jfluidstructs.2023.103835.Google Scholar
Simó, J. C. and Vu-Quoc, L.. On the dynamics of flexible beams under large overall motions - The plane case: Part II. ASME Journal of Applied Mechanics, 53:855863, 1986. doi:10.1115/1.3171871.Google Scholar
Simó, J. C. and Vu-Quoc, L.. On the dynamics in space of rods undergoing large motions - A geometrically exact approach. Computer Methods in Applied Mechanics and Engineering, 66(2):125161, 1988. doi:10.1016/0045-7825(88)90073-4.Google Scholar
Simpson, R. J. S., Palacios, R, and S. Maraniello. State-space realizations of potential-flow unsteady aerodynamics with arbitrary kinematics. In 58th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, USA, 9—13 January 2017. doi:10.2514/6.2017-1595.Google Scholar
Simpson, R. J. S., Palacios, R, and Murua, J.. Induced drag calculations in the unsteady vortex-lattice method. AIAA Journal, 51(7):17751779, 2013. doi:10.2514/1.J052136.Google Scholar
Simpson, R. J. S., R. Palacios, H. Hesse, and Goulart, P. J.. Predictive control for alleviation of gust loads on very flexible aircraft. In 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, National Harbor, Maryland, USA, 13—17 April 2014. doi:10.2514/6.2014-0843.Google Scholar
Skogestad, S. and Postlethwaite, I. Multivariate Feedback Control, Analysis & Design. John Wiley & Sons, New York, New York, USA, 2nd edition, 2005.Google Scholar
Skujins, T. and Cesnik, C. E. S.. Reduced-order modeling of unsteady aerodynamics across multiple Mach regimes. Journal of Aircraft, 51(6):1681—1704, 2014. doi:10.2514/1.C032222.Google Scholar
Sleeper, R. K. Spanwise measurements of vertical components of atmospheric turbulence. Technical report 2963, NASA, April 1990.Google Scholar
Smilg, B. and Wasserman, L. S.. Application of three-dimensional flutter theory to aircraft structures. Air Corps Technical report 4798, 1942.Google Scholar
Smith, M. J., Hodges, D. H., and Cesnik, C. E. S.. An evaluation of computational algorithms to interface between CFD and CSD methodologies. WL-TR-96-3055, Flight Dynamics Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio, USA, 1995.Google Scholar
Smith, M. J., E. S. Cesnik, C., and Hodges, D. H.. Evaluation of computational algorithms suitable for fluid-structure interactions. Journal of Aircraft, 37(2):282—294, 2000. doi:10.2514/2.2592.Google Scholar
Spalart, P. R. Airplane trailing vortices. Annual Review of Fluid Mechanics, 30:107, 1998.Google Scholar
Spielberg, I. N. The two-dimensional incompressible aerodynamic coefficients for oscillatory changes in airfoil camber. Journal of the Aeronautical Sciences, 20:432—134, June 1953.Google Scholar
Stanford, B. K. Optimal aircraft control surface layouts for maneuver and gust load alleviation. In AIAA Science and Technology Forum and Exposition, Orlando, Florida, USA, 6—10 January 2020. doi:10.2514/6.2020-0448.Google Scholar
Stengel, R. F. Flight Dynamics. Princeton University Press, Princeton, New Jersey, USA, 2004.Google Scholar
Stevens, B. L., Lewis, F. L., and Johnson, E. N. Aircraft Control and Simulation. John Wiley & Sons, Hoboken, New Jersey, USA, 3rd edition, 2016.Google Scholar
Strganac, T. W. and Mook, D. T.. Numerical model of unsteady subsonic aeroelastic behavior. AIAA Journal, 28(5):903909, 1990. doi:10.2514/3.25137.Google Scholar
Strganac, T. W., Cizmas, P. G., Nichkawde, C., Gargoloff, J., and Beran, P. S.. Aeroelas-tic analysis for future air vehicle concepts using a fully nonlinear methodology. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, Texas, USA, 18—21 April 2005. doi:10.2514/6.2005-2171.Google Scholar
Strong, D. D., Kolonay, R. M., J. Huttsell, L., and Flick, P. M.. Flutter analysis of wing configurations using pre-stressed frequencies and mode shapes. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, Texas, USA, 18—21 April 2005. doi:10.2514/6.2005-2173.Google Scholar
Su, W. Development of an aeroelastic formulation for deformable airfoils using orthogonal polynomials. AIAA Journal, 55(8):2793—2807, 2017. doi:10.2514/1.J055665.Google Scholar
Su, W. and Cesnik, C. E. S.. Nonlinear aeroelasticity of a very lexible blended-wing-body aircraft. Journal of Aircraft, 47(5):1539—1553, 2010. doi:10.2514/1.47317.Google Scholar
Su, W. and Cesnik, C. E. S.. Dynamic response of highly flexible flying wings. AIAA Journal, 49(2):324339, 2011a. doi:10.2514/1.J050496.Google Scholar
Su, W. and Cesnik, C. E. S.. Strain-based geometrically nonlinear beam formulation for modeling very flexible aircraft. International Journal of Solids and Structures, 48:23492360, 2011b. doi:10.1016/j.ijsolstr.2011.04.012.CrossRefGoogle Scholar
Suryakumar, V. S., Babbar, Y., Strganac, T. W., and Mangalam, A. S.. Unsteady aerodynamic model based on the leading-edge stagnation point. Journal of Aircraft, 53(6):16261637, 2016. doi:10.2514/1.C033602.Google Scholar
Tang, D. M. and Dowell, E. H.. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA Journal, 39(8):14301441, 2001. doi:10.2514/2.1484.Google Scholar
Tang, D. M. and Dowell, E. H.. Limit cycle oscillations of two-dimensional panels in low subsonic flow. International Journal of Non-Linear Mechanics, 37(7):11991209, October 2002.Google Scholar
Taylor, G. The spectrum of turbulence. Proceedings of the Royal Society of London, 164:476490, 1938.Google Scholar
Taylor, P. F., Moreno, R., Banavara, N., K. Narisetti, R., and Morgan, L.. Flutter flight testing at Gulfstream Aerospace using advanced signal processing techniques. In 58th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, Texas, USA, 913 January 2017. doi:10.2514/6.2017-1823.Google Scholar
Teixeira, P. C. and Cesnik, C. E. S.. Propeller effects on the response of high-altitude long-endurance aircraft. AIAA Journal, 57(10):43284342, 2019. doi:10.2514/1.J057575.Google Scholar
Teixeira, P. C. and Cesnik, C. E. S.. Propeller inluence on the aeroelastic stability of high altitude long endurance aircraft. Aeronautical Journal, 124(1275):703730, 2020. doi:10.1017/aer.2019.165.CrossRefGoogle Scholar
Tessler, A. and Dong, S. B.. On a hierarchy of conforming Timoshenko beam elements. Computers & Structures, 14(3-l):335344, 1981. doi:10.1016/0045-7949(81)90017-1.Google Scholar
Teufel, P., Hanel, M, and Well, K. H.. Integrated light mechanic and aeroelastic modelling and control of a lexible aircraft considering multidimensional gust input. Technical report, RTO-MP-36, In RTO Meeting Proceedings on Structural Aspects of Flexible Aircraft Control, DTIC Document, 2000.Google Scholar
Theodorsen, T. General theory of aerodynamic instability and the mechanism of lutter. Report 496, N.A.C.A. 1935.Google Scholar
Theodorsen, T. and Garrick, I. E.. General potential theory of arbitrary wing sections. Report 452, N.A.C.A. 1934.Google Scholar
Theodorsen, T. and Garrick, I. E.. Mechanism of lutter. A theoretical and experimental investigation of the flutter problem. Report 685, N.A.C.A. 1938.Google Scholar
Thomas, J. P., Dowell, E. H., and Hall, K. C.. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter and limit cycle oscillations. AIAA Journal, 40(4):638646, 2002.CrossRefGoogle Scholar
Thormann, R. and Widhalm, M.. Linear-frequency-domain predictions of dynamic-response data for viscous transonic flows. AIAA Journal, 51(11):25402557, 2013. doi:10.2514/ 1.J051896.CrossRefGoogle Scholar
Tiffany, S. H. and Adams, W. M.. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces. Technical Publication 2776, NASA, 1988.Google Scholar
Tong, Y. L. The bivariate normal distribution. In The Multivariate Normal Distribution, page 622. Springer, New York, New York, USA, 1990. doi:10.1007/978-1-4613-9655-0_2.Google Scholar
Torenbeek, E. Synthesis of Subsonic Aircraft Design. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1982.Google Scholar
Tuzcu, I., Marzocca, P., Cestino, E., Romeo, G., and Frulla, G.. Stability and control of a high-altitude, long-endurance UAV. Journal of Guidance, Control, and Dynamics, 30(3):713721, 2007. doi:10.2514/1.25814.Google Scholar
van der Schaft, A. and Jeltsema, D.. Port-Hamiltonian systems theory: An introductory overview. Foundations and Trends in Systems and Control, 1(2-3):173378, June 2014. doi:10.1561/2600000002.Google Scholar
van Schoor, M. C. and von Flotow, A. H.. Aeroelastic characteristics of a highly flexible aircraft. Journal of Aircraft, 27(10):901908, 1990. doi:10.2514/3.45955.Google Scholar
van Zyl, L. H. and Matthews, E. H.. Aeroelastic analysis of T-tails using an enhanced doublet lattice method. Journal of Aircraft, 48(3):823831, 2011. doi:10.2514/1.C001000.Google Scholar
Vartio, E. J., Shimko, A., Tilmann, C. P., and Flick, P. M.. Structural modal control and gust load alleviation for a SensorCraft concept. In 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Austin, Texas, USA, 1821 April 2005. AIAA Paper 2005-1946.Google Scholar
Veers, P. S. Three-dimensional wind simulation. Sandia ReportSAND88-0152, Sandia National Laboratories, 1988.Google Scholar
Verwaal, N. W., J. van der Veen, G., and van Wingerden, J. W.. Predictive control of an experimental wind turbine using preview wind speed measurements. Wind Energy, 18(3):385398, 2015. doi:10.1002/we.1702.Google Scholar
Vizzaccaro, A. Numerical Methods for Nonlinear Vibration in Aircraft Engines: Dynamics of Blades in Large Amplitude Vibration and Blade-Casing Interaction. PhD thesis, Imperial College London, London, UK, April 2021.Google Scholar
von Baumhauer, A. F. and Koning, C.. On the stability of oscillations of an airplane wing. In International Air Congress, Marseille, France, 1922. Royal Aeronautical Society. von Kármán, T. Aerodynamics: Selected Topics in the Light of Their Historical Development. Cornell University Press, 1954.Google Scholar
von Kármán, T. and Burgers, J. M.. General Aerodynamic Theory - Perfect Fluids: Aerodynamic Theory. Vol. 2, edited by W. Durand. Dover, New York, 1968.Google Scholar
Wagner, H. Ueber die entstehung des dynamischen auftriebes von tragflugeln. Zietschrift für Angewandte Mathematik und Mechanick, 5(1):1735, 1925.Google Scholar
Waite, J. M., Grauer, J., Bartels, R. E., and Stanford, B. K.. Aeroservoelastic control law development for the integrated adaptive wing technology maturation wind-tunnel test. In AIAA Science and Technology Forum and Exposition, Nashville, Tennessee, USA, 48 January 2021. doi:10.2514/6.2021-0609.Google Scholar
Walker, W. P. and Patil, M. J.. Unsteady aerodynamics of deformable thin airfoils. Journal of Aircraft, 51(6):16731680, November-December 2014. doi:10.2514/1.C031434.Google Scholar
Wang, Q., Sprague, M. A., Jonkman, J., Johnson, N., and Jonkman, B.. BeamDyn: A high-fidelity wind turbine blade solver in the FAST modular framework. Wind Energy, 20(8):14391462, 2017. doi:10.1002/we.2101.Google Scholar
Wang, S. T. and Frost, W.. Atmospheric turbulence simulation techniques with application to flight analysis. Contractor Report 3309, NASA, September 1980.Google Scholar
Wang, Y., Palacios, R, and Wynn, A.. A method for normal-mode-based model reduction in nonlinear dynamics of slender structures. Computers & Structures, 159:2610, 2015. doi: 10.1016/j.compstruc.2015.07.001.Google Scholar
Wang, Y., Wynn, A, and Palacios, R.. Nonlinear aeroelastic control of very flexible aircraft using model updating. Journal of Aircraft, 55(4), 2018. doi:10.2514/1.C034684.Google Scholar
Wang, Z., P. C. Chen, D. D. Liu, and Mook, D. T.. Nonlinear-aerodynamics/nonlinear-structure interaction methodology for a high-altitude long-endurance wing. Journal of Aircraft, 47(2): 556566, 2010. doi:10.2514/1.45694.CrossRefGoogle Scholar
Waszak, M. R. and Fung, J.. Parameter estimation and analysis of actuators for the BACT wind-tunnel model. 21st AIAA Atmospheric Flight Mechanics Conference, 2931 July 1996. doi:10.2514/6.1996-3362.Google Scholar
Waszak, M. R. and Schmidt, D. K.. Flight dynamics of aeroelastic vehicles. Journal of Aircraft, 25(6):563571, 1988.Google Scholar
Weisshaar, T. A. and Lee, D. H.. Aeroelastic tailoring of joined-wing configurations. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural, Dynamics, and Materials Conference, Denver, Colorado, USA, 2225 April 2002. doi:10.2514/6.2002-1207.Google Scholar
Welch, G. and Bishop, G.. An introduction to the Kalman filter. Proc. Siggraph Course 8, Association for Computer Machinery, 2001.Google Scholar
Williams, P. D. and Joshi, M. M.. Intensification of winter transatlantic aviation turbulence in response to climate change. Nature Climate Change, 3, 2013. doi:10.1038/nclimate1866.Google Scholar
Willis, D. J., Peraire, J., and White, J. K.. A combined pFFT-multipole tree code, unsteady panel method with vortex particle wakes. International Journal for Numerical Methods in Fluids, 53:13991422, 2007. doi:10.1002/fld.1240.Google Scholar
Wilson, E. B. Report on behavior of aeroplanes in gusts. Part II: Theory of an aeroplane encoutering gusts. N.A.C.A. Report No. 1, 1916.Google Scholar
Wirsching, P. H., Paez, T. L., and Ortiz, K. Random Vibrations: Theory and Practice. John Wiley & Sons, New York, New York, USA, 1995.Google Scholar
Wright, J. R. and Cooper, J. E.. Introduction to Aircraft Aeroelasticity and Loads. John Wiley & Sons, Chichester, England, 2007.Google Scholar
Wright, W. The Papers of Wilbur and Orville Wright, Including the Chanute-Wright letters, Volume 1: 18991905. Edited by McFarland, M. W., McGraw-Hill, New York, New York, USA, 2001.Google Scholar
Wu, T. Y. Hydromechanics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable speeds in an inviscid fluid. Journal of Fluid Mechanics, 46(2):337355, 1971. doi:10.1017/S0022112071000570.Google Scholar
Wyngaard, J. C. Turbulence in the Atmosphere. Cambridge University Press, Cambridge, UK, 2010.Google Scholar
Wynn, A., Y. Wang, R. Palacios, and Goulart, P. J.. An energy-preserving description of nonlinear beam vibrations in modal coordinates. Journal of Sound and Vibration, 332(21): 55435558, 2013. doi:10.1016/j.jsv.2013.05.021.CrossRefGoogle Scholar
Yue, C. and Zhao, Y.. An improved aeroservoelastic modeling approach for state-space gust analysis. Journal of Fluids and Structures, 99:103148, November 2020. doi:10.1016/j.jfluidstructs.2020.103148.Google Scholar
Zeiler, T. A. Results of Theodorsen and Garrick revisited. Journal of Aircraft, 37(5):918920, 2000.Google Scholar
Zhou, K., Doyle, J. C., and Glover, K. Robust and Optimal Control. Prentice-Hall, Upper Saddle River, New Jersey, USA, 1st edition, 1995.Google Scholar
Zou, F., V. A. RiziotisVoutsinas, S. G., and Wang, J.. Analysis of vortex-induced and stall-induced vibrations atstandstill conditions using a free wake aerodynamiccode. WindEnergy, 18(12):21452169, 2015. doi:10.1002/we.1811.Google Scholar
Zwölfer, A. and Gerstmayr, J.. Preconditioning strategies for linear dependent generalized component modes in 3D flexible multibody dynamics. Multibody System Dynamics, 47(1): 6593, 2019. doi:10.1007/s11044-019-09680-6.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Rafael Palacios, Imperial College of Science, Technology and Medicine, London, Carlos E. S. Cesnik, University of Michigan, Ann Arbor
  • Book: Dynamics of Flexible Aircraft
  • Online publication: 29 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108354868.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Rafael Palacios, Imperial College of Science, Technology and Medicine, London, Carlos E. S. Cesnik, University of Michigan, Ann Arbor
  • Book: Dynamics of Flexible Aircraft
  • Online publication: 29 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108354868.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Rafael Palacios, Imperial College of Science, Technology and Medicine, London, Carlos E. S. Cesnik, University of Michigan, Ann Arbor
  • Book: Dynamics of Flexible Aircraft
  • Online publication: 29 June 2023
  • Chapter DOI: https://doi.org/10.1017/9781108354868.016
Available formats
×