Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T14:43:20.315Z Has data issue: false hasContentIssue false

10 - Evolution

Published online by Cambridge University Press:  05 June 2012

Bas Kooijman
Affiliation:
Vrije Universiteit, Amsterdam
Get access

Summary

A proper understanding of metabolic organisation cannot be achieved without exploring its historical roots. The metabolism of individuals has adapted over time to overcome the consequences of changing environmental conditions. Mutation and selection is the well-known evolutionary route since Darwin, but this is a very slow process. It is essential for building up a basic diversity in metabolic performance among the earliest prokaryotes. This explains the slow start of evolution. Much faster is the exchange of plasmids that evolved among prokaryotes, which is further accelerated by the process of symbiogenesis, typical for eukaryotes. The latter also duplicate dna and reshuffle parts of their genome, giving adaptive change even more acceleration. Mutation still continues, of course, but the reshuffling of metabolic modules occurs at rates several orders of magnitude higher. Syntrophy and symbiosis are key to these reshuffling processes and supplement Darwin's notion of survival of the fittest, which is based on competitive exclusion. The response to changes in the environment is further accelerated by the development of food webs, and therefore of predation, which enhances selection. Owing to their advanced locomotory and sensory systems, animals play an important role in food webs, and so in the acceleration of evolutionary change.

The evolutionary route for individuals as dynamic systems that is discussed below starts from the speculative abiotic origins of life, then deals with the metabolic diversification that evolved in the prokaryotes, and finally leads to the metabolic simplification, coupled to the organisational diversification, of the eukaryotes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Evolution
  • Bas Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy Budget Theory for Metabolic Organisation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805400.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Evolution
  • Bas Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy Budget Theory for Metabolic Organisation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805400.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Evolution
  • Bas Kooijman, Vrije Universiteit, Amsterdam
  • Book: Dynamic Energy Budget Theory for Metabolic Organisation
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511805400.011
Available formats
×