Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Print publication year: 2010
  • Online publication date: February 2010

Chapter 13 - The congenital myopathies

from Section 3B - Description of muscle disease – specific diseases

References

1. V. Dubowitz, C. A. Sewry, Muscle Biopsy A Practical Approach. Third Edition. (Philadelphia, PA: Saunders Elsevier, 2007.)
2. K. J. Nowak, D. Wattanasirichaigoon, H. H. Goebel, et al., Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet. 23:2 (1999), 208–212.
3. V. L. Lehtokari, C. Ceuterick-de Groote, P. de Jonghe, et al., Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscul. Disord. 17 (2007), 433–442.
4. H. Tajsharghi, M. Ohlsson, C. Lindberg, A. Oldfors, Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch. Neurol. 64:9 (2007), 1334–1338.
5. K. A. Quane, J. M. S. Healy, K. E. Keating, et al., Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia. Nat. Genet. 5 (1993), 51–55.
6. Y. Zhang, H. S. Chen, V. K. Khanna, et al., A mutation in the human ryanodine receptor gene associated with central core disease. Nat. Genet. 5 (1993), 46–50.
7. A. M. Kaindl, F. Ruschendorf, S. Krause, et al., Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J. Med. Genet. 41:11 (2004), 842–848.
8. A. S. Nicot, A. Toussaint, V. Tosch, et al., Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat. Genet. 39:9 (2007), 1134–1139.
9. M. Bitoun, S. Maugenre, P. Y. Jeannet, et al., Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat. Genet. 37:11 (2005), 1207–1209.
10. H. Jungbluth, H. Zhou, C. A. Sewry, et al., Centronuclear myopathy due to a de novo dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul. Disord. 17:4 (2007), 338–345.
11. N. G. Laing, N. F. Clarke, D. E. Dye, et al., Actin mutations are one cause of congenital fibre type disproportion. Ann. Neurol. 56:5 (2004), 689–694.
12. N. F. Clarke, W. Kidson, S. Quijano-Roy, et al., SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann. Neurol. 59:3 (2006), 546–552.
13. N. F. Clarke, H. Kolski, D. E. Dye, et al., Mutations in TPM3 are a common cause of congenital fiber type disproportion. Ann. Neurol. 63:3 (2008), 329–339.
14. N. Monnier, N. B. Romero, J. Lerale, et al., An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum. Mol. Genet. 9:18 (2000), 2599–2608.
15. P. C. Scacheri, E. P. Hoffman, J. D. Fratkin, et al., A novel ryanodine receptor gene mutation causing both cores and rods in congenital myopathy. Neurology 55:11 (2000), 1689–1696.
16. A. Ferreiro, C. Ceuterick-de Groote, J. J. Marks, et al., Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann. Neurol. 55:5 (2004), 676–686.
17. A. Ferreiro, N. Monnier, N. B. Romero, et al., A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann. Neurol. 51:6 (2002), 750–759.
18. A. Ferreiro, S. Quijano-Roy, C. Pichereau, et al., Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am. J. Hum. Genet. 71:4 (2002), 739–749.
19. H. Tajsharghi, L. E. Thornell, C. Lindberg, B. Lindvall, K. G. Henriksson, A. Oldfors. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7. Ann. Neurol. 54 (2003), 494–500.
20. J. Laporte, L. J. Hu, C. Kretz, et al., A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 13 (1996), 175–182.
21. P. B. Agrawal, R. S. Greenleaf, K. K. Tomczak, et al., Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am. J. Hum. Genet. 80:1 (2007), 162–167.
22. K. Pelin, P. Hilpela, K. Donner, et al., Mutations in the nebulin gene associated with autosomal recessive nemaline myopathy. Proc. Natl. Acad. Sci. U. S. A. 96:5 (1999), 2305–2310.
23. N. G. Laing, S. D. Wilton, P. A. Akkari, et al., A mutation in the α-tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat. Genet. 9 (1995), 75–79.
24. K. Donner, M. Ollikainen, M. Ridanpää, et al., Mutations in the β-tropomyosin (TPM2) gene – a rare cause of nemaline myopathy. Neuromuscul. Disord. 12 (2002), 151–158.
25. J. J. Johnston, R. I. Kelley, T. O. Crawford, et al., A novel nemaline myopathy in the Amish caused by a mutation in troponin T1. Am. J. Hum. Genet. 67:4 (2000), 814–821.
26. D. A. Weeks, R. R. Nixon, V. Kaimaktchiev, G. W. Mierau, Intranuclear rod myopathy, a rare and morphologically striking variant of nemaline rod myopathy. Ultrastruct. Pathol. 27:3 (2003), 151–154.
27. D. O. Hutchinson, A. Charlton, N. G. Laing, B. Ilkovski, K. N. North, Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: clinical and pathological variability within a kindred. Neuromuscul. Disord. 16:2 (2006), 113–121.
28. J. Schessl, Y. Zou, M. J. McGrath, et al., Proteomic identification of FHL1 as the protein mutated in human reducing body myopathy. J Clin Invest. 118:3 (2008), 904–912.
29. B. G. Schoser, P. Frosk, A. G. Engel, U. Klutzny, H. Lochmuller, K. Wrogemann, Commonality of TRIM32 mutation in causing sarcotubular myopathy and LGMD2H. Ann. Neurol. 57:4 (2005), 591–595.
30. T. Foroud, N. Pankratz, A. P. Batchman, et al., A mutation in myotilin causes spheroid body myopathy. Neurology 65:12 (2005), 1936–1940.
31. V. Carmignac, M. A. Salih, S. Quijano-Roy, et al., C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann. Neurol. 61:4 (2007), 340–351.
32. I. Nishino, J. Fu, K. Tanji, et al., Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy(Danon disease). Nature 406:6798 (2000), 906–910.
33. P. Y. Jeannet, L. Mittaz, M. Dunand, J. A. Lobrinus, L. Bonafe, T. Kuntzer, Autosomal dominant nemaline myopathy: a new phenotype unlinked to previously known genetic loci. Neuromuscul. Disord. 17:1 (2007), 6–12.
34. I. M. Gommans, M. Davis, K. Saar, et al., A locus on chromosome 15q for a dominantly inherited nemaline myopathy with core-like lesions. Brain 126 (2003), 1545–1551.
35. U. P. Ketelsen, B. Brand-Saberi, B. Uhlenberg, M. Wagner, H. G. Laberke, H. Omran, Congenital myopathy with arrest of myogenesis prior to formation of myotubes. Neuropediatrics 36:4 (2005), 246–251.
36. L. Hartley, M. Kinali, R. Knight, et al., A congenital myopathy with diaphragmatic weakness not linked to the SMARD1 locus. Neuromuscul Disord. 17:2 (2007), 174–179.
37. P. R. Bourque, B. Lach, S. Carpenter, P. Rippstein, Myopathy with hexagonally cross-linked tubular arrays: a new autosomal dominant or sporadic congenital myopathy. Ann. Neurol. 45:4 (1999), 512–515.
38. D. Lev, M. Sadeh, N. Watemberg, et al., A benign congenital myopathy in an inbred Samaritan family. Eur. J. Paediatr. Neurol. 10:4 (2006), 182–185.
39. H. H. Goebel, Congenital myopathies. Semin. Pediatr. Neurol. 3:2 (1996), 152–161.
40. M. A. Corbett, P. Anthony Akkari, A. Domazetovska, et al., An alphatropomyosin mutation alters dimer preference in nemaline myopathy. Ann. Neurol. 57:1 (2005), 42–49.
41. B. Ilkovski, K. J. Nowak, A. Domazetovska, et al., Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum. Mol. Genet. 13:16 (2004), 1727–1743.
42. A. Domazetovska, B. Ilkovski, V. Kumar, et al., Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann Neurol. 62:6 (2007), 597–608.
43. A. Domazetovska, B. Ilkovski, S. T. Cooper, et al., Mechanisms underlying intranuclear rod formation. Brain 130:Pt 12 (2007), 3275–3284.
44. A. D'Amico, C. Graziano, G. Pacileo, et al., Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscul. Disord. 16:9–10 (2006), 548–552.
45. N. F. Clarke, B. Ilkovski, S. Cooper, et al., The pathogenesis of ACTA1-related congenital fiber type disproportion. Ann. Neurol. 61:6 (2007), 552–561.
46. H. Zhou, H. Jungbluth, C. A. Sewry, et al., Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain 130:Pt 8 (2007), 2024–2036.
47. A. Ferreiro, B. Estournet, D. Chateau, et al., Multi-minicore disease – searching for boundaries: phenotype analysis of 38 cases. Ann. Neurol. 48:5 (2000), 745–757.
48. C. Wallgren-Pettersson, K. Pelin, K. J. Nowak, et al., Genotype-phenotype correlations in nemaline myopathy caused by mutations in the genes for nebulin and skeletal muscle alpha-actin. Neuromuscul. Disord. 14:8–9 (2004), 461–470.
49. C. Wallgren-Pettersson, K. Bushby, U. Mellies, A. Simonds, 117th ENMC workshop: ventilatory support in congenital neuromuscular disorders – congenital myopathies, congenital muscular dystrophies, congenital myotonic dystrophy and SMA (II) 4–6 April 2003, Naarden, The Netherlands. Neuromuscul. Disord. 14:1 (2004), 56–69.
50. C. Wallgren-Pettersson, K. Donner, C. Sewry, et al., Mutations in the nebulin gene can cause severe congenital nemaline myopathy. Neuromuscul. Disord. 12:7–8 (2002), 674–679.
51. J. C. Sparrow, K. J. Nowak, H. J. Durling, et al., Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul. Disord. 13 (2003), 519–531.
52. C. Wallgren-Pettersson, V. L. Lehtokari, H. Kalimo, et al., Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain 130:Pt 6 (2007), 1465–1476.
53. S. S. Sung, A. M. Brassington, K. Grannatt, et al., Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am. J. Hum. Genet. 72:3 (2003), 681–690.
54. M. McEntagart, G. Parsons, A. Buj-Bello, et al., Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscul. Disord. 12:10 (2002), 939–946.
55. H. Zhou, N. Yamaguchi, L. Xu, et al., Characterization of recessive RYR1 mutations in core myopathies. Hum. Mol. Genet. 15:18 (2006), 2791–2803.
56. C. A. Sewry, C. Muller, M. Davis, et al., The spectrum of pathology in central core disease. Neuromuscul. Disord. 12:10 (2002), 930–938.
57. K. Donner, M. Sandbacka, V. L. Lehtokari, C. Wallgren-Pettersson, K. Pelin, Complete genomic structure of the human nebulin gene and identification of alternatively spliced transcripts. Eur. J. Hum. Genet. 12:9 (2004), 744–751.
58. H. Jungbluth, M. R. Davis, C. Muller, et al., Magnetic resonance imaging of muscle in congenital myopathies associated with RYR1 mutations. Neuromuscul. Disord. 14:12 (2004), 785–790.
59. H. Jungbluth, C. A. Sewry, S. Counsell, et al., Magnetic resonance imaging of muscle in nemaline myopathy. Neuromuscul. Disord. 14:12 (2004), 779–784.
60. J. Schessl, L. Medne, Y. Hu, et al., MRI in DNM2-related centronuclear myopathy: evidence for highly selective muscle involvement. Neuromuscul Disord. 17:1 (2007), 28–32.
61. C. Wallgren-Pettersson, A. Clarke, F. Samson, et al., The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies. J. Med. Genet. 32:9 (1995), 673–679.
62. C. Akiyama, I. Nonaka, A follow-up study of congenital non-progressive myopathies. Brain Dev. 18:5 (1996), 404–408.
63. I. Gill, M. Eagle, J. S. Mehta, M. J. Gibson, K. Bushby, R. Bullock, Correction of neuromuscular scoliosis in patients with preexisting respiratory failure. Spine 31:21 (2006), 2478–2483.
64. S. Rudnik-Schoneborn, B. Glauner, D. Rohrig, K. Zerres, Obstetric aspects in women with facioscapulohumeral muscular dystrophy, limb-girdle muscular dystrophy, and congenital myopathies. Arch. Neurol. 54:7 (1997), 888–894.
65. J. Laporte, V. Biancalana, S. M. Tanner, et al., MTM1 mutations in X-linked myotubular myopathy. Hum. Mutat. 15:5 (2000), 393–409.
66. R. M. Quinlivan, C. R. Muller, M. Davis, et al., Central core disease: clinical, pathological, and genetic features. Arch. Dis. Child. 88:12 (2003), 1051–1055.
67. C. Wallgren-Pettersson, N. G. Laing, Report of the 70th ENMC International Workshop: Nemaline myopathy 11–13 June 1999, Naarden, The Netherlands, Neuromuscul. Disord. 10 (2000), 299–306.
68. N. Chahin, D. Selcen, A. G. Engel, Sporadic late onset nemaline myopathy. Neurology 65:8 (2005), 1158–1164.
69. K. Pelin, K. Donner, M. Holmberg, H. Jungbluth, F. Muntoni, C. Wallgren-Pettersson, Nebulin mutations in autosomal recessive nemaline myopathy: an update. Neuromuscul. Disord. 12:7–8 (2002), 680–686.
70. S. L. Anderson, J. Ekstein, M. C. Donnelly, et al., Nemaline myopathy in the Ashkenazi Jewish population is caused by a deletion in the nebulin gene. Hum. Genet. 115:3 (2004), 185–190.
71. V. L. Lehtokari, R. S. Greenleaf, E. T. DeChene, et al., The exon 55 delection in the nebulin gene – one single founder mutation with worldwide occurrence. Neuromusc. Disord. 19:3 (2009), 179–181.
72. M. L. Bang, X. Li, R. Littlefield, et al., Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle. J. Cell Biol. 173:6 (2006), 905–916.
73. C. C. Witt, C. Burkart, D. Labeit, et al., Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J. 25:16 (2006), 3843–3855.
74. K. J. Nowak, C. A. Sewry, C. Navarro, et al., Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann. Neurol. 61:2 (2007), 175–184.
75. P. B. Agrawal, C. D. Strickland, C. Midgett, et al., Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann. Neurol. 56:1 (2004), 86–96.
76. S. S. Sung, A. M. Brassington, P. A. Krakowiak, J. C. Carey, L. B. Jorde, M. Bamshad, Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am. J. Hum. Genet. 73:1 (2003), 212–214.
77. R. M. Toydemir, A. Rutherford, F. G. Whitby, L. B. Jorde, J. C. Carey, M. J. Bamshad, Mutations in embryonic myosin heavy chain (MYH3) cause Freeman-Sheldon syndrome and Sheldon-Hall syndrome. Nat. Genet. 38:5 (2006), 561–565.
78. P. Robinson, S. Lipscomb, L. C. Preston, et al., Mutations in fast skeletal troponin I, troponin T, and beta-tropomyosin that cause distal arthrogryposis all increase contractile function. FASEB J. 21:3 (2007), 896–905.
79. B. L. Banwell, J. Russel, T. Fukudome, X. M. Shen, G. Stilling, A. G. Engel. Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency. J. Neuropathol. Exp. Neurol. 58:8 (1999), 832–846.
80. H. Jungbluth, C. A. Sewry, S. C. Brown, et al., Mild phenotype of nemaline myopathy with sleep hypoventilation due to mutation in the skeletal muscle a-actin (ACTA1) gene. Neuromuscul. Disord. 11 (2001), 35–40.
81. N. F. Clarke, K. N. North, Congenital fiber type disproportion – 30 years on. J. Neuropathol. Exp. Neurol. 62:10 (2003), 977–989.
82. N. B. Romero, N. Monnier, L. Viollet, et al., Dominant and recessive central core disease associated with RYR1 mutations and fetal akinesia. Brain 126:Pt 11 (2003), 2341–2349.
83. S. Wu, M. C. Ibarra, M. C. Malicdan, et al., Central core disease is due to RYR1 mutations in more than 90% of patients. Brain 129:Pt 6 (2006), 1470–1480.
84. R. Robinson, D. Carpenter, M. A. Shaw, J. Halsall, P. Hopkins, Mutations in RYR1 in malignant hyperthermia and central core disease. Hum. Mutat. 27:10 (2006), 977–989.
85. H. Takeshima, M. Iino, H. Takekura, et al., Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369:6481 (1994), 556–559.
86. H. Zhou, M. Brockington, H. Jungbluth, et al., Epigenetic allele silencing unveils recessive RYR1 mutations in core myopathies. Am. J. Hum. Genet. 79:5 (2006), 859–868.
87. A. Ferreiro, M. Fardeau, 80th ENMC International Workshop on Multi-Minicore Disease: 1st International MmD Workshop. 12–13th May, 2000, Soestduinen, The Netherlands. Neuromuscul. Disord. 12:1 (2002), 60–68.
88. B. R. Fruen, J. R. Mickelson, C. F. Louis, Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors. J. Biol. Chem. 272:43 (1997), 26965–26971.
89. C. Wallgren-Pettersson, N. S. Thomas, Report on the 20th ENMC sponsored international workshop: myotubular/centronuclear myopathy. Neuromuscul. Disord. 4:1 (1994), 71–74.
90. P. Y. Jeannet, G. Bassez, B. Eymard, et al., Clinical and histologic findings in autosomal centronuclear myopathy. Neurology 62:9 (2004), 1484–1490.
91. V. Tosch, H. M. Rohde, H. Tronchere, et al., A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. Hum. Mol. Genet. 15:21 (2006), 3098–3106.
92. S. Zuchner, M. Noureddine, M. Kennerson, et al., Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat. Genet. 37:3 (2005), 289–294.
93. A. Echaniz-Laguna, A. S. Nicot, S. Carré, et al., Subtle central and peripheral nervous system abnormalities in a family with centronuclear myopathy and a novel dynamin 2 gene mutation. Neuromuscul. Disord. 17:11–12 (2007), 955–959.
94. M. Bitoun, J. A. Bevilacqua, B. Prudhon, et al., Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann. Neurol. 62:6 (2007), 666–670.
95. D. E. Dye, B. Azzarelli, H. H. Goebel, N. G. Laing, Novel slow-skeletal myosin (MYH7) mutation in the original myosin storage myopathy kindred. Neuromuscul. Disord. 16:6 (2006), 357–360.
96. T. Liewluck, Y. K. Hayashi, M. Ohsawa, et al., Unfolded protein response and aggresome formation in hereditary reducing-body myopathy. Muscle Nerve 35:3 (2007), 322–326.
97. K. J. Nowak, K. E. Davies, Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep. 5:9 (2004), 872–876.
98. J. E. Joya, A. J. Kee, V. Nair-Shalliker, et al., Muscle weakness in a mouse model of nemaline myopathy can be reversed with exercise and reveals a novel myofiber repair mechanism. Hum. Mol. Genet. 13:21 (2004), 2633–2645.
99. M. M. Ryan, C. Sy, S. Rudge, et al., Dietary L-tyrosine supplementation in nemaline myopathy. J. Child Neurol. 23:6 (2008), 609–613.
100. K. J. Nowak, G. Ravenscroft, C. Jackaman, et al., Rescue of skeletal muscle a-actin null mice by cardiac (fetal) α-actin. J. Cell Biol. 183 (2009), 903–915.
101. S. Messina, L. Hartley, M. Main, et al., Pilot trial of salbutamol in central core and multi-minicore diseases. Neuropediatrics 35:5 (2004), 262–266.