Skip to main content Accessibility help
×
Home
  • Print publication year: 2005
  • Online publication date: August 2009

9 - Pathogenicity islands

Summary

Infections caused by microbial pathogens are a major global health problem not only in developing countries, but also in the industrial world. Similarly, there are numerous diseases of animals and plants due to bacterial infections. Pathogenic bacteria can be found among various bacterial species, and the determination of the factors that are responsible for virulence of a certain bacterium has long been one of the main interests in microbial research. In the early 1990s, new insights into the evolution of bacterial pathogens were gained by the development of the concept of pathogenicity islands (PAIs), which are the topic of this chapter. Since then, the advances in genomics have led into a new area of pathogen research, with increasing knowledge of completely sequenced bacterial genomes.

The prokaryotic genome can be generally divided into a core gene pool encompassing those genes that encode essential functions, such as DNA replication, cell division, nucleotide turnover, and key metabolic pathways, and a flexible gene pool containing genes that are only required under certain environmental conditions. The core genes are normally encoded in stable regions of the chromosome and exhibit a relatively homogeneous G+C content. In contrast, genes of the flexible gene pool are often found on mobile genetic elements and are preferentially transmitted between different organisms by natural transformation (the uptake of naked DNA), phage-mediated transduction, or conjugation (the unidirectional transfer of DNA from a donor to a recipient via intimate cell-to-cell contact).

Related content

Powered by UNSILO
REFERENCES
Barksdale, W. L., and Pappenheimer, A. M. Jr. (1954). Phage–host relationships in nontoxigenic and toxigenic diphtheria bacilli. J. Bacteriol. 67, 220–232
Bloomfield, G. A., Whittle, G., McDonagh, M. B., Katz, M. E., and Cheetham, B. F. (1997). Analysis of sequences flanking the vap region of Dichelobacter nodosus: Evidence for multiple integration events, a killer system, and a new genetic element. Microbiology 143, 553–562
Blum, G., Ott, M., Lischewski, A., Ritter, A., Imrich, H., Tschäpe, H., and Hacker, J. (1994). Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62, 606–614
Brown, J. S., Gilliland, S. M., and Holden, D. W. (2001). A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40, 572–585
Buchrieser, C., Brosch, R., Bach, S., Guiyoule, A., and Carniel, E. (1998). The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol Microbiol 30, 965–978
Burns, D. L. (1999). Biochemistry of type IV secretion. Curr. Opin. Microbiol. 2, 25–29
Carniel, E. (2001). The Yersinia high-pathogenicity island: An iron-uptake island. Microbes Infect. 3, 561–569
Censini, S., Lange, C., Xiang, Z., Crabtree, J. E., Ghiara, P., Borodovsky, M.. (1996). cag, A pathogenicity island of Helicobacter pylori, encodes type-I specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. U S A 93, 14648–14653
Cheetham, B. F., and Katz, M. E. (1995). A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol 18, 201–208
Christie, P. J. (2001). Type IV secretion: Intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol Microbiol 40, 294–305
Dillard, J. P., and Seifert, H. S. (2001). A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41, 263–277
Dobrindt, U., Blum-Oehler, G., Nagy, G., Schneider, G., Johann, A., Gottschalk, G., and Hacker, J. (2002a). Genetic structure and distribution of four pathogenicity islands (PAI I536-PAI IV536) of uropathogenic Escherichia coli strain 536. Infect. Immun. 70, 6365–6372
Dobrindt, U., Emödy, L., Gentschev, I., Goebel, W., and Hacker, J. (2002b). Efficient expression of the α-haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNA5Leu. Mol. Genet. Genomics 267, 370–379
Dobrindt, U., and Hacker, J. (1999). Plasmids, phages and pathogenicity islands: lessons on the evolution of bacterial toxins. In Alouf, J. and Freer, J., eds. The comprehensive sourcebook of bacterial protein toxins (New York: Academic Press), pp. 3–23
Dobrindt, U., and Hacker, J. (2001). Whole genome plasticity in pathogenic bacteria. Curr. Opin. Microbiol. 4, 550–557
Finn, C. W. Jr., Silver, R. P., Habig, W. H., Hardgree, M. C., Zon, G., and Garon, C. F. (1984). The structural gene for tetanus neurotoxin is on a plasmid. Science 224, 881–884
Galan, J. E., and Collmer, A. (1999). Type III secretion machines: Bacterial devices for protein delivery into host cells. Science 284, 1322–1328
Groisman, E. A., Blanc-Potard, A.-B., and Uchiya, K. (1999). Pathogenicity islands and the evolution of Salmonella virulence. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 127–150
Groisman, E. A., and Ochman, H. (1996). Pathogenicity islands: Bacterial evolution in quantum leaps. Cell 87, 791–794
Groisman, E. A., and Ochman, H. (1997). How Salmonella became a pathogen. Trends Microbiol. 5, 343–349
Hacker, J., Bender, L., Ott, M., Wingender, J., Lund, B., Marre, R., and Goebel, W. (1990). Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8, 213–225
Hacker, J., Blum-Oehler, G., Janke, B., Nagy, G., and Goebel, W. (1999). Pathogenicity islands of extraintestinal Escherichia coli. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 59–76
Hacker, J., Blum-Oehler, G., Mühldorfer, I., and Tschäpe, H. (1997). Pathogenicity islands of virulent bacteria: Structure, function and impact on microbial evolution. Mol Microbiol 23, 1089–1097
Hacker, J., and Carniel, E. (2001). Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2, 376–381
Hacker, J., and Kaper, J. B. (1999). The concept of pathogenicity islands. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 1–11
Hacker, J., and Kaper, J. B. (2000). Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679
Hochhut, B., Jahreis, K., Lengeler, J. W., and Schmid, K. (1997). CTnscr94, a conjugative transposon found in enterobacteria. J Bacteriol 179, 2097–2102
Hochhut, B., and Waldor, M. K. (1999). Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 32, 99–110
Iriarte, M., and Cornelis, G. R. (1999). The 70-kilobase virulence plasmid of yersiniae. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 91–126
Kaper, J. B., Mellies, J. L., and Nataro, J. P. (1999). Pathogenicity islands and other mobile genetic elements of diarrheagenic Escherichia coli. In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 33–58
Karaolis, D. K. R., Johnson, J. A., Bailey, C. C., Boedeker, E. C., Kaper, J. B., and Reeves, P. R. (1998). A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. U S A 95, 3134–3139
Karaolis, D. K. R., Somara, S., Maneval, D. R. Jr., Johnson, J. A., and Kaper, J. B. (1999). A bacteriophage encoding a pathogenicity island, a type IV pilus and a phage receptor in cholera bacteria. Nature 399, 375–379
Kim, J. F., and Alfano, J. R. (2002). Pathogenicity islands and virulence plasmids of bacterial plant pathogens. In Hacker, J. and Kaper, J. B., eds. Pathogenicity islands and the evolution of pathogenic microbes (Berlin Heidelberg: Springer-Verlag), pp. 127–147
Klose, K. E. (2001). Regulation of virulence in Vibrio cholerae. Int. J. Med. Microbiol. 291, 81–88
Lee, C. A. (1996). Pathogenicity islands and the evolution of bacterial pathogens. Infect. Agents Dis. 5, 1–7
Lindqvist, B. H., Deho, G., and Calendar, R. (1993). Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol. Rev. 57, 683–702
Lindsay, J. A., Ruzin, A., Ross, H. F., Kurepina, N., and Novick, R. P. (1998). The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococus aureus. Mol Microbiol 29, 527–543
Lucas, R. L., and Lee, C. A. (2000). Unravelling the mysteries of virulence gene regulation in Salmoella typhimurium. Mol Microbiol 36, 1024–1033
Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S., and Kaper, J. B. (1999). The Per regulon of enteropathogenic Escherichia coli: Identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33, 296–306
Middendorf, B., Hochhut, B., Leipold, K., Dobrindt, U., Blum-Oehler, G., and Hacker, J. (2004). Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J Bacteriol 186, 3086–3096
Mikesell, P., Ivins, B. E., Ristroph, J. D., and Dreier, T. M. (1983). Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect. Immun. 39, 371–376
Morschhäuser, J., Vetter, V., Emödy, L., and Hacker, J. (1994). Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: Cross-talk between different adhesin gene clusters. Mol Microbiol 11, 555–566
Moss, J. E., Cardozo, T. J., Zychlinsky, A., and Groisman, E. A. (1999). The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol Microbiol 33, 74–83
Odenbreit, S., and Haas, R. (2002). Helicobacter pylori: Impact of gene transfer and the role of the cag pathogenicity island for host adaptation and virulence. In Hacker, J. and Kaper, J. B., eds. Pathogenicity islands and the evolution of pathogenic microbes (Berlin Heidelberg: Springer-Verlag), pp. 1–22
O'Shea, Y. A., and Boyd, E. F. (2002). Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol. Lett. 214, 153–157
Parsot, C., and Sansonetti, P. J. (1999). The virulence plasmid of shigellae: An archipelago of pathogenicity islands? In Kaper, J. B. and Hacker, J., eds. Pathogenicity islands and other mobile virulence elements (Washington, DC: ASM Press), pp. 151–165
Rajakumar, K., Sasakawa, C., and Adler, B. (1997). Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect. Immun. 65, 4606–4614
Rakin, A., Noelting, C., Schropp, P., and Heesemann, J. (2001). Integrative module of the high-pathogenicity island of Yersinia. Mol Microbiol 39, 407–415
Reiter, W.-D., Palm, P., and Yeats, S. (1989). Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 17, 1907–1914
Ritter, A., Gally, D. L., Olsen, P. B., Dobrindt, U., Friedrich, A., Klemm, P., and Hacker, J. (1997). The PAI-associated leuX specific tRNA5Leu affects type 1 fimbriation in pathogenic E. coli by control of FimB recombinase expression. Mol Microbiol 25, 871–882
Ruzin, A., Lindsay, J., and Novick, R. P. (2001). Molecular genetics of SaPI1—A mobile pathogenicity island in Staphylococcus aureus. Mol Microbiol 41, 365–377
Salyers, A. A., Shoemaker, N. B., Stevens, A. M., and Li, L.-Y. (1995). Conjugative transposons: An unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59, 579–590
Schubert, S., Dufke, S., Sorsa, J., and Heesemann, J. (2004). A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol Microbiol 51, 837–848
Scott, J. R., and Churchward, G. G. (1995). Conjugative transposition. Ann. Rev. Microbiol. 49, 367–397
Segal, E. D., Cha, J., Lo, J., Falkow, S., and Tompkins, L. S. (1999). Altered states: Involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U S A 96, 14559–14564
Shankar, N., Baghdayan, A. S., and Gilmore, M. S. (2002). Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417, 746–750
Sullivan, J. T., and Ronson, C. W. (1998). Evolution of rhizobia by acquisition of a 500 kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. U S A 95, 5145–5149
Tauschek, M., Strugnell, R. A., and Robins-Browne, R. M. (2002). Characterization and evidence of mobilization of the LEE pathogenicity island of rabbit-specific strains of enteropathogenic Escherichia coli. Mol Microbiol 44, 1533–1550
Thorne, C. B. (1985). Genetics of Bacillus anthracis. In Lieve, L., Bonventre, P. F., Morello, J. A., Schlesinger, S., Silver, S. D., and Wu, H. C., eds. Microbiology-85 (Washington, DC: ASM Press), pp. 56–62
Vokes, S. A., Reeves, S. A., Torres, A. G., and Payne, S. M. (1999). The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenictiy island. Mol Microbiol 33, 63–73
Waldor, M. K., and Mekalanos, J. J. (1996). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914
Williams, K. P. (2002). Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: Sublocation preference of integrase subfamilies. Nucleic Acids Res. 30, 866–875