Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T05:59:23.415Z Has data issue: false hasContentIssue false

4 - Mobile introns and retroelements in bacteria

Published online by Cambridge University Press:  06 August 2009

Steven Zimmerly
Affiliation:
Department of Biological Sciences, University of Calgary
Peter Mullany
Affiliation:
University College London
Get access

Summary

Introns and retroelements are hallmarks of eukaryotic genomes, but they are also found in bacteria. Here the different types of bacterial introns and retroelements are summarized, including group I introns, group II introns, archaeal bulge-helix-bulge (BHB) introns, intervening sequences (IVSs) in rRNAs, retrons, and diversity generating elements (DGRs). Except for the retroelements, these elements are evolutionarily unrelated, but nevertheless share intriguing properties. The elements all appear mobile within and among bacterial genomes, and in general, do not have clear phenotypic consequence to their host cells. It is possible that introns and retroelements spread from bacteria to eukaryotes as selfish DNAs or were present in the common ancestor of bacteria and eukaryotes.

INTRODUCTION

Introns and retroelements are typically considered components of eukaryotic genomes, because they were discovered in eukaryotes and are particularly abundant in higher eukaryotes. The human genome, for example, contains roughly 200,000 introns and nearly 3 million retroelements (including SINEs), dwarfing the number of functional genes, which are estimated at 30,000 (International Human Genome Sequencing Consortium, 2001). Together, introns and retroelements make up nearly half of the human genome and constitute the major types of “junk DNAs.”

In bacteria, the major types of “junk DNAs” are transposons and prophages, which can constitute anywhere from <1% to 7% of a genome (e.g., Glaser et al., 2001). Introns and retroelements are comparatively rare in bacteria, but they have generated substantial interest because of their parallels to eukaryotic introns and retroelements.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, C., Dalgaard, J. Z., and Garrett, R. A. (1995). Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron− cells of Sulfolobus acidocaldarius. Proc. Natl. Acad. Sci. USA, 92, 12285–12289CrossRefGoogle ScholarPubMed
Belfort, M., Derbyshire, V., Parker, M. M., Cousineau, B., and Lambowitz, A. M. (2002). Mobile introns: Pathways and proteins. In Mobile DNA II (Craig, J. L., Craigie, R., Gellert, M., Lambowitz, A. M., eds.), pp. 761–783. Washington, DC: ASM PressCrossRefGoogle Scholar
Bolduc, J. M., Spiegel, P. C., Chatterjee, P., Brady, K. L., Downing, M. E., Caprara, M. G., Waring, R. B., and Stoddard, B. L. (2003). Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev., 17, 2875–2888CrossRefGoogle ScholarPubMed
Bonocora, R. P., and Shub, D. A. (2001). A novel group I intron-encoded endonuclease specific for the anticodon region of tRNAfMet genes. Mol Microbiol, 39, 1299–1306CrossRefGoogle Scholar
Burggraf, S., Larsen, N., Woese, C. R., and Stetter, K. O. (1993). An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. U S A, 90, 2547–2550CrossRefGoogle ScholarPubMed
Burgin, A. B., Parodos, K., Lane, D. J., and Pace, N. R. (1990). The excision of intervening sequences from Salmonella 23S ribosomal RNA. Cell, 60, 405–414CrossRefGoogle ScholarPubMed
Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D'Souza, L. M., Du, Y., Feng, B.. (2002). The Comparative RNA Web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BioMed Central Bioinformatics, 3, 2Google ScholarPubMed
Coetzee, T., Herschlag, D., and Belfort, M. (1994). Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev., 8, 1575–1588CrossRefGoogle ScholarPubMed
Costa, J. L., Paulsrud, P., and Lindblad, P. (2002). The cyanobacterial tRNALeu (UAA) intron: Evolutionary patterns in a genetic marker. Mol. Biol. Evol., 19, 850–857CrossRefGoogle Scholar
Cousineau, B., Lawrence, S., Smith, D., and Belfort, M. (2000). Retrotransposition of a bacterial group II intron. Nature, 404, 1018–1021CrossRefGoogle ScholarPubMed
Cousineau, B., Smith, D., Lawrence-Cavanaugh, S., Mueller, J. E., Yang, J., Mills, D., Manias, D.. (1998). Retrohoming of a bacterial group II intron: Mobility via complete reverse splicing, independent of homologous DNA recombination. Cell, 94, 451–462CrossRefGoogle ScholarPubMed
Dai, L., Toor, N., Olson, R., Keeping, A., and Zimmerly, S. (2003). Database for mobile group II introns. Nucleic Acids Res., 31, 424–426CrossRefGoogle ScholarPubMed
Dai, L., and Zimmerly, S. (2002a). Compilation and analysis of group II intron insertions in bacterial genomes: Evidence for retroelement behavior. Nucleic Acids Res., 30, 1091–1102CrossRefGoogle Scholar
Dai, L., and Zimmerly, S. (2002b). The dispersal of five group II introns among natural populations of E. coli. RNA, 8, 1294–1307CrossRefGoogle Scholar
Dai, L., and Zimmerly, S. (2003). ORF-less and RT-encoding group II introns in archaebacteria, with a pattern of homing into related group II intron ORFs. RNA, 9, 14–19CrossRefGoogle Scholar
Dalgaard, J. Z., and Garrett, R. A. (1992). Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Gene, 121, 103–110CrossRefGoogle ScholarPubMed
Dalgaard, J. Z., Garrett, R. A., and Belfort, M. (1993). A site-specific endonuclease encoded by a typical archaeal intron. Proc. Natl. Acad. Sci. USA, 90, 5414–5417CrossRefGoogle ScholarPubMed
Doulatov, S., Hodes, A., Dai, L., Mandhana, N., Liu, M., Deora, R., Simons, R. W., Zimmerly, S., and Miller, J. F. (2004). Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature, 431, 476–481CrossRefGoogle ScholarPubMed
Edgell, D. R., Belfort, M., and Shub, D. A. (2000). Barriers to intron promiscuity in bacteria. J Bacteriol, 182, 5281–5289CrossRefGoogle ScholarPubMed
Eickbush, T. H. (1999). Mobile introns: Retrohoming by complete reverse splicing. Current Biology, 9, R11–R14CrossRefGoogle ScholarPubMed
Eskes, R., Liu, L., Ma, H., Chao, M. Y., Dickson, L., Lambowitz, A. M., and Perlman, P. S. (2000). Multiple homing pathways used by yeast mitochondrial group II introns. Mol. Cell. Biol., 20, 8432–8446CrossRefGoogle ScholarPubMed
Everett, K. D. E., Kahane, S., Bush, R. M., and Friedman, M. G. (1999). An unspliced group I intron in 23S rRNA links Chlamydiales, chloroplasts and mitochondria. J Bacteriol, 181, 4734–4740Google Scholar
Evguenieva-Hackenberg, E., and Klug, G. (2000). RNase III processing of intervening sequences found in helix 9 of 23S rRNA in the alpha subclass of Proteobacteria. J Bacteriol, 182, 4719–4729CrossRefGoogle ScholarPubMed
Ferat, J. L., and Michel, F. (1993). Group II self-splicing introns in bacteria. Nature, 364, 358–361CrossRefGoogle ScholarPubMed
Glaser, P., Frangeul, L., Buchrieser, C., Rusniok, C., Amend, A.. (55 authors). (2001). Comparative genomics of Listeria species. Science, 294, 849–852Google ScholarPubMed
Goodrich-Blair, H., and Shub, D. A. (1996). Beyond homing: Competition between intron endonucleases confers a selective advantage on flanking genetic markers. Cell, 84, 211–221CrossRefGoogle ScholarPubMed
Gregory, S. T., O'Connor, M., and Dahlberg, A. E. (1996). Functional Escherichia coli 23S rRNAs containing processed and unprocessed intervening sequences from Salmonella typhimurium. Nucleic Acids Res., 24, 4918–4923CrossRefGoogle ScholarPubMed
Grosjean, H., Szweykowska-Kulinska, Z., Motorin, Y., Fasiolo, F., and Simos, G. (1997). Intron-dependent enzymatic formation of modified nucleosides in eukaryotic tRNAs: A review. Biochimie, 79, 293–302CrossRefGoogle ScholarPubMed
Guo, H., Zimmerly, S., Perlman, P. S., and Lambowitz, A. M. (1997). Group II intron endonucleases use both RNA and protein subunits for recognition of specific sequences in double-stranded DNA. EMBO J., 16, 6835–6848CrossRefGoogle ScholarPubMed
Herzer, P. J., Inouye, S., and Inouye, M. (1992). Retron-Ec107 is inserted into the Escherichia coli genome by replacing a palindromic 34-bp intergenic sequence. Mol Microbiol, 6, 345–354CrossRefGoogle Scholar
Herzer, P. J., Inouye, S., Inouye, M., and Whittam, T. S. (1990). Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol, 172, 6175–6181CrossRefGoogle ScholarPubMed
Hsu, D., Shih, L. M., and Zee, Y. C. (1994). Degradation of rRNA in Salmonella strains: A novel mechanism to regulate the concentrations of rRNA and ribosomes. J Bacteriol, 176, 4761–4765CrossRefGoogle ScholarPubMed
Ichiyanagi, K., Beauregard, A., and Belfort, M. (2003). A bacterial group II intron favors retrotransposition into plasmid targets. Proc. Natl. Acad. Sci. USA, 100, 15742–15747CrossRefGoogle ScholarPubMed
Ichiyanagi, K., Beauregard, A., Lawrence, S., Smith, D., Cousineau, B., and Belfort, M. (2002). Retrotransposition of the Ll.LtrB group II intron proceeds predominantly via reverse splicing into DNA targets. Mol Microbiol, 46, 1259–1272CrossRefGoogle ScholarPubMed
Inouye, M., and Inouye, S. (1991). msDNA and bacterial reverse transcriptase. Annu. Rev. Microbiol., 45, 163–186CrossRefGoogle ScholarPubMed
Inouye, S., Sunshine, M. G., Six, E. W., and Inouye, M. (1991). Retronphage φR73: An E. coli phage that contains a retroelement and integrates into a tRNA gene. Science, 252, 969–971CrossRefGoogle Scholar
International Human Genome Sequencing Consortium (256 co-authors). (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921CrossRef
Jaeger, L., Michel, F., and Westhof, E. (1996). The structure of group I ribozymes. Nucleic Acids Mol. Biol., 10, 33–51CrossRefGoogle Scholar
Kleman-Leyer, K., Armbruster, D. W., and Daniels, C. J. (1997). Properties of H. volcanii tRNA intron endonuclease reveal a relationship between the archaeal and eucaryal tRNA intron processing systems. Cell, 89, 839–847CrossRefGoogle ScholarPubMed
Ko, M., Choi, H., and Park, C. (2002). Group I self-splicing intron in the recA gene of Bacillus anthracis. J Bacteriol, 184, 3917–3922CrossRefGoogle Scholar
Kuhlsel, M. G., Strickland, R., and Palmer, J. D. (1990). An ancient group I intron shared by eubacteria and chloroplasts. Science, 250, 1570–1573CrossRefGoogle Scholar
Lambowitz, A. M., Caprara, M., Zimmerly, S., and Perlman, P. S. (1999). Group I and group II ribozymes as RNPs: Clues to the past and guides to the future. In The RNA World, 2nd ed. (Gesteland, R. F., Cech, T. R., Atkins, J. F., eds.), pp. 451–485. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory PressGoogle Scholar
Lambowitz, A. M., and Zimmerly, S. (2004). Mobile group II introns. Annu. Rev. Genet., 38, 1–35CrossRefGoogle ScholarPubMed
Lampson, B. C., Inouye, M., and Inouye, S. (1991). Survey of multicopy single-stranded DNAs and reverse transcriptase genes among natural isolates of Myxococcus xanthus. J Bacteriol, 173, 5363–5370CrossRefGoogle ScholarPubMed
Lampson, B. C., Inouye, M., and Inouye, S. (2001). The msDNAs of bacteria. Prog. Nucleic Acid Res. Mol. Biol., 67, 65–91Google Scholar
Landthaler, M., and Shub, D. A. (1999). Unexpected abundance of self-splicing introns in the genome of bacteriophage T wort: Introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc. Natl. Acad. Sci. U S A, 96, 7005–7010CrossRefGoogle Scholar
Liu, M., Deora, R., Doulatov, S. R., Gingery, M., Eiserling, F. A., Preston, A.. (2002). Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science, 295, 2091–2094CrossRefGoogle ScholarPubMed
Lykke-Andersen, J., Aagaard, C., Semionenkov, M., and Garrett, R. A. (1997). Archaeal introns: Splicing, intercellular mobility and evolution. Trends Biochem. Sci., 22, 326–331CrossRefGoogle ScholarPubMed
Lykke-Andersen, J., Thi-Ngoc, H. P., and Garrett, R. A. (1994). DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum. Nucleic Acids Res., 22, 4583–4590CrossRefGoogle ScholarPubMed
Maas, W. K., Wang, C., Lima, T., Hach, A., and Lim, D. (1996). Multicopy single-stranded DNA of Escherichia coli enhances mutation and recombination frequencies by titrating MutS protein. Mol Microbiol, 19, 505–509CrossRefGoogle ScholarPubMed
Maas, W. K., Wang, C., Lima, T., Zubay, G., and Lim, D. (1994). Multicopy single-stranded DNAs with mismatched base pairs are mutagenic in Escherichia coli. Mol Microbiol, 14, 437–441CrossRefGoogle ScholarPubMed
Martínez-Abarca, F., García-Rodriguez, F. M., and Toro, N. (2000). Homing of a bacterial group II intron with an intron-encoded protein lacking a recognizable endonuclease domain. Mol Microbiol, 35, 1405–1412CrossRefGoogle ScholarPubMed
Martínez-Abarca, F., Zekri, S., and Toro, N. (1998). Characterization and splicing in vivo of a Sinorhizobium meliloti group II intron associated with particular insertion sequences of the IS630-Tc1/IS3 retroposon superfamily. Mol Microbiol, 28, 1295–1306CrossRefGoogle ScholarPubMed
Matsuura, M., Noah, J. W., and Lambowitz, A. M. (2001). Mechanism of maturase-promoted group II intron splicing. EMBO J., 20, 7259–7270CrossRefGoogle ScholarPubMed
Matsuura, M., Saldanha, R., Ma, H., Wank, H., Yang, J., Mohr, G., Cavanagh, S.. (1997). A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: Biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev., 11, 2910–2924CrossRefGoogle ScholarPubMed
Michel, F., and Westhof, E. (1990). Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol, 216, 585–610CrossRefGoogle Scholar
Miller, W. L., Pabbaraju, K., and Sanderson, K. E. (2000). Fragmentation of 23S rRNA in strains of Proteus and Providencia results from intervening sequences in the rrn (rRNA) genes. J Bacteriol, 182, 1109–1117CrossRefGoogle ScholarPubMed
Mills, D. A., Manias, D. A., McKay, L. L., and Dunny, G. M. (1997). Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J Bacteriol, 179, 6107–6111CrossRefGoogle ScholarPubMed
Mohr, G., Smith, D., Belfort, M., and Lambowitz, A. M. (2000). Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev., 14, 559–573Google ScholarPubMed
Mohr, S., Stryker, J., and Lambowitz, A. M. (2002). A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell, 109, 769–779CrossRefGoogle ScholarPubMed
Muñoz, E., Villadas, P. J., and Toro, N. (2001). Ectopic transposition of a group II intron in natural bacterial populations. Mol Microbiol, 41, 645–652CrossRefGoogle ScholarPubMed
Nam, K., Hudson, R. H. E., Chapman, K. B., Ganeshan, K., Damha, M. J., and Boeke, J. D. (1994). Yeast lariat debranching enzyme: Substrate and sequence specificity. J. Biol. Chem., 269, 20613–20621Google ScholarPubMed
Pabbaraju, K., Miller, W. L., and Sanderson, K. E. (2000). Distribution of intervening sequences in the genes for 23S rRNA and rRNA fragmentation among strains of the Salmonella reference collection B (SARB) and SARC sets. J Bacteriol, 182, 1923–1929CrossRefGoogle ScholarPubMed
Pronk, L. M., and Sanderson, K. E. (2001). Intervening sequences in rrl genes and fragmentation of 23S rRNA in genera of the family Enterobacteriaceae. J Bacteriol, 183, 5782–5787CrossRefGoogle ScholarPubMed
Ralph, D., and McClelland, M. (1993). Intervening sequence with conserved open reading frame in eubacterial 23S rRNA genes. Proc. Natl. Acad. Sci. U S A, 90, 6864–6868CrossRefGoogle ScholarPubMed
Ralph, D., and McClelland, M. (1994). Phylogenetic evidence for horizontal transfer of an intervening sequence between species in a spirochete genus. J Bacteriol, 176, 5982–5987CrossRefGoogle Scholar
Reinhold-Hurek, B., and Shub, D. A. (1992). Self-splicing introns in tRNA genes of widely divergent bacteria. Nature, 357, 173–176CrossRefGoogle ScholarPubMed
Rest, J. S., and Mindell, D. P. (2003). Retroids in archaea: Phylogeny and lateral origins. Mol. Biol. Evol., 20, 1134–1142CrossRefGoogle ScholarPubMed
Rice, S. A., and Lampson, B. C. (1995). Phylogenetic comparison of retron elements among the myxobacteria: Evidence for vertical inheritance. J Bacteriol, 177, 37–45CrossRefGoogle ScholarPubMed
Roberts, A. P., Braun, V., Eichel-Streiber, C., and Mullany, P. (2001). Demonstration that the group II intron from the clostridial conjugative transposon Tn5397 undergoes splicing in vivo. J Bacteriol, 183, 1296–1299CrossRefGoogle Scholar
Roman, J., and Woodson, S. A. (1998). Integration of the Tetrahymena group I intron into bacterial rRNA by reverse splicing in vivo. Proc. Natl. Acad. Sci. U S A, 95, 2134–2139CrossRefGoogle Scholar
Rudi, K., and Jakobsen, K. S. (1999). Complex evolutionary patterns of tRNALeu (UAA) group I introns in cyanobacterial radiation. J Bacteriol, 181, 3445–3451Google Scholar
Seraphin, B., Simon, M., Boulet, A., and Faye, G. (1989). Mitochondrial splicing requires a protein from a novel helicase family. Nature, 337, 84–87CrossRefGoogle ScholarPubMed
Shub, D. A. (1991). The antiquity of group I introns. Curr. Opin. Genet. Dev., 1, 478–484CrossRefGoogle ScholarPubMed
Simon, D., Fewer, D., Friedl, T., and Bhattacharya, D. (2003). Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. J. Mol. Evol., 57, 710–720CrossRefGoogle ScholarPubMed
Singh, N. N., and Lambowitz, A. M. (2001). Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference. J Mol Biol, 309, 361–386CrossRefGoogle ScholarPubMed
Skurnik, M., and Toivanen, P. (1991). Intervening sequences (IVSs) in the 23S ribosomal RNA genes of pathogenic Yersinia enterocolitica strains: The IVSs in Y. enterocolitica and Salmonella typhimurium have a common origin. Mol Microbiol, 5, 585–593CrossRefGoogle Scholar
Tang, T. H., Rozhdestvensky, T. S., Clouet D'Orval, B., Bortolin, M. L., Huber, H., Charpentier, B., Branlant, C.. (2002). RNomics in archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res., 30, 921–930CrossRefGoogle ScholarPubMed
Tanner, M. A., and Cech, T. R. (1996). Activity and thermostability of the small self-splicing group I intron in the pre-tRNAIle of the purple bacterium Azoarcus. RNA, 2, 74–83Google Scholar
Toor, N., Hausner, G., and Zimmerly, S. (2001). Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA, 7, 1142–1152CrossRefGoogle ScholarPubMed
Trotta, C. R., and Abelson, J. (1999). tRNA splicing: An RNA world add-on or an ancient reaction? In The RNA World, 2nd ed. (Gesteland, R. F., Cech, T. R., Atkins, J. F., eds.), pp. 561–584. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory PressGoogle Scholar
Trotta, C. R., Miao, F., Arn, E. A., Stevens, S. W., Ho, C. K., Rauhut, R., and Abelson, J. N. (1997). The yeast tRNA splicing endonuclease: A tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell, 89, 849–858CrossRefGoogle ScholarPubMed
Valadkhan, S., and Manley, J. L. (2001). Splicing-related catalysis by protein-free snRNAs. Nature, 413, 701–707CrossRefGoogle ScholarPubMed
Wank, H., Sanfilippo, J., Singh, R. N., Matsuura, M., and Lambowitz, A. M. (1999). A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Mol. Cell, 4, 239–250CrossRefGoogle Scholar
Watanabe, Y., Yokobori, S., Inaba, T., Yamagishi, A., Oshima, T., Kawarabayasi, Y., Kikuchi, H.. (2002). Introns in protein-coding genes in archaea. FEBS Lett., 510, 27–30CrossRefGoogle ScholarPubMed
Weber, U., Beier, H., and Gross, H. J. (1996). Another heritage from the RNA world: Self-excision of intron sequences from nuclear pre-tRNAs. Nucleic Acids Res., 24, 2212–2219CrossRefGoogle ScholarPubMed
Weeks, K. M., and Cech, T. R. (1995). Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5′ slice site domain. Cell, 82, 221–230CrossRefGoogle Scholar
Yamanaka, K., Shimamoto, T., Inouye, S., and Inouye, M. (2002). Retrons. In Mobile DNA II (Craig, J. L., Craigie, R., Gellert, M., Lambowitz, A. M., eds.), pp. 784–795. Washington, DC: ASM PressCrossRefGoogle Scholar
Zhang, A., Derbyshire, V., Salvo, J. L. G., and Belfort, M. (1995). Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro. RNA, 1, 783–793Google ScholarPubMed
Zhong, J., and Lambowitz, A. M. (2003). Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J., 22, 4555–4565CrossRefGoogle ScholarPubMed
Zimmerly, S., Guo, H., Eskes, R., Yang, J., Perlman, P. S., and Lambowitz, A. M. (1995a). A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell, 83, 529–538CrossRefGoogle Scholar
Zimmerly, S., Guo, H., Perlman, P. S., and Lambowitz, A. M. (1995b). Group II intron mobility occurs by target DNA-primed reverse transcription. Cell, 82, 545–554CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×