Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T08:11:16.614Z Has data issue: false hasContentIssue false

2 - A model of distributed computations

Published online by Cambridge University Press:  05 June 2012

Ajay D. Kshemkalyani
Affiliation:
University of Illinois, Chicago
Mukesh Singhal
Affiliation:
University of Kentucky
Get access

Summary

A distributed system consists of a set of processors that are connected by a communication network. The communication network provides the facility of information exchange among processors. The communication delay is finite but unpredictable. The processors do not share a common global memory and communicate solely by passing messages over the communication network. There is no physical global clock in the system to which processes have instantaneous access. The communication medium may deliver messages out of order, messages may be lost, garbled, or duplicated due to timeout and retransmission, processors may fail, and communication links may go down. The system can be modeled as a directed graph in which vertices represent the processes and edges represent unidirectional communication channels.

A distributed application runs as a collection of processes on a distributed system. This chapter presents a model of a distributed computation and introduces several terms, concepts, and notations that will be used in the subsequent chapters.

A distributed program

A distributed program is composed of a set of n asynchronous processes p1, p2, …, pi, …, pn that communicate by message passing over the communication network. Without loss of generality, we assume that each process is running on a different processor. The processes do not share a global memory and communicate solely by passing messages. Let Cij denote the channel from process pi to process pj and let mij denote a message sent by pi to pj. The communication delay is finite and unpredictable.

Type
Chapter
Information
Distributed Computing
Principles, Algorithms, and Systems
, pp. 39 - 49
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×