Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T15:30:12.007Z Has data issue: false hasContentIssue false

6 - SIMULATION OF DYNAMIC SYSTEMS

Published online by Cambridge University Press:  05 June 2012

Bohdan T. Kulakowski
Affiliation:
Pennsylvania State University
John F. Gardner
Affiliation:
Boise State University, Idaho
J. Lowen Shearer
Affiliation:
Pennsylvania State University
Get access

Summary

LEARNING OBJECTIVES FOR THIS CHAPTER

  1. 6–1 To know the common elements of computer simulations.

  2. 6–2 To be able to build block diagrams of systems based on the model equations.

  3. 6–3 To become familiar with the basic block set of Simulink.

  4. 6–4 To understand different approaches to simulation utilizing different features of Simulink.

  5. 6–5 To be able to simulate both linear and nonlinear systems.

  6. 6–6 To be able to simulate configuration-dependent systems.

  7. 6–7 To be able to conduct parametric studies of systems through scripting multiple runs of the simulations.

INTRODUCTION

System simulation is one of the most widely used tools in modern society. From weather forecasting to economic analysis, from robotics to computer animation, simulation is becoming a commonplace tool for analysts and designers of all types, not just engineers. Yet, as widespread as these applications are, the fundamental basis of system simulations is common. A computer simulation is a numerical solution of a set of differential equations that are intended to model the way in which a particular system evolves in time.

In Chap. 4, techniques for the analytical solution of differential equations were presented. These methods represent a powerful set of tools for the study of linear dynamic systems. It was shown that by simply inspecting the coefficients of a first- or second-order characteristic equation, the entire characteristic of the step response could be predicted. At this point, it would be fair to ask the question: Why are computer-based methods for finding the responses of dynamic systems needed?

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×