Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T08:51:59.936Z Has data issue: false hasContentIssue false

Part VI - Asian monsoons

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ajay Mohan, R. S. and Goswami, B. N. (2003). Potential predictability of the Asian Summer Monsoon on monthly and seasonal time scales, Met Atmos. Phys., 84, 83100.CrossRefGoogle Scholar
Ajay Mohan, R. S. and Goswami, B. N. (2007). Dependence of boreal summer tropical intra-seasonal oscillations on the simulation of seasonal mean. J. Atmos. Sci. 64, 460478.CrossRefGoogle Scholar
Ajay Mohan, R. S., Annamalai, M., Iho, J. J., Hafner, J., and Yamagata, T. (2011). Poleward propagation of boreal summer intra-seasonal oscillations in a coupled model: role of internal processes, Clim. Dyn., 37, 851867.CrossRefGoogle Scholar
Allan, R. J., Reason, C. J. C., Lindesay, J. A., and Ansell, T. J. (2003). Protracted ENSO episodes and their impacts in the Indian Ocean region, Deep Sea Research, II, 50, 23312347.CrossRefGoogle Scholar
Ananthakrishnan, R., Acharya, U. R., and Ramakrishnan, A. R. (1967). On the criteria for declaring the onset of South-West monsoon over Kerala. Forecasting Manual, FMU Ref. No.IV, 18.1. IMD, Pune, 52 pp.Google Scholar
Ananthakrishnan, R. (1977). Some aspects of monsoon circulation and rainfall, Pure and Appld. Geophys. 115, 12091249.CrossRefGoogle Scholar
Ananthakrishnan, R and Soman, M. K. (1988). The onset of SW monsoon over Kerala, J. Climatol. 8, 283296.CrossRefGoogle Scholar
Anjaneylu, T. S. S. (1969). On the estimates of heat and moisture budgets over the Indian monsoon trough zone, Tellus, 21, 6474.CrossRefGoogle Scholar
Annamalai, H., Slingo, J. M., Sperber, K. R., and Hodges, K. (1999). The mean evolution and variability of the Asian Summer Monsoon: Comparison of ECMWF and NCEP NCAR analyses, Mon. Wea. Rev., 127, 11571186.2.0.CO;2>CrossRefGoogle Scholar
Annamalai, M. and Slingo, J. M. (2001). Active – break cycle, diagnosis of the intra-seasonal variability of the Asian Summer Monsoon, Climate Dynamics, 18, 85102.CrossRefGoogle Scholar
Annamalai, M. and Sperber, K. R. (2005). Regional heat sources and active and break phases of intra-seasonal boreal summer (30–50 day) variability J. Atmos. Sci. 62, 27262748.CrossRefGoogle Scholar
Annamalai, M. (2010). Moist dynamical linkages between the equatorial Indian Ocean and the South Asian Monsoon trough, J. Atmos. Sci., 67, 589610.CrossRefGoogle Scholar
Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T. (2004). Individual and combined influences of ENSO and Indian Ocean Dipole on the Indian Summer Monsoon. J. Climate 17, 31413155.2.0.CO;2>CrossRefGoogle Scholar
Ashok, K., Guan, Z., and Yamagata, T. (2001). Impact of the Indian Ocean Dipole on relationship between the Indian Monsoon rainfall and ENSO. J. Meteorol. Soc. Japan 81(1), 4156.CrossRefGoogle Scholar
Asnani, G. C. (1993) (2005 revised edition): Tropical Meteorology Vol. I, II, and III, Praveen Printing Press, Pune, India.Google Scholar
Awade, S. T., Totagi, M. Y., Bawiskar, S. M., and Sikka, D. R. (1984). Dynamics of the large scale tropospheric circulation during summer monsoon and tropical droughts, Mausam, 35, 315322.CrossRefGoogle Scholar
Bamzai, A. S. and Shukla, J. (1999). Relation between Eurasian snow cover, snow depth and the Indian summer monsoon: an observational study, J. Climate, 12, 31173132.2.0.CO;2>CrossRefGoogle Scholar
Barnett, T., Dummnel, L., Senkse, G., Roeckner, E., and Latif, M. (1989). J. Atmos. Sci. 46, 661685.2.0.CO;2>CrossRefGoogle Scholar
Behra, S. K. and Yamagata, T. (2003). Influence of the Indian Ocean dipole on the Southern Oscillation, J. Climate 6, 450469.Google Scholar
Bhat, G. S. (2006). The Indian drought of 2002: a sub-seasonal phenomenon. Q. J. Roy. Meteor. Soc., 32, 25832602.CrossRefGoogle Scholar
Bhide, U. V., Muzamar, S. P., Ghanekar, O. K. et al. (1997). A diagnostic study on heat sources and moisture sinks in the monsoon trough area during active-break phase of the Indian monsoon of 1979, Tellus, 49A, 455473.CrossRefGoogle Scholar
Blanford, H. F. (1884). On the connection of the Himalayan snowfall and seasons of drought In India, Proc. Roy Soc., London, 32, 322.Google Scholar
Blanford, H. F. (1886). Rainfall of India, Memoir No.4, Ind. Met. Dept, 2, 668 pp.Google Scholar
Bolastina, R. A., Ming, Y., and Ramaswamy, R. (2011). Anthropogenic aerosols and the weakening of the south Asian summer monsoon, Science, 334, 502505.CrossRefGoogle Scholar
Brode, R. W. and Mak, M. K. (1978). On the mechanics of the monsoonal mid-trophosphere cyclone formation. J. Atmos. Sci., 35, 14731484.2.0.CO;2>CrossRefGoogle Scholar
Carr, F. H. (1977). Mid-tropospheric cyclones and the summer monsoon. Pure and Appld. Geophys, 115, 851412.Google Scholar
Chakraborty, A. S., Sateesh, S. K., Nenjundiah, R. S., and Srinivasan, J. (2004). Impact of absorbing aerosols on the simulation of climate over the Indian region in an atmosphere general circulation model. Annales Geophysical, 22, 14211434.CrossRefGoogle Scholar
Chang, C. P. and Krishnamurti, T. N. (Eds) (1987). Monsoon Meteorology Oxford Monographs on Geology of Geophys, N07 Oxford University Press.Google Scholar
Chang, C. P., Ding, Y., Lau, N. C., et al. (Eds.) (2011). The Global Monsoon System, World Scientific, Singapore.CrossRefGoogle Scholar
Charney, J. G. and Shukla, J. (1981). Predictability of monsoon in Monsoon Dynamics, Ed. Lighthill, J. and Pearce, R. P., 99110, Cambridge University Press.CrossRefGoogle Scholar
Chatopadhyay, R., Sahai, A. K., and Goswami, B. N. (2008). Objective identification of non-linear coupled phases of monsoon intra seasonal oscillation: Complications for prediction 2008: J. Atmos. Sci., 65, 15491569.Google Scholar
Chattopadhyay, R., Goswami, B. N., Sahai, A. K., and Fraedrich, K. (2009). Role of stratiform rainfall in modifying the northward propagation of monsoon intra-seasonal oscillation, J. Geophy., Res 114, D191141 doi 10.10.1029/2009/D011869CrossRefGoogle Scholar
Chung, E. and Ramanathan, V. (2006). Weakening of northern Indian Ocean SST gradients and the meteorological rainfall in India and the Sahel, J. Geophys. Res. 110:011102:10,10129 / 2004 J 0005441Google Scholar
Colon, J. A. (1964). On interaction between the South West monsoon and the sea surface over the Arabian Sea, Ind. J. Meteor. Geophys., 45, 183200.Google Scholar
Daggupathy, S. M. and Sikka, D. R. (1974). On the vorticity and vertical velocity distribution associated with a life cycle of monsoon depression. J. Atmos. Sci; 33, 773792.Google Scholar
Das Gupta, M., Pradhan, P. K., Das, S., and Mohanty, U. C. (2007). Simulation of rain-bearing summer monsoon systems during the west coast of India by use of ARMEX re-analysis Natural Hazards, 42, 379390.CrossRefGoogle Scholar
Das, P. K. (1986). Monsoon, 5th WMO Lecture, WMO No. 613, 155 pp.Google Scholar
Das, S., Mitra, A. K., Iyengar, G., and Singh, J. V. (2002). Skill of medium range forecasts over the Indian monsoon region using different parameterization of deep convection, Weather and Forecasting, 17, 11941210.2.0.CO;2>CrossRefGoogle Scholar
Das, S., Ashrit, R., Iyengar, G. R., et al. (2008). Performance of mesoscale models over India during monsoon season, NCMRWF Tech. Rept. NCMRWF, NOIDA, India, 144 pp.Google Scholar
Dash, S. K., Kumar, J. R., and Shekhar, H. S. (2004). On the decreasing frequency of monsoon depressions over the Indian region, Curr. Sci., 86, 14041411.Google Scholar
Dash, S. K., Singh, G. P., Shekhar, M. S., and Vernekar, A. D. (2005). Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia. Climate Dyn., 24, 110.CrossRefGoogle Scholar
Dash, S. K., Sarthi, P., and Panda, S. K. (2006). A study on the effect of Eurasian snow in the summer monsoon circulation and rainfall using a spectral GCM. Int. J. Climatol, 26, 10171025.CrossRefGoogle Scholar
Datta, S., Narkhedkar, S. G., Sikka, D. R., and Devi, S. (2011). A dynamical comparison between two recent drought southwest monsoon seasons 2002 and 2009 over India, Mausam, 62, 133144.CrossRefGoogle Scholar
De, U. S. and Mukhopadhyay, R. K. (2002). Breaks in monsoon and related precursors, Mausam, 53, 205212.CrossRefGoogle Scholar
Deshpande, N. R. and Singh, N. (2010). Spatial and temporal variations in the occurrence of wet periods over river basins of India, J. Earth Sys. Sci., 199, 561570.CrossRefGoogle Scholar
Delsole, T. and Shukla, J. (2012). Geophys. Res. Lett. 39, doi 10.1029/2012 GL 05 1279Google Scholar
Dhar, O. N., Rakhecha, P. R., and Mandal, B. N. (1980). Does the early or late onset of monsoon provide any clue to subsequent rainfall during the monsoon season, Mon. Wea. Rev. 108, 10691072.2.0.CO;2>CrossRefGoogle Scholar
Dhar, O. N. and Nandargi, S. (1999). Role of low pressure areas in the absence of tropical disturbances during the monsoon months in India. Int. J Climatol, 19, 11531159.3.0.CO;2-C>CrossRefGoogle Scholar
Dickson, R. R. (1984). Eurasian snow cover versus Indian monsoon rainfall, J. Clim. Appl. Meteor., 24, 171173.2.0.CO;2>CrossRefGoogle Scholar
Ding, Y. and Sikka, D. R. (2006). Synoptic Systems and Weather in the Asian Monsoon (Ed. Wang, B.) Praxis, Chichester, UK, 131202.CrossRefGoogle Scholar
Douville, H. and Royer, J. F. (1996). Sensitivity of the Asian summer monsoon with the Meteo-France GCM, Climate Dyn., 12, 440466.CrossRefGoogle Scholar
Durai, V. R., Roy Bhowmik, S. K., and Mukhhopadyay, B. (2010). Evaluation of Indian summer monsoon rainfall features using TRMM and Kalpana satellite derived precipitation and raingauge observation, Mausam, 61, 317336.CrossRefGoogle Scholar
Durand, F., Papa, F., Rahman, A., and Bala, S. K. (2011). Impact of Ganges – Brahmputra Inter-annual Discharge Variations on Bay of Bengal Salinity and Temperature during 1992–1999 Period, J. Earth Sp. Sci., 120, 859872.CrossRefGoogle Scholar
Eliot, J. (1884). Accounts of south-west monsoon storms generated in the Bay of Bengal during 1877–1881: Mem. Ind Met. Dept. 2, 217448.Google Scholar
Fasullo, J. and Webster, P. J. (2003). A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16, 32003211.2.0.CO;2>CrossRefGoogle Scholar
Fein, J. S. and Stephens, P. L. (Eds) (1987). Monsoons, John Wiley and Sons, 632 pp.Google Scholar
Ferranti, L., JSlingo, M., Palmer, T. N., and Hoskins, B. J. (1997). Relations between inter-annual and intra-seasonal monsoon variability as diagnosed from AMPI investigations. Q. J. Roy. Meteor. Soc. 123, 13231357.CrossRefGoogle Scholar
Findlatter, J. (1969). A major air current near the west Indian Ocean during the northern summer, Quart. J. Roy. Meteorol. Soc., 95, 12511262.CrossRefGoogle Scholar
Findlatter, J. (1977). Observational aspects of the low-level cross-equatorial jet stream of the western Indian Ocean, PAGEOPH, 115, 12511259.CrossRefGoogle Scholar
Flohn, H. (1960). Recent investigations on the mechanism of the summer monsoon over southern and eastern Asia. In Monsoons of the World, Ind. Met. Dept., pp. 75–88.Google Scholar
Francis, R. A. and Gadgil, S. (2006). Intense rainfall events over the west coast of India, Met. Atmos. Phys. Doi 10.1007/S0073–005–0167–2.Google Scholar
Gadgil, S. (2000). Monsoon-Ocean coupling, Curr. Sci., 78, 309323.Google Scholar
Gadgil, S. and Joseph, P. V. (2003). On the breaks of the Indian Monsoon. Proc. Ind. Acad. Sci, 25 (E and P. Sci) 112, 529558.Google Scholar
Gadgil, S. (2003). The Indian monsoon and its variability. Ann. Rev. Earth and Planetary Sci., 31, 429467.CrossRefGoogle Scholar
Gadgil, S., Vinaychandran, P. N., and Francis, P. A. (2003). Droughts of the Indian summer monsoon, Role of clouds over the Indian Ocean, Current Sci., 88, 17131719.Google Scholar
Gadgil, S., Vinaychandran, P. N., Francis, P. A., and Gadgil, S. (2004). Extremes of Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation Geophys. Res. Lett. 31, doi. 10. 1029/2004 GL 019733.CrossRefGoogle Scholar
Gadgil, S., Rajeevan, R., and Francis, P. A. (2007). Monsoon variability: Links to major oscillations over the equatorial Pacific and Indian Oceans Curr. Sci., 98, 182194.Google Scholar
Gadgil, S and Srinivasan, J. (2012). Monsoon prediction: are dynamical models getting beter than statistical models? Current Sci., 103, 257259.Google Scholar
George, P. A. (1956). Effect of off shore vortices on rainfall along with west coast of India, Ind. J. Met. Geophys 7, 235240.Google Scholar
Godbole, R. V. (1977). The composite structure of monsoon depression over India, Pure and Appld, Geophys, 24, 114.Google Scholar
Goswami, B. N and Ajaymohan, R. S. (2000). Intra seasonal oscillation and inter-annual variability of the Indian summer monsoon, 14, 1180–1198.2.0.CO;2>CrossRefGoogle Scholar
Goswami, B. N. and Xavier, P. K. (2003a). Potential predictability and extended range prediction Indian summer monsoon breaks. Geophys. Res.Lett., 32, doi.10. 1029/2003, GL 017810.Google Scholar
Goswami, B. N., Ajaymohan, R. S., Xavier, P. K., and Sengupta, D. (2003b). Clustering of low pressure systems during the Indian summer monsoon by intra-seasonal oscillations, Geophys. Res. Lett. 80(8), doi. L0, 1 029/2002/GLO 16734Google Scholar
Goswami, B. N and Xavier, P. K. (2005). ENSO central to the South Asian monsoon and length of the rainy season, Geo Phys. Res. Lett. 32, 18717CrossRefGoogle Scholar
Goswami, B. N., Wu, G., and Yasunuri, T. (2006). Annual cycle, intra-seasonal oscillation, and road block to seasonal predictability of the Asian summer monsoon. J. Climate, 19, 50785099.CrossRefGoogle Scholar
Goswami, B. N., Kulkarni, J. R., Mujumdar, V. R., and Chatopadhyay, R. (2010). On factors responsible for recent secular trend in the onset phase of monsoon intra seasonal oscillations, Int. J. Climatol. 30, 22402246.CrossRefGoogle Scholar
Goswami, P. and Gauda, K. C. (2010). Evaluation of a dynamical basis for advance forecasting of the date of onset of monsoon rainfall over India, Mon. Wea. Rev., 138, 31203141.CrossRefGoogle Scholar
Grossman, R. L. and Durran, D. R. (1981). Interaction of low level flow with the western ghat mountains and off-shore convection in the summer monsoon, Mon. Wea. Rev., 112, 652672.2.0.CO;2>CrossRefGoogle Scholar
Guhathakurta, P. and Rajeevan, M. (2008). Trends in the rainfall patterns over India, Int. J. Climatol. 28, 14531469.CrossRefGoogle Scholar
Guhathakurta, P., Sreejith, O. P., and Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risks of India, J. Earth Syst. Sci., 120, 359373.CrossRefGoogle Scholar
Hahn, D. G. and Shukla, J. (1976). An apparent relation between Eurasian snow cover and Indian monsoon rainfall J. Atmos. Sci. 33, 24612462.2.0.CO;2>CrossRefGoogle Scholar
Hareesh Kumar, P. V., Joshi, M., Sanil kumar, K. V., Rao, A. D., and others (2009). Growth and decay of the Arabian Sea mini warm pool during May 2000: Observations and simulations. Deep Sea Res., doi. 10. 1016/j.dsr.2008, 12.004.Google Scholar
India Met. Dept (IMD) (2011, 2012). Monsoon Monograph I & II, IMD, Pune.Google Scholar
Jadhav, S. K. and Munot, A. A. (2004). Statistical study of the low pressure systems during summer monsoon season over the Indian region. Mausam, 55, 1530.CrossRefGoogle Scholar
Johnson, R. B. (2006). Mesoscale processes. In The Asian Monsoon (Ed. Wang, B.) Paraxizs/Springer Pub., pp. 331356.Google Scholar
Joseph, S., Sahai, A. K., and Goswami, B. N. (2008). Eastward propagating MJO during Boreal Summer and Indian Monsoon Droughts, Clim. Dyn. Doi 10.10071 00382 – 088.0412–8Google Scholar
Joseph, P. V. and Raman, P. L. (1966). Existence of low level westerly jet stream over Peninsular India during July. Ind. J. Met. Geophys., 17, 407410.Google Scholar
Joseph, P. V., Eischeid, J. K., and Phyle, R. J. (1994). Inter annual variability of the onset of summer monsoon and its associations with atmospheric features, EI Nino and sea surface temperature anomalies, J. Climate, 7, 81105.2.0.CO;2>CrossRefGoogle Scholar
Joseph, P. V., Suraj, K. P., and Rajan, C. K. (2006). The summer monsoon onset process over South Asia and an objective method for the date of monsoon onset over Kerala. Int. J. Climatol., 26, 18711893.CrossRefGoogle Scholar
Joseph, P. V. and Sabin, T. P. (2008). Ocean-atmosphere interaction mechanism for the active-break cycle of the Asian summer monsoon, Clim. Dyn. 30, 553566.CrossRefGoogle Scholar
Joseph, S., Sahai, A. K., and Goswami, B. N. (2009). Eastward propagating MJO during boreal and Indian monsoon droughts, Clim. Dyn. 32, 11391153.CrossRefGoogle Scholar
Ju, J. and Slingo, J. M. (1995). The Asian summer monsoon and ENSO, Quart. J. Roy. Meteor. Soc. 77, 437471.Google Scholar
Kakade, S. B. and Dugam, S. S. (2008). Impact of cross-equatorial flow on intra-seasonal variability of Indian summer monsoon rainfall, Geophys. Res. Let., 35, L 12805CrossRefGoogle Scholar
Kanamitsu, M. and Krishnamurti, T. N. (1978). Northern summer circulation during drought and normal rainfall months, Mon. Wea. Rev., 106, 331347.2.0.CO;2>CrossRefGoogle Scholar
Kar, S. C., Sugi, M., and Sato, N. (2001). Inter-annual variability of the Indian summer monsoon and internal oscillations in the JMA global model simulations. J. Meteor. Soc., Japan, 9, 607623.CrossRefGoogle Scholar
Keshvamurty, R. N. (1968). On the maintenance of the mean zonal motion in the Indian summer monsoon, Mon. Wea. Rev., 96, 2331.Google Scholar
Keshvamurty, R. N. and Awade, S. T. (1970). On the maintenance of the mean monsoon trough over north India, Mon. Wea. Rev. 98, 315320.2.3.CO;2>CrossRefGoogle Scholar
Keshvamurty, R. N. (1982). Response of the atmosphere to sea surface temperature anomalies in the equatorial Pacific teleconnection of the Southern Oscillation. J. Atmos. Sci., 39, 12411259.2.0.CO;2>CrossRefGoogle Scholar
Keshvamurty, R. N. and Shankar Rao, M. (1992). The Physics of Monsoon, Allied Pub.Google Scholar
Kinter, J. L. III, Miyakoda, H., and Yang, S. (2002). Recent changes in the connection from the Asian Monsoon to ENSO, J. Climate, 15, 12031215.2.0.CO;2>CrossRefGoogle Scholar
Kitoh, A. (1994). AGCM Experiment on Tibetan snow and monsoon, Proc. Int. Conf. on Meteorological Variability & Prediction, WHO, Trieste, pp. 661–665.Google Scholar
Koteswaran, P. (1958 a). Easterly jet stream in the tropics, Tellus, 10, 4357.Google Scholar
Koteswaran, P. (1958b). Monsoons of the World pp. 105110, Ind. Met. Dept., New Delhi.Google Scholar
Kriplani, R. H., Singh, S. V., Vernekar, A. D., and Thapaliyal, V. (1996). Empirical study on Nimbus-7 snow mass and Indian summer monsoon rainfall, Int. J. Climatol. 16, 2334.3.0.CO;2-J>CrossRefGoogle Scholar
Kriplani, R. H and Kulkarni, A. (1999). Climatology and variability of Soviet snow depth: Some new perspectives in snow Indian monsoon teleconnection. J. Atmos. Sciences 15, 475489.Google Scholar
Krishnan, R. and Sundaram, S. (2005). On the dynamical extended range predictability of active / break spells of the Indian Summer Monsoon: Sensitivity to initial conditions, Int. J. Ecology and Development, 505, 123.Google Scholar
Krishnan, R., Ramesh, K. V., Samda, R. K., et al. (2006). Indian ocean-monsoon coupled interactions and impending monsoon droughts, I Geophys. Res. Lett., 31, L08711Google Scholar
Krishnan, R., Kumar, V., Sugi, M., and Vishimura, J. (2009). Internal feedbacks from mid-latitude interactions during droughts in the Indian monsoon, J. Atmos. Sci., 660, 553578.CrossRefGoogle Scholar
Krishna Kumar, K., Hoerling, M., and Rajagopalan, B. (2005). Advancing dynamical prediction of Indian monsoon rainfall, Geophys. Res.Lett 82, 14.Google Scholar
Krishna Kumar, K., Rajagopalan, B., Hoerling, M., Batesal, G., and Care, M. (2006). Unraveling the mystery of Indian monsoon failure during Elnino Science, 314, 115119.CrossRefGoogle Scholar
Krishnamurti, T. N. ( 1971). Tropical east-west circulation of the tropical upper troposphere motion field during the northern hemisphere summer, J. Atmos. Sci. 28, 1342, 1347.2.0.CO;2>CrossRefGoogle Scholar
Krishnamurti, T. N. and Bhalme, H. N. (1976). Oscillations of monsoon system, Pt. I., observational aspects, J. Atmos. Sci., 45, 19371954.2.0.CO;2>CrossRefGoogle Scholar
Krishnamurti, T. N., Ardanay, P., Ramanathan, Y., and Pasch, R. (1981). On the onset vortex of the summer monsoon, Mon. Wea. Rev., 109, 341363.2.0.CO;2>CrossRefGoogle Scholar
Krishnamurti, T. N and Ramanathan, Y. (1982). Sensitivity of monsoon onset to differential heating, J. Atmos. Sci., 39, 12901306.2.0.CO;2>CrossRefGoogle Scholar
Krishnamurti, T. N., Subramaniam, M., Oosterhofaud, D., and Daughenbang, G. (1990). On the predictability of low frequency modes, J. Meterol. Atmos. Phys., 42, 1937.CrossRefGoogle Scholar
Krishnamurti, T. N., Sajani, S., Shin, D.W., et al. (2001). Real time multi-analysis – multimodel super ensemble forecasts of precipitation using TRMM and SSM/L products. Mon.Wea. Rev., 120, 28612883.2.0.CO;2>CrossRefGoogle Scholar
Krishnamurti, T. N., Chakraborty, D. R., Cubuke, N., Stefnova, L., and Vijayakumar, T. S. V. (2003). A mechanism of the Madden Julian Oscillation based on interactions in the frequency domain, Quart. J. Roy. Meteor. Soc., 129, 25592590.CrossRefGoogle Scholar
Krishnamurti, T. N., Sanjay, J., Mitra, A. K., and Vijay Kumar, T. S. V. (2004). Determination of forecast errors arising from different components of model physics and dynamics. Mon. Wea. Rev., 132, 25702594.CrossRefGoogle Scholar
Krishnamurti, T. N., Mitra, A. K., Vijay Kumar, T. S. V., Yun, W.T., and Devar, W. K. (2006). Seasonal climate forecastors of the Asian Summer monsoon using multiple coupled models, Tellus (A), 58, 487507.CrossRefGoogle Scholar
Krishnamurti, T. N., Simon, A., Thomas, A., Mishra, A., Sikka, D., Niyogi, D., Chakraborty, A. and Li-Li, (2012a). Modeling of forecast sensitivity on the march of monsoon isochrones from Kerala to New Delhi: The First 25 Days, J. Atmos. Sci., 69, 24652487.CrossRefGoogle Scholar
Krishnamurti, T. N., Krishnamurti, R., Simon, A., Thomas, A., and Kumar, V. (2012b). A mechanism of the MJO, Special Issue, Yanai AMS MonographGoogle Scholar
Krishnamurti, T. N. (2013). Personal discussions.Google Scholar
Krishnamurthy, V. and Goswami, B. N. (2000). Indian monsoon – ENSO relationship on inter-decadal time scale. J. Climate, 13, 579595.2.0.CO;2>CrossRefGoogle Scholar
Krishnamurthy, V. and Shukla, J. (2000). Intra-seasonal and inter-annual variation of rainfall over India, J. Climate, 13, 43664375.2.0.CO;2>CrossRefGoogle Scholar
Krishnamurthy, V. and Shukla, J. (2007). Intra-seasonally and seasonally persisting patterns over the Indian monsoon region. J. Climate, 20, 320.CrossRefGoogle Scholar
Krishnamurthy, V. and Shukla, J. (2008). Seasonal persistence and propagation of intraseasonal patterns over the Indian Summer monsoon region. Climate Dynamics, 30, 353367.CrossRefGoogle Scholar
Krishnamurthy, V. ( 2011). Extreme Events and Trends in the Indian Summer Monsoon, COLA Tech. Rept., 314, COLA / IGES, 4041, Powder Mill Road, Suite, 302, Calverton, Hd. 20705, USA.Google Scholar
Krishnan, R., Kumar, V., Sugi, M., and Yosimura, J. (2009). Internal feedbacks from monsoon – mid-latitude interactions during droughts in the Indian summer monsoon. J. Atmos. Sci. (under publication)Google Scholar
Krishnan, R. and Swapna, P. (2009). Significant influence of the Boreal summer monsoon flow on the Indian Ocean response during dipole events., J. Climate, 22, 56115634.CrossRefGoogle Scholar
Kucharski, F., Molteni, F., and Yoo, J. H. (2006). SST forcing of decadal Indian monsoon rainfall variability. Geophys. Res. Lett. 83, L037709.Google Scholar
Kug, J. S. and Kang, I. S. (2006). Interactive feedback between the Indian Ocean and ENSO, J. Climate, 19, 17841801.CrossRefGoogle Scholar
Kumara, A, Jha, B., Zhangal, Q., and Bounoua, L. (2007). A methodology for estimating the unpredictable component of seasonal atmospheric variability, J. Climate, 20, 38883901.CrossRefGoogle Scholar
Lau, K. M. and Kim, K. M. (2006). Observational relationship between aerosol and Asian monsoon rainfall and circulation, Geophys. Res. Lett., 33, 121810: dir.10. 1029/2006 GL027546CrossRefGoogle Scholar
Lau, K. M., Kim, M. K., and Kim, K. M. (2008a). Asian summer monsoon anomalies induced by aerosol direct radiative forcing – the role of Tibetan high. Climate Dyn., 28.Google Scholar
Lau, K. M., Ramanathan, V., Wu, G.X., et al. (2008b). The joint aerosol-hydrological cycle interaction – a new challenge to monsoon climate research. Bull. Am. Meteorl. Soc., 89 (3), 369383.CrossRefGoogle Scholar
Lawrence, D. M and Webster, P. J. (2001). Inter annual variations of the intra-seasonal oscillation in the South Asian summer monsoon region. J. Climate, 14, 29102922.2.0.CO;2>CrossRefGoogle Scholar
Lee, J. F. et al. (2010). How are seasonal prediction skills related to model performance on mean state and annual cycle, Clim. Dyn., 35, 267283.CrossRefGoogle Scholar
Li, C. and Yanai, M. (1996). The onset and inter-annual variability of Asian summer monsoon in relation to land-sea thermal contrast. J. Climate, 9, 358375.2.0.CO;2>CrossRefGoogle Scholar
Meehl, G. A., Arblaster, J. M., and Coolins, W. D. (2008). Effects of black carbon aerosols on the Indian monsoon, J. Climate, 21, 2334.CrossRefGoogle Scholar
Menon, S., Hansen, J., Nazarenko, Z., and Luo, Y. (2002). Climate effects of black carbon aerosols in China and India, Science, 297, 22502253.CrossRefGoogle ScholarPubMed
Miller, F. R. and Keshavamurty, R. N. (1968). IIOE Meteorological Monograph, East-West Centre Press, Hawaii, USA.Google Scholar
Mishra, S. K., Patwardhan, M. D., and George, L. (1985). A primitive equation barotrophic instability study of the monsoon onset vortex, 1979. Q.J.R. Meteor. 111, 427444.CrossRefGoogle Scholar
Mitra, A. K., Iyenger, G. R., Durai, V. R., et al. (2011). Experimental real time multi model ensemble (MME) of rainfall during monsoon 2008, large scale medium range aspects, J. Earth Sys. Sci., 120, 2752.CrossRefGoogle Scholar
Mohanty, U. C., Dube, S. K., and Singh, M. P. (1983). A study of heat and moisture budgets over the Arabian Sea and their role in the onset and maintenance of summer monsoon. J. Met. Soc. Japan, 61, 208221.CrossRefGoogle Scholar
Mohanty, U. C. and Ramesh, K. J. (1994). A study on the dynamics and energetics of the Indian summer monsoon. Proc. Ind. Acad. Sci (E&Psci) 60A, 2355.Google Scholar
Mohanty, U. C., Sam, N. V., and Basu, S. (2003). A study on the structure of convective atmosphere over the west coast of India during ARMEX-1 2005, Mausam, 56, 4958.CrossRefGoogle Scholar
Mohanty, U. C., Rao, P. V. S., and Bhatia, R. (2005). A study on the climatological features of the Asian Summer monsoon, dynamics, energetic and variability, Pure Appld. Geophys.Google Scholar
Mooley, D. A. and Shukla, J. (1989). Main features of the westward moving low pressure systems which form over the Indian region during the monsoon season and their relationship with the monsoon rainfall, Mausam, 40, 137152.CrossRefGoogle Scholar
Mukherjee, A. K., Kumar, S., and Krishnamurthy, G. (1984). The dynamics of the offshore vortex in east Arabian Sea and its associated rainfall, Ind. J. Met. Hydrol. Geophys, 35, 233234.Google Scholar
National Centre for Medium Range Weather Forecasting (NCMRWF) (2009).Google Scholar
Nanjundiah, R. and Krishnamurti, T. N. (2007). Intra-seasonal oscillations of tropical convergence zones: Theory and prediction, Curr. Sci., 93, 173181.Google Scholar
Nanjundiah, R. S., Srinivasan, J., and Gadgil, S. (1992). Intra-seasonal variation of the Indian summer monsoon: Thearetical aspects. J. Meteor. Soc., Japan, 70, 529550.CrossRefGoogle Scholar
Nagaraju, C., Sikka, D. R., and Basantha Kumar, S. (2012). The ability of a high resolution atmospheric general circulation model for the march of monsoon isochromes from Cochin to Jodhpur. Paper presented at the Int. Conf. on opportunities and challenges in monsoon prediction in a changing climate and predicatility of monsoon, IITM. Pune, 2125, Feb., 2012.Google Scholar
Normand, C. (1953). Monsoon seasonal forecasting, Q. J. Roy. Meteor. Soc., 79, 463473.CrossRefGoogle Scholar
Ose, T. (1996). The comparison of the simulated response to the regional snow mass anomalies over Tibet, Eastern Europe and Siberia, J. Meteor. Soc., Japan, 74, 845866.CrossRefGoogle Scholar
Pai, D. S., Bhate, J., Sreejith, O. P., Hatwar, H. R. (2009). Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India, Clim. Dyn. doi:10.10007/s00382-009- 0634-4.CrossRefGoogle Scholar
Pai, D. S., Bhate, J., Sreejith, O. P., and Hatwar, H. R. (2011). Impact of MJO on intra-seasonal variation of summer monsoon rainfall over India, Clim. Dyn. 36, 4155.CrossRefGoogle Scholar
Palmer, T. N. and Williams, P. (2008). Stochastic physics and climate dynamical Phil.Trans. Roy. Soc., July issue.Google Scholar
Pant, G. B. and Parthasarathy, B. (1981). Some aspects of an association between the Southern Oscillation and Indian summer monsoon, Arch. Meteor. Geophys. Biokl, B29, 245252.Google Scholar
Pant, P. S. (1983). A physical basis for changes in the phases of the summer monsoon over India. Mon. Wea. Rev., 106, 771781.Google Scholar
Pant, G. B. and Rupakumar, K. (1997). Climate of South Asia, John Wiley and Sons, Chichester, USA.Google Scholar
Parthasarathy, B., Munot, A. A., and Kothawale, D. R. (1994). All India monthly and seasonal rainfall series 1871–1993. Tehor. Appl. Climatol., 49, 217224.CrossRefGoogle Scholar
Parthasarathy, B and Yang, S. (1995). Relationship between regional summer monsoon rainfall and Eurasian snowcover, Adv. Atmos. Sci., 12, 143150.CrossRefGoogle Scholar
Pascal, T., Kamala, K., Masson, S., and others (2012). The role of intra-daily SST variability in the Indian monsoon variability and monsoon – ENSO – IOD relationship in a global coupled model, Clim. Dyn., 30, 729754.Google Scholar
Pasch, R. J. (1983). On the onset of the planetary scale monsoon, Report NO.83–9, Dept.Met., F.S.U. Tallabasse, Fla.Google Scholar
Pearce, R. P. and Mohanty, U. C. (1984). Onsets of the Asian Summer Monsoons 1979–82. J. Atmos. Sci., 41, 16201639.2.0.CO;2>CrossRefGoogle Scholar
Pisharoty, P. R. and Desai, B. N. (1956). Western disturbances and Indian Weather, Ind. J. Meteor Geophys., 8, 333338.Google Scholar
Pisharoty, P. R. and Asnani, G. C. (1957). Rainfall around monsoon depression southwest monsoon in India, Ind. J. Met. Geophys., 7, 333338.Google Scholar
Pokhrel, S. and Sikka, D. R. (2013). Variability of the TRMM-PR total, Convective and Statiform Rain Fractions over the Indian Region during the Summer Monsoon, Clim. Dyn., 41, 2144.CrossRefGoogle Scholar
Prasad, V. S. and Hayashi, T. (2007). Active, weak and break spells in the Indian summer monsoon, Meteor. Atmos.Phys., 95, 5361.CrossRefGoogle Scholar
Prasanna, V. and Annamalai, H. (2012). Moist dynamics of extended monsoon breaks over South Asia, J. Climate, 25, 38103831.CrossRefGoogle Scholar
Raghavan, K. (1973). Break monsoon over India. Mon. Wea. Rev. 101, 3343.2.3.CO;2>CrossRefGoogle Scholar
Rajamani, S. and Sikdar, D. N. (1989). Some dynamical characteristics and thermal structure of monsoon depressions over the Bay of Bengal. Tellus, 41 A, 255269.CrossRefGoogle Scholar
Rajeevan, M., Pal, D. S., and Das, M. R. (2002). Asymmetric thermodynamic structure of monsoon depression revealed in microwave satellite data, Current Sci., 81, 448450.Google Scholar
Rajeevan, M., Bhate, J., Kale, J. D., and Lal, B. (2006). High resolution daily gridded rainfall data for the Indian region. Analysis of break and active monsoon spells. Curr. Sci., 91, 296306.Google Scholar
Rajeevan, M., Bhate, J., and Jaiswal, A. K. (2008a). Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data, Geophys. Res. Let., 35 L 18707 doi: 10.1029/2008 GL 035143Google Scholar
Ramage, C. S. (1971). Monsoon Meteorology, Int. Geophys. Ser. 15, Academic Press, San Diego, USA.Google Scholar
Ramamoorthy, K. (1969). Monsoon of India – Some aspects of break in the Indian South West monsoon during July and August. Forecasting manual 157, No.IV, 183, Ind. Met. Dept., Poona, India, Roy BhowmikGoogle Scholar
Ramanathan, V., Chung, C., Kunm, D., et al. (2005). Atmospheric brown clouds: Impact on South Asian climate and hydrological cycle, Proc. Nat. Acad. Sci (USA), 102, 53265333.CrossRefGoogle ScholarPubMed
Ramaswamy, C. (1962). Break in the Indian summer monsoon as a phenomenon of interaction between the easterly and westerly jet streams, Tellus 14, 337349.CrossRefGoogle Scholar
Rameshkumar, M. R., Krishnan, R., and others (2009). Increasing trend of break monsoon condition over India – role of ocean-atmosphere processes in the Indian Ocean, IEE Geosci. And Remote Sensing Let., 6, 332336.Google Scholar
Rao, K. G. (1988). Diagnosis of dominant forcing factors for large scale vertical velocities during active and break phases of the monsoon. Pure Appld. Geophys., 127, 669693.CrossRefGoogle Scholar
Rao, K. G., Desbois, M., Rocca, R., and Nakmura, K. (2004). Upper tropospheric drying and the transition to break in the Indian summer monsoon during 1999: Geophys.Res.Lett., Dir 10. 1029/2003, GLO18269.Google Scholar
Rao, P. L. S., Mohanty, U. C., and Ramesh, K. J. (1999). Mean dynamical characteristics of the Asian summer monsoon with a global analysis forecast system, Met. Atmos. Phys., 68, 5777.CrossRefGoogle Scholar
Rao, P. S. and Sikka, D. R. (2005). Intra-seasonal variability of the summer monsoon over north Indian Ocean as revealed by the BOBME and ARMEX field programs. Pure and Appld. Geophys., 162, 14811510.CrossRefGoogle Scholar
Rao, R. R. (1986a). The observed thermal response of the upper north eastern Arabian Sea to the onset of summer monsoon during ISMEX-73, Mausam, 37, 429434.CrossRefGoogle Scholar
Rao, R. R. (1986 b). Cooling and deepening of the mixed layer on the central Arabian Sea during monsoon-77: Observations and Simulations, Deepsea Res., 32, 14131424.Google Scholar
Rao, R. R. (1987). The observed variability of the cooling and deepening of mixed layer in the Central Arabian Sea during Monsoon – 77, Mausam, 38, 4348.CrossRefGoogle Scholar
Rao, R. R. and Shivkumar, R. (1999). On the possible mechanisms of the evolution of a mini warm pool during the pre-monsoon season and the onset vortex in the South Eastern Arabian Sea, Q. J. R. Meteorol. Soc: 125, 787809.Google Scholar
Rao, Y. P. (1976). Southwest Monsoon, Met. Monography, Synoptic Meteorology, India Met. Dept., Pune, 367 pp.Google Scholar
Rasmusson, E. M. and Carpenter, T. H. (1983). Relationship between eastern equatorial Pacific sea surface temperature and rainfall over India and Sri Lanka Mon. Wea.Rev. 111, 517528.2.0.CO;2>CrossRefGoogle Scholar
Ratnam, J. V., Sikka, D. R., Sudipta, A., and others (2007). Dynamical prediction of monsoon rainfall over India, using NCEP T-171 model, Pure and Appld. Geophys., 164.Google Scholar
Rodwell, M. J. (1997). Breaks in the Indian Monsoon: The influence of southern hemisphere weather systems, J. Atmos. Sci., 54, 25972611.2.0.CO;2>CrossRefGoogle Scholar
Romatsechke, U., Medina, S., and Houze, R. (2010), Regional seasonal and diurnal variation of convection in the South Asian region, J. Clim., 23, 419439.CrossRefGoogle Scholar
Romatsechke, U. and Houze, R. (2011). Characteristics of precipitating convective system in the South Asian monsoon, J. Hydromet., 12, 326.CrossRefGoogle Scholar
Roxy, M., Guladi, S., Drobhlar, H. K. L., and Navarra, A. (2011). Seasonality in the relationship between El Nino and Indian Ocean dipole, Clim. Dyn., 37, 221236.CrossRefGoogle Scholar
Bhowmik, Roy, S. K. and Durai, U. R. (2008). Multimodel ensemble forecasting of rainfall over Indian monsoon region, Atmosfera, 21, 225239.Google Scholar
Sengupta, D. and Ravichandran, M. (2001). Oscillation of the Bay of Bengal, SST during the 1998 summer monsoon, Geophys. Res. Lett., 28, 20332036.CrossRefGoogle Scholar
Rao, Shankar, Lau, M. L., and Yang, S. (1996). On the relationship between Eurasian snow cover and the Asian summer monsoon, Int. J. Climatol. 16, 605616.Google Scholar
Shukla, J. (1985). Predictability, Adv. Geophys., 283, 87122.CrossRefGoogle Scholar
Shukla, J. (1987). Inter-annual variability of monsoon. In Monsoons (eds. Fein, J. S. and Stephens, P. L.) Wiley, New York, 399464.Google Scholar
Shukla, J. (1998). Predictability in the midst of chaos: A scientific basis for climate forecasting, Science, 282, 726773.CrossRefGoogle Scholar
Shukla, J., Hagelorn, R., Hoskins, B., et al. (2009). Revolution in climate prediction is both necessary and possible. Bull. Amer. Meteor. Soc (unclear publication).Google Scholar
Sikka, D. R. (1977). Some aspects of the life history, structure and movement of monsoon depressions Pure & Appld. Geophys., 115, 15011526.CrossRefGoogle Scholar
Sikka, D. R. (1980). Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relationship to fluctuations in the planetary and regional scale 2 parameters. Proc. Ind. Acad Sci. 89, 179195.Google Scholar
Sikka, D. R. and Gadgil, S. (1980). On the maximum cloud zone and the ITCZ over the Indian longitudes during the south-west monsoon, Mon. Wea. Rev. 108, 18401853.2.0.CO;2>CrossRefGoogle Scholar
Sikka, D. R., Paul, D. K., Deshpande, V. R., Mujumdar, R., and Puranik, P. V. (1987). Sub-seasonal scale fluctuations of the ITC over the Indo-Pacific region during summer monsoon features over the Indian region, Proc. Ind. Acad. Sci., E & P Sci., 95, 4774.Google Scholar
Sikka, D. R. (1999b). Monsoon Droughts, Joint COLA/CARE ARE Rept. No.2, Available at COLA, 4041, Powder Mill Road Calverton MD, USA.Google Scholar
Sikka, D. R. (2001). Monsoon Floods, Joint COLA/CARE Report No.4, Available at COLA, 4041, Powder Mill Road, Calverton, MD, USA.Google Scholar
Sikka, D. R. (2006). A study in the monsoon low pressure systems over the Indian region and their relationship with drought and excess monsoon seasonal rainfall. COLA Tech. Rept. 217, Available at COLA, 4041, Powder Mill Road, Calverton, Md. USA.Google Scholar
Sikka, D. R. and Rao, P. S. (2008). The use and performance of mesoscale models over the Indian region for two high impact events. Natural Hazards, 44, 353372.CrossRefGoogle Scholar
Sikka, D. R. (2011). Synoptic and meso-scale weather disturbances over South Asia during the Southwest Summer monsoon season, In The Global Monsoon System Ed. Chang, C.P. et al., World Scientific Forum, Singapore.Google Scholar
Slingo, J. M. and Annamalai, N. (2000). 1997: The El Nino of the century and the response of the Indian monsoon Mon. Wea. Rev., 128, 1778, 1797.Google Scholar
Simon, B., Rehman, S. H., and Joshi, P. C. (2006). Conditions leading to onset of Indian monsoon: A satellite perspective, Met. Atmos. Phys., DOI 10. 1007/B00703-005-0155–6.CrossRefGoogle Scholar
Simpson, G. (1921). The SW Monsoon, Quart. J. Roy. Met. Society.Google Scholar
Singh, N., (1994). Optimizing a network of raingauges over India to monitor summer monsoon rainfall variations, International J. Climatol, 14, 6170.CrossRefGoogle Scholar
Singh, O. P. (2003). Long term trends in the frequency of monsoonal cyclonic disturbances over the north Indian Ocean, Mausam, 52, 655658.CrossRefGoogle Scholar
Soman, M. K. and Krishna Kumar, K. (1993). Space-time evolution of meteorological features associated with the onset of the Indian summer monsoon, Mon. Wea. Rev., 121, 11771194.2.0.CO;2>CrossRefGoogle Scholar
Sperber, K. and Palmer, T. N. (1994). Atmospheric Model Intercompanion Project. Monsoon Simulations. Prof. Int. Conf. on Monsoon variability and Prediction Trieste, WMD/TD-619, 601–608.Google Scholar
Srinivasan, J., Gadgil, S., and Webster, P. J. (1993). Meridional propagation of large scale convective zone, Meteor. Atmos. Phys. 52, 1535.CrossRefGoogle Scholar
Suhas, E., Neena, J. M., and Goswami, B. N. (2012a). Regime shift in Indian summer monsoon climatological intraseasonal oscillations. Geophys. Res. Lett. 35, L20703, doi:10.1029/2008GL035511Google Scholar
Suhas, E. and Goswami, B. N. (2008). An Indian monsoon intra-seasonal oscillation (MISO) index for real time monitoring and forecast verification, Clim. Dyn., doi: 10.1007/s 00383-012-1462–3.CrossRefGoogle Scholar
Suhas, E., Neena, J. M., and Goswami, B. N. (2012b). Inter-annual variability of Indian summer monsoon arising from interactions between seasonal mean and intra-seasonal oscillations, J. Atmos. Sci., 69, 17611774.CrossRefGoogle Scholar
Sundaram, S., Krishnan, R., Dey, A., and Swapna, P. (2010). Dynamics of intensification of the boreal summer monsoon flow during IOD events, Meterol. Atmos. Phys., 107, 1731.CrossRefGoogle Scholar
Tabaldi, C. and Knutti, R. (2010). The use of multi-model ensembles in probabilistic climatic projections, Philos. Trans. Roy. Soc., 365, 20532075.CrossRefGoogle Scholar
Taraphdar, S, Mukhopadyay, P., and Goswami, B. N. (2010). Predictability of Indian Summer Monsoon weather during active and break phases using a high resolution regional model, Geophys. Res. Let. 37, L21812, doi: 10229 / 2010 G L 044967CrossRefGoogle Scholar
Torrence, C. and Webster, P. J. (1999). Interdecadal changes in the ENSO-monsoon system, J. Climate, 12, 26792690.2.0.CO;2>CrossRefGoogle Scholar
Vaidya, S. S. and Kulkarni, J. R. (2006). Simulation of heavy precipitation over Santacruz, Mumbai on 26 July 2005 using meso-scale model, Meteorol, Atmos. Phys., 98, 5566.CrossRefGoogle Scholar
Veechi, G. A. and Harrison, D. E. (2002). Monsoon breaks and sub-seasonal temperature variability in the Bay of Bengal, J. Clim., 15, 14851493.2.0.CO;2>CrossRefGoogle Scholar
Vernekar, A. D., Zhou, J., and Shukla, J. (1995). The effect of Eurasian snow cover on the Indian meteorological, J. Climate, 8, 248266.2.0.CO;2>CrossRefGoogle Scholar
Vinaychandran, P. N., Murty, V. S. N., and Ramesh Babu, V. (2002). Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J. Geophys. Res. 107, 10291, JC000831.Google Scholar
Waliser, D. E., Lau, K. M., Stern, W., and Kim, J. H. (2003a). Potential predictability of the Maddeu Julian Oscillation. Bull. Amer. Meteor. Soc., 84, 3350.CrossRefGoogle Scholar
Waliser, D. R., Stern, W., Schubert, S., and Lau, K. M. (2003b). Dynamic predictability of intra-seasonal variability associated with the Asian summer monsoon, Q.J.R. Meteorol. Soc., 129, 28972925.CrossRefGoogle Scholar
Waliser, D. E., et al. (2003c). AGCM simulations of intra-seasonal variability associated with the Asian Monsoon, Clim. Dyn., 21, 423446.CrossRefGoogle Scholar
Waliser, D. E., Stern, W., Schubert, S., and Lau, K. M. (2003d). Dynamic predictability of intra-seasonal variability associated with the Asian Summer Monsoon, J. Roy Met. Soc., 129, 28972925.CrossRefGoogle Scholar
Walker, G. T. (1910 to 1924). Several papers on correlation in seasonal variation in weather Mem. Ind. Met. Dept., 21, 23 and 24.Google Scholar
Walker, G. T. (1910). On the meteorological evidence for supposed changes of climate in India. Men. Ind. Met. Dept., 21, 121.Google Scholar
Walker, G. T. (1928). World weather, Q. J. Roy. Meteor. Soc., 54, 7987.CrossRefGoogle Scholar
Walker, G. T. and Bliss, E. W. (1932). World Weather V, Mem. Roy. Meteor. Soc. 4 (36), 5384.Google Scholar
Wang, B., Webster, P. J., and Teng, H. (2005). Antecedents and self-induction of active-break south Asian monsoon modelling by satellites, Geophys. Res. Lett. 32, L04704 der: 10. 1029/2004 GLO 20996.Google Scholar
Webster, P. J. (1987). The elementary monsoon, In Monsoons eds Fein, J. S. and Stephens, P. L., Wiley Int. Publ, John Wiley and sons, New York, pp. 332.Google Scholar
Webster, P. J., Magana, V., Palmer, T., et al. (1998). Monsoon processes, predictability and the prospects for prediction. J. Geophys. Res., 103, 1445114510.Google Scholar
Webster, P. J. and Yang, S. (1992). Monsoon and ENSO: Selectively interactive system, Quart J. Roy Meteor. Soc. 118, 877926.CrossRefGoogle Scholar
Wheeler, M. and Hendon, H. H. (2004). An all-season real-time multivariate MJO Index Development of an index for monitoring and prediction, Mon. Wea. Rev., 132, 19171932.2.0.CO;2>CrossRefGoogle Scholar
Wu, R. and Kirtman, B. (2003). Biennial oscillation of the Monsoon – ENSO system in an interactive ensemble coupled GCM, J. Climate, 17, 16231640.2.0.CO;2>CrossRefGoogle Scholar
Wu, A. and Kirtman, B. (2004). Understanding the impact of the Indian Ocean on ENSO variability in a coupled GCM. J. Climate, 17, 40194031.2.0.CO;2>CrossRefGoogle Scholar
Wu, G. and Zhang, Y. (1998). Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea, Mon.Wea.Rev., 126, 913927.2.0.CO;2>CrossRefGoogle Scholar
Xavier, P. K. and Goswami, B. N. (2007). An analog method for real-time forecasting of summer monsoon sub-seasonal variability. Mon. Wea. Rev. 135, 41494160.CrossRefGoogle Scholar
Yanai, M. and Song, Z. (1992). Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer Monsoon. J. Meteor. Soc. Japan, 70, 319351.CrossRefGoogle Scholar
Yang, S. (1996). ENSO-snow – monsoon associations and seasonal inter-annual predictions, Int. J. Climatol, 16, 125134.3.0.CO;2-V>CrossRefGoogle Scholar
Yasunari, T. (1980). A quasi-stationary appearance of 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225229.CrossRefGoogle Scholar
Yasunari, T. (1981). Structure of the Indian monsoon system with around 40-day-period. J. Meteor. Soc. Japan, 59, 225229.CrossRefGoogle Scholar
Yasunari, T., Kitoh, A., and Tokioka, T. (1991). Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate – a study with MRT-GCM, J. Meteor. Soc., Japan, 67, 473487.CrossRefGoogle Scholar
Zhang, L. and Zhou, T. (2011). An assessment of monsoon precipitation changes during 1901–2011, Clim. Dyn., 37, 279296.CrossRefGoogle Scholar
Zhang, X. and Lu, E. (2004). Globally unified monsoon onset and retreat indices. J. Climate, 17, 22412248.2.0.CO;2>CrossRefGoogle Scholar
Zhang, C. (2005). Madden Julian Oscillation, Rev. Geophysics, 43, RQ 2003 / 2005CrossRefGoogle Scholar
Zuluago, M. D., Hoyos, C. D., and Webster, P. J. (2010). Spatial and temporal distribution of latent heating in the South Asian monsoon region, J. Clim., 23, 20102029.CrossRefGoogle Scholar

References

Adler, R. F., Huffman, G. J., Chang, A., et al. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 11471167.2.0.CO;2>CrossRefGoogle Scholar
Choi, K.-S., Wu, C.-C., and Cha, E.-J. (2010). Change of tropical cyclone activity by Pacific-Japan teleconnection pattern in the western North Pacific. Journal of Geophysical Research, 115, D19114.CrossRefGoogle Scholar
Chowdary, J. S., Xie, S.-P., Lee, J.-Y., Kosaka, Y., and Wang, B. (2010). Predictability of summer Northwest Pacific climate in 11 coupled model hindcasts: Local and remote forcing. Journal of Geophysical Research, 115, D22121, doi:10.1029/2010JD014595.CrossRefGoogle Scholar
Chowdary, J. S., Xie, S.-P., Tokinaga, H., et al. (2012). Interdecadal variations in ENSO teleconnection to the Indo-western Pacific for 1870–2007. Journal of Climate, 25, 17221744.CrossRefGoogle Scholar
Ding, Q. and Wang, B. (2005). Circumglobal teleconnection in the Northern Hemisphere summer. Journal of Climate, 18, 34833505.CrossRefGoogle Scholar
Du, Y., Xie, S.-P., Huang, G., and Hu, K. (2009). Role of air–sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. Journal of Climate, 22, 20232038.CrossRefGoogle Scholar
Du, Y., Yang, L., and Xie, S.-P. (2011). Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following El Niño. Journal of Climate, 24, 315322.CrossRefGoogle Scholar
Ebita, A., Kobayashi, S., Ota, Y., et al. (2011). The Japanese 55-year Reanalysis “JRA-55”: An interim report. Scientific Online Letters on the Atmosphere, 7, 149152.Google Scholar
Enomoto, T. (2004). Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. Journal of the Meteorological Society of Japan, 82, 10191034.Google Scholar
Huang, R., Chen, W., Yang, B., and Zhang, R. (2004). Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Advances in Atmospheric Sciences, 21, 407424.Google Scholar
Kanamitsu, M., Ebisuzaki, W., Woollen, J., et al. (2002). NCEP-DOE AMIP-II Reanalysis (R-2), Bulletin of the American Meteorological Society, 83, 16311643.CrossRefGoogle Scholar
Kimoto, M. (2005). European heat wave and cool summer in Japan in 2003. Tenki (Bulletin journal of the Meteorological Society of Japan), 52, 608612 (in Japanese).Google Scholar
Klein, S. A., Soden, B. J., and Lau, N.-C. (1999). Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate, 12, 917932.2.0.CO;2>CrossRefGoogle Scholar
Kosaka, Y. and Nakamura, H. (2010). Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific-Japan pattern. Journal of Climate, 23, 50855108.CrossRefGoogle Scholar
Kosaka, Y., Chowdary, J. S., Xie, S.-P., Min, Y.-M., and Lee, J.-Y. (2012). Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. Journal of Climate, 25, 75747589.CrossRefGoogle Scholar
Kosaka, Y., Nakamura, H., Watanabe, M., and Kimoto, M. (2009). Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. Journal of the Meteorological Society of Japan, 87, 561580.Google Scholar
Kosaka, Y., Xie, S.-P., Lau, N.-C., and Vecchi, G. A. (2013). Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proceedings of the National Academy of Sciences of the United States of America, 110, 75747579.CrossRefGoogle ScholarPubMed
Kubota, H., Kosaka, Y., and Xie, S. -P. (2015). A 117-year long index of the Pacific-Japan pattern with application to interdecadal variability. International Journal of Climatology, in press, doi:10.1002/joc.4441.CrossRefGoogle Scholar
Lee, J.-Y., Wang, B., Ding, Q., et al. (2011). How predictable is the northern hemisphere summer upper-tropospheric circulation? Climate Dynamics, 37, 11891203.CrossRefGoogle Scholar
Li, J., Xie, S.-P., Cook, E. R., et al. (2013). El Niño modulations over the past seven centuries. Nature Climate Change, 3, 822826.CrossRefGoogle Scholar
Lu, R. and Lin, Z. (2009). Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. Journal of Climate, 22, 20582072.CrossRefGoogle Scholar
Matsueda, M. (2009). Blocking predictability in operational medium-range ensemble forecasts. Scientific Online Letters on the Atmosphere, 5, 113116, doi:10.2151/sola.2009-029.Google Scholar
Nakamura, H. and Fukamachi, T. (2004). Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quarterly Journal of the Royal Meteorological Society, 130, 12131233.CrossRefGoogle Scholar
Ninomiya, K. (2009). Characteristics of precipitation in the Meiyu-Baiu season in the CMIP3 20th century climate simulations. Journal of the Meteorological Society of Japan, 87, 829843.Google Scholar
Nitta, T. (1987). Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. Journal of the Meteorological Society of Japan, 65, 373390.Google Scholar
North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110, 699706.2.0.CO;2>CrossRefGoogle Scholar
Ogata, T., Xie, S.-P., Wittenberg, A., and Sun, D.-Z. (2013). Interdecadal amplitude modulation of El Niño/Southern Oscillation and its impacts on tropical Pacific decadal variability Journal of Climate, 26, 72807297.CrossRefGoogle Scholar
Ogi, M., Tachibana, Y., and Yamazaki, K. (2004). The connectivity of the winter North Atlantic Oscillation (NAO) and the summer Okhotsk high. Journal of the Meteorological Society of Japan, 82, 905913.Google Scholar
Onogi, K., Tsutsui, J., Koide, H., et al. (2007). The JRA-25 Reanalysis. Journal of the Meteorological Society of Japan, 85, 369432.Google Scholar
Otomi, Y., Tachibana, Y., and Nakamura, T. (2013). A possible cause of the AO polarity reversal from winter to summer in 2010 and its relation to hemispheric extreme summer weather. Climate Dynamics, 40, 19391947.CrossRefGoogle Scholar
Rayner, N. A., Parker, D. E., Horton, E. B., et al. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108, 4407, doi:10.1029/2002JD002670.CrossRefGoogle Scholar
Seager, R., Harnik, N., Kushnir, Y., Robinson, W., and Miller, J. (2003). Mechanisms of hemispherically symmetric climate variability. Journal of Climate, 16, 29602978.2.0.CO;2>CrossRefGoogle Scholar
Takaya, K. and Nakamura, H. (2001). A formulation of a phase-independent wave activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences, 58, 608627.2.0.CO;2>CrossRefGoogle Scholar
Ueda, H., Yasunari, T., and Kawamura, R. (1995). Abrupt seasonal change of large-scale convective activity over the western Pacific in the northern summer. Journal of the Meteorological Society of Japan, 73, 795809.Google Scholar
Wang, B., Wu, R., and Fu, X. (2000). Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? Journal of Climate, 13, 15171536.2.0.CO;2>CrossRefGoogle Scholar
Wang, B., Xiang, B., and Lee, J.-Y. (2013). Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 110, 27182722.CrossRefGoogle ScholarPubMed
Xie, P. and Arkin, P. A. (1997). Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78, 25392558.2.0.CO;2>CrossRefGoogle Scholar
Xie, S.-P., Hu, K., Hafner, J., et al. (2009). Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. Journal of Climate, 22, 730747.CrossRefGoogle Scholar
Yang, J., Liu, Q., Xie, S.-P., Liu, Z., and Wu, L. (2007). Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophysical Research Letters, 34, L02708, doi:10.1029/2006GL028571.CrossRefGoogle Scholar
Yasui, S. and Watanabe, M. (2010). Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. Journal of Climate, 23, 20932114.CrossRefGoogle Scholar

References

Alexander, L. V., Zhang, X., Peterson, T. C., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109, doi:05110.01029/02005JD006290.CrossRefGoogle Scholar
Bamzai, A. S. (2003). Relationship between snow cover variability and Arctic Oscillation Index on a hierarchy of time scales. Int. J. Climatol., 23, 129142.CrossRefGoogle Scholar
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I. (1999). The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009.2.0.CO;2>CrossRefGoogle Scholar
Ding, R. Q., Li, J. P., Wang, S., and Ren, F. (2005). Decadal change of the spring dust storm in northwest China and the associated atmospheric circulation. Geophys. Res. Lett., 32, L02808, doi:10.1029/2004GL021561.CrossRefGoogle Scholar
Fereday, D. R., Maidens, A., Arribas, A., Scaife, A. A., and Knight, J. R. (2012). Seasonal forecasts of northern hemisphere winter 2009/10. Env. Res. Lett., 7, 034031.CrossRefGoogle Scholar
Fetterer, F., Knowles, K., Meier, W., and Savoie, M. (2002). Sea Ice Index (updated 2009). NationalSnow and Ice Data Center, Boulder, CO.Google Scholar
Gillett, N. P., Kell, T. D., and Jones, P. D. (2006). Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett., 33, L23704, doi:10.1029/2006GL027721.CrossRefGoogle Scholar
Gong, D. Y. and Wang, S. W. (1999). Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462.CrossRefGoogle Scholar
Gong, D. Y. and Wang, S. W. (1998). Antarctic Oscillation: Concept and applications. Chinese Sci. Bull., 43(9), 734738.CrossRefGoogle Scholar
Hong, C. C., Hsu, H. H., Chia, H. H., and Wu, C. Y. (2008). Decadal relationship between the North Atlantic Oscillation and cold surge frequency in Taiwan. Geophys. Res. Lett., 35, L24707CrossRefGoogle Scholar
Kang, S. M., Polvani, L. M., Fyfe, J. C., et al. (2013). Modeling evidence that ozone depletion has impacted extreme precipitation in the austral summer. Geophys. Res. Lett., 40, 40544059.CrossRefGoogle Scholar
Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E., and Saunby, M. (2011). Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, doi:10.1029/2010JD015218.CrossRefGoogle Scholar
Klein Tank, A. M. G., Zwiers, F. W., and Zhang, X. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WMO-TD No. 1500, 56 pp.Google Scholar
Kolstad, E. W., Breiteig, T., and Scaife, A. A. (2010). The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Met. Soc., 136, 886893.CrossRefGoogle Scholar
Li, J. P. (2005). Physical nature of the Arctic Oscillation and its relationship with East Asian atmospheric circulation. In Yu, Q., Chen, W., et al. (Eds.), Air-Sea Interaction and its impacts on China Climate. Beijing: China Meteorological Press, pp.169176.Google Scholar
Li, J. P. and Wang, J. X. L. (2003). A modified zonal index and its physical sense. Geophys. Res. Lett., 30(12), 1632, doi:10.1029/2003GL017441.CrossRefGoogle Scholar
Li, J. P., Wu, Z. W., Jiang, Z. H., and He, J. H. (2010). Can global warming strengthen the East Asian summer monsoon? J.. Climate, 23, 66966705.CrossRefGoogle Scholar
Li, J. P., Ren, R., Qi, Y., et al. (2013a).,: Progress in air–land–sea interactions in Asia and their role in global and Asian climate change. Chinese J. Atmos. Sci., 37(2), 518538. (in Chinese)Google Scholar
Li, J. P., Sun, C., and Jin, F.-F. (2013b). NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40, 54975502, doi: 10.1002/2013GL057877.CrossRefGoogle Scholar
Li, J. P. and Wu, Z. W. (2012). Importance of autumn Arctic sea ice to northern winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 10.1073/pnas.1205075109.Google ScholarPubMed
Li, Y., Li, J. P., and Feng, J. (2012). A teleconnection between the reduction of rainfall in Southwest Western Australia and North China. J. Climate, 25, 84448461.CrossRefGoogle Scholar
Liu, X. H. and Ding, R. Q. (2007). The relationship between the Spring Asian Atmospheric circulation and the previous winter Northern Hemisphere annular mode. Theor. Appl. Climatol., 88, 7181.CrossRefGoogle Scholar
Nan, S. L. and Li, J. P. (2003). The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere Annular Mode. Geophys. Res. Lett., 30(24), 2266, doi:10.1029/2003GL018381.CrossRefGoogle Scholar
Nan, S. L., Li, J. P., Yuan, X., and Zhao, P. (2009). Boreal spring Southern Hemisphere Annular Mode, Indian Ocean sea surface temperature, and East Asian summer monsoon. J. Geophys. Res., 114, D02103, doi:10.1029/2008JD010045.CrossRefGoogle Scholar
Saito, K. and Cohen, J. (2003). The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geophys. Res. Lett., 30, 1302, doi:10.1029/2002GL016341Google Scholar
Saito, K., Yasunari, T., and Cohen, J. (2004). Changes in the sub-decadal covariability between Northern Hemisphere snow cover and the general circulation of the atmosphere. Int. J. Climatol., 24, 3344.CrossRefGoogle Scholar
Scaife, A. A., Folland, C. K., Alexander, L. V., Moberg, A., and Knight, J. R. (2008). European climate extremes and the North Atlantic Oscillation. J. Climate, 21, 7283.CrossRefGoogle Scholar
Screen, J. A. and Simmonds, I. (2013). Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959964.CrossRefGoogle Scholar
Scaife, A. A. (2015). The North Atlantic and Arctic Oscillations: Climate variability, extremes and stratosphere troposphere interaction. In Li, J. P., Swinbank, R., Volkert, H. and Grotjahn, R. (Eds), Dynamics and Predictability of Large-Scale High-Impact Weather and Climate Events. Cambridge University Press..Google Scholar
Sun, C. and Li, J. P. (2012). Analysis of anomalously low surface air temperature in the Northern Hemisphere during 2009/2010 winter. Climatic and Environmental Research, 17, 259273. (in Chinese)Google Scholar
Tao, S. Y., and Wei, J. (2008). Severe snow and freezing rain in January 2008 in the southern China. Climatic Enviro. Res., 13, 337350. (in Chinese)Google Scholar
Thompson, D. W. J and Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 12971300.CrossRefGoogle Scholar
Thompson, D. W. J and Wallace, J. M. (2001). Regional climate impacts of the Northern Hemisphere Annular Mode. Science, 293(5527), 8589, DOI:10.1126/science.1058958.CrossRefGoogle ScholarPubMed
Thompson, D. W. J. and Wallace, J. M. (2000). Annular modes in the extratropical circulation, Part I: Month-to-month variability. J. Climate, 13(5), 10001016.2.0.CO;2>CrossRefGoogle Scholar
Thompson, D. W. J., Solomon, S., Kushner, P. J., et al. (2011). Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci., 4, 741749.CrossRefGoogle Scholar
Wallace, J. M. (2000). North Atlantic Oscillation/annular mode: Two paradigms-one phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791805.Google Scholar
Watanabe, M. (2004). Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691.CrossRefGoogle Scholar
Wu, Z. W., Li, J. P., Jiang, Z. H., and He, J. H. (2011). Predictable climate dynamics of abnormal East Asian winter monsoon: once-in-a-century snowstorms in 2007/2008 winter. Clim. Dyn., 37, 16611669.CrossRefGoogle Scholar
Wu, Z. W., Li, J. P., Wang, B., and Liu, X. H. (2009). Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, doi:10.1029/2008JD011501.CrossRefGoogle Scholar
Wu, Z. W., Li, J. P., Jiang, Z., He, J., and Zhu, X. (2012). Possible effects of the North Atlantic Oscillation on the strengthening relationship between the East Asian summer monsoon and ENSO. Int. J. Climatol., 32, 794800, doi: 10.1002/joc.2309.CrossRefGoogle Scholar
Xu, H. L., Li, J. P., Feng, J., and Mao, J. Y. (2013). The asymmetric relationship between the winter NAO and the precipitation in southwest China. Acta Meteorol. Sin., 70, 12761291.Google Scholar
Yin, S., Feng, J., and Li, J. P. (2013). Influences of the preceding winter Northern Hemisphere annular mode on spring extreme low temperature events in the north of eastern China. Acta Meteorol. Sin., 71(1), 96108. (in Chinese)Google Scholar
Zheng, F. and Li, J. P. (2012). Impact of preceding boreal winter southern hemisphere annular mode on spring precipitation over south China and related mechanism. Chinese J. Geophys, 55(11), 35423557.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×