Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T05:04:55.483Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Amit Hagar
Affiliation:
Indiana University, Bloomington
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Discrete or Continuous?
The Quest for Fundamental Length in Modern Physics
, pp. 239 - 263
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspect, A. et al. Experimental Realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Physical Review Letters, 49:9194, 1982.CrossRefGoogle Scholar
Aharonov, Y., Anandan, J., and Vaidman, L.. Meaning of the Wave Function. Physical Review A, 47:46164626, 1993.CrossRefGoogle Scholar
Aharonov, Y. and Bohm, D.. Time in the Quantum Theory and the Uncertainty Relation for Time and Energy. Physical Review, 122:16491658, 1961.CrossRefGoogle Scholar
Adler, S. and Bassi, A.. Is Quantum Theory Exact? Science, 325(5938):275276, 2009.CrossRefGoogle Scholar
Ashtekar, A., Baez, J., Corichi, A., and Krasnov, K.. Quantum Geometry and Black Hole Entropy. Physical Review Letters, 80:904907, 1998.CrossRefGoogle Scholar
Adler, S., Bassi, A., and Ippoliti, E.. Towards Quantum Superpositions of a Mirror: An Exact Open Systems Analysis – Calculational Details. Journal of Physics A, 38:2715, 2005.CrossRefGoogle Scholar
Abraham, M.. Die Grundhypothesen der Elektronentheorie. Physikalische Zeitschrift, 5:576578, 1904.Google Scholar
Appelquist, T. and Carazzone, J.. Infrared Singularities and Massive Fields. Physical Review D, 11:28562861, 1975.CrossRefGoogle Scholar
Amelino-Camelia, G.. Testable Scenario for Relativity with Minimum Length. Physics Letters B, 510:255, 2001.CrossRefGoogle Scholar
Amelino-Camelia, G.. On the Fate of Lorentz Symmetry in Loop Quantum Gravity and Noncommutative Spacetimes. Preprint, 2002. arXiv:grqc/0205125v1.Google Scholar
Amelino-Camelia, G.. Quantum Gravity Phenomenology – Status and Prospects. Modern Physics Letters A, 17:899922, 2002.CrossRefGoogle Scholar
Amelino-Camelia, G.. Relativity in Spacetimes with Short-Distance Structure Governed by an Observer-Independent (Planckian) Length Scale. International Journal of Modern Physics D, 11:3560, 2002.CrossRefGoogle Scholar
Amelino-Camelia, G.. Kinematical Solution of the UHE-Cosmic-Ray Puzzle without a Preferred Class of Inertial Observers. International Journal of Modern Physics D, 12:12111226, 2003.CrossRefGoogle Scholar
Amelino-Camelia, G.. Proposal of a Second Generation of Quantum-Gravity-Motivated Lorentz-Symmetry Tests: Sensitivity to Effects Suppressed Quadratically by the Planck Scale. International Journal of Modern Physics D, 12:16331640, 2003. 239CrossRefGoogle Scholar
Amelino-Camelia, G.. The Three Perspectives on the Quantum–Gravity Problem and Their Implications for the Fate of Lorentz Symmetry. Preprint, 2003. arXiv:gr-qc/0309054v1.Google Scholar
Amelino-Camelia, G.. Anything Beyond Special Relativity? Springer’s Lecture Notes in Physics, 702:227278, 2006.CrossRefGoogle Scholar
Amelino-Camelia, G.. A Perspective on Quantum Gravity Phenomenology. Presented at the PIWorkshop on Experimental Search for Quantum Gravity, pirsa:07110057, min. 26:23, 2007.Google Scholar
Amelino-Camelia, G.. Relativity, Still Special. Nature, 450:801802, 2007.CrossRefGoogle Scholar
Amelino-Camelia, G.. Born’s Prophecy Leaves No Space for Quantum Gravity. Preprint, 2012. arXiv:1205.1636.Google Scholar
Amelino-Camelia, G.. No Theory is Too Special to Question. Nature, 483:125, 2012.CrossRefGoogle Scholar
Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., and Smolin, L.. The Principle of Relative Locality. Preprint, 2011. arXiv:1101.0931.Google Scholar
Amelino-Camelia, G. and Smolin, L.. Prospects for Constraining Quantum Gravity Dispersion with Near Term Observations. Preprint, 2009. arXiv:0906.3731.Google Scholar
Amati, D., Ciafaloni, M., and Veneziano, G.. Can Spacetime be Probed Below the String Size? Physics Letters B, 216(1–2):4147, 1989.CrossRefGoogle Scholar
Ahmed, M., Dodelson, S., Greene, P., and Sorkin, R.. Everpresent Lambda. Physical Review D, 69(10):103523, 2004.CrossRefGoogle Scholar
Adler, S.. Why Decoherence Has Not Solved the Measurement Problem: a Response to P.W. Anderson. Studies in the History and Philosophy of Modern Physics, 34(1):135142, 2003.CrossRefGoogle Scholar
Ambjørn, J., Görlich, A., Jurkiewicz, J., and Loll, R.. Planckian Birth of a Quantum de Sitter Universe. Physical Review Letters, 100:091304, 2008.CrossRefGoogle Scholar
Ambartsumian, V. and Ivanenko, D.. To the Question of Avoidance of the Infinite Self-Counteraction of Electrons. Zeitschrift für Physik, 64(7–8):563567, 1930.CrossRefGoogle Scholar
Ambjørn, J., Jurkiewicz, J., and Loll, R.. Emergence of a 4D World from Causal Quantum Gravity. Physical Review Letters, 93:131301, 2004.CrossRefGoogle Scholar
Ambjørn, J., Jurkiewicz, J., and Loll, R.. Deriving Spacetime from First Principles. Annalen der Physik, 19(3–5):186195, 2010.CrossRefGoogle Scholar
Ambjørn, J., Jurkiewicz, J., and Loll, R.. Quantum Gravity, or the Art of Building Spacetime. In Oriti, D., editor, Approaches to Quantum Gravity. Cambridge University Press, Cambridge, 2010.Google Scholar
Albert, D.. Quantum Mechanics and Experience. Harvard University Press, Cambridge, MA, 1992.CrossRefGoogle Scholar
Andryushin, V. I. and Melnikov, V. N.. Mossbäuer Effect on Neutrino and Limits on Elementary Length. Lettere al Nuovo Cimento, 7(16):809810, 1973.CrossRefGoogle Scholar
Amati, D.. Gravity from Strings. Physics Reports, 184(2–4):105112, 1989.CrossRefGoogle Scholar
Almheiri, A., Marolf, D., Polchinski, J., and Sully, J.. Black Holes: Complementarity or Firewalls? Preprint, 2012. arXiv:1207.3123.Google Scholar
Anderson, P.. More is Different. Science, 177(4047):393396, 1972.CrossRefGoogle Scholar
Aramaki, S.. Development of the Renormalization Theory in Quantum Electrodynamics (I). Historia Scientiarum, 36:97116, 1989.Google Scholar
Aramaki, S.. Development of the Renormalization Theory in Quantum Electrodynamics (II). Historia Scientiarum, 37:91113, 1989.Google Scholar
Arntzenius, F.. Space, Time, and Stuff. Oxford University Press, Oxford, 2012.CrossRefGoogle Scholar
Ashtekar, A., Rovelli, C., and Smolin, L.. Weaving a Classical Metric with Quantum Threads. Physical Review Letters, 69:237240, 1992.CrossRefGoogle Scholar
Adler, R. and Santiago, D.. On Gravity and the Uncertainty Principle. Modern Physics Letters A, 14(20):13711381, 1999.CrossRefGoogle Scholar
Ashtekar, A.. New Variables for Classical and Quantum Gravity. Physical Review Letters, 57:22442247, 1986.CrossRefGoogle Scholar
Bain, J.. Effective Field Theories. In Batterman, R., editor, The Oxford Handbook of Philosophy of Physics. Oxford University Press, Oxford, 2011.Google Scholar
Bain, J.. The Emergence of Spacetime in Condensed Matter Approaches to Quantum Gravity. Studies in the History and Philosophy of Modern Physics, 44(3):338345, 2013.CrossRefGoogle Scholar
Banks, T.. Lectures on Black Holes and Information Loss. Nuclear Physics B – Proceedings Supplements, 41(1–3):2165, 1995.CrossRefGoogle Scholar
Barbour, J.. Relational Concepts of Space and Time. British Journal for the Philosophy of Science, 33(3):251274, 1982.CrossRefGoogle Scholar
Barbour, J.. The Discovery of Dynamics. Oxford University Press, Oxford, 1989.Google Scholar
Barbour, J.. The End of Time: The Next Revolution in Physics. Oxford University Press, Oxford, 2000.Google Scholar
Barbon, J.. Black Holes, Information and Holography. Journal of Physics – Conference Series, 171(1):012009, 2009.CrossRefGoogle Scholar
Baynes, T.. The Port-Royal Logic. Sutherland and Know, Edinburgh, 1851. Translation. Second Edition.Google Scholar
Braverman, M. and Cook, S.. Computing Over the Reals: Foundations for Scientific Computing. Notices of the AMS, 53(3):318329, 2006.Google Scholar
Bardeen, J., Carter, B., and Hawking, S.. The Four Laws of Black Hole Mechanics. Communications in Mathematical Physics, 31:161170, 1973.CrossRefGoogle Scholar
Burgisser, P., Claussen, M., and Shokrollahi, M.. Algebraic Complexity Theory. Springer, New York, 1997.CrossRefGoogle Scholar
Bjorken, J. and Drell, S.. Relativistic Quantum Fields. McGraw-Hill, New York, 1965.Google Scholar
Bekenstein, J.. Black Holes and the Second Law. Lettere al Nuovo Cimento, 4:737740, 1972.CrossRefGoogle Scholar
Bekenstein, J.. Black Holes and Entropy. Physical Review D, 7:23332346, 1973.CrossRefGoogle Scholar
Bekenstein, J.. Generalized Second Law of Thermodynamics in Black-Hole Physics. Physical Review D, 9:32923300, 1974.CrossRefGoogle Scholar
Bekenstein, J.. Information in the Holographic Universe. Scientific American, 289(8):5865, 2003.CrossRefGoogle Scholar
Bell, J.. On the Einstein–Podolsky–Rosen Paradox. Physics, 1:195200, 1964.CrossRefGoogle Scholar
Bell, J.. How to Teach Special Relativity. In Speakable and Unspeakable in Quantum Mechanics, pages 6780. Cambridge University Press, Cambridge, 1987.Google Scholar
Bell, J.. Against Measurement. In Miller, A., editor, Sixty Two Years of Uncertainty, pages 1732. NATO ASI, Plenum Press, New York, 1990.CrossRefGoogle Scholar
Bell, J.. George Francis Fitzgerald. Physics World, 5:3135, 1992. Abridged by Denis Weare from a lecture in 1989.CrossRefGoogle Scholar
Belot, G.. Background Independence. General Relativity and Gravitation, 42(10):28652884, 2011.CrossRefGoogle Scholar
Benacerraf, P.. Tasks, Super-Tasks, and Modern Eleatics. Journal of Philosophy, 59:765784, 1962.CrossRefGoogle Scholar
Bennett, C.. Notes on Landauer’s Principle, Reversible Computation and Maxwell’s Demon. Studies in the History and Philosophy of Modern Physics, 34:501510, 2003.CrossRefGoogle Scholar
Bergmann, P.. Non-Linear Field Theories. Physical Review, 75:680685, 1949.CrossRefGoogle Scholar
Bohm, D. and Hiley, B.. Generalization of the Twistor and Clifford Algebras as a Basis for Geometry. In Revista Brasileira de Fisica, Volume Especial, Os 70 Anos do Mario Schönberg, pages 127. Sociedade Brasileira de Fisica, Sao Paulo, Brasil, 1984.Google Scholar
Bhabha, H.. The Fundamental Length Introduced by the Theory of the Mesotron (Meson). Nature, 143:276277, 1939.CrossRefGoogle Scholar
Born, M. and Infeld, L.. Foundations of the New Field Theory. Proceedings of the Royal Society of London A, 144(852):425451, 1934.Google Scholar
Butterfield, J. and Isham, C.. Spacetime and the Philosophical Challenge of Quantum Gravity. In Callender, C. and Huggett, N., editors, Physics Meets Philosophy at the Planck Scale, pages 3339. Cambridge University Press, Cambridge, 1999.Google Scholar
Bassi, A., Ippoliti, E., and Adler, S.. Towards Quantum Superpositions of a Mirror: an Exact Open Systems Analysis. Physical Review Letters, 94:030401, 2005.CrossRefGoogle Scholar
Balashov, Y. and Janssen, M.. Presentism and Relativity. British Journal for the Philosophy of Science, 33:251274, 2003.Google Scholar
Bombelli, L., Koul, R., Lee, J., and Sorkin, R.. Quantum Source of Entropy for Black Holes. Physical Review D, 34:373383, 1986.CrossRefGoogle Scholar
Black, M.. Achilles and the Tortoise. Analysis, 11:91101, 1950.CrossRefGoogle Scholar
Bombelli, L., Lee, J., Meyer, D., and Sorkin, R.. Spacetime As a Causal Set. Physical Review Letters, 59:521524, 1987.CrossRefGoogle Scholar
Barcelo, C., Liberati, S., and Visser, M.. Analogue Gravity. Living Reviews in Relativity, 14, 2011. arXiv:gr-gc/0505065v3.CrossRefGoogle Scholar
Bohm, D.. Problems in the Basic Concept of Physics. 1963. An Inaugural Lecture Delivered at Birkbeck College on 13th of February.Google Scholar
Bohr, N.. Discussion with Einstein on Epistemological Problems in Atomic Physics. In Wheeler, J. and Zurek, W., editors, Quantum Theory and Measurement, pages 949. Princeton University Press, Princeton, NJ, 1983.Google Scholar
Bolzano, B.. Paradoxes of the Infinite. Yale University Press, New Haven, CT, 1950.Google Scholar
Bopp, F.. Eine lineare Theorie des Elektrons. Annalen der Physik, 430(5):345384, 1940.CrossRefGoogle Scholar
Born, M.. Zur Quantenmechanik der Stossvorgänge. Zeitschrift für Physik, 37(12):863867, 1926.CrossRefGoogle Scholar
Born, M.. Modified Field Equations with a Finite Radius of the Electron. Nature, 132(3329):282, 1933.CrossRefGoogle Scholar
Born, M.. Cosmic Rays and the New Field Theory. Nature, 133:6364, 1934.CrossRefGoogle Scholar
Born, M.. The mysterious number 137. Proceedings of the Indian Academy of Science A, 6:533561, 1935.CrossRefGoogle Scholar
Born, M.. A Suggestion for Unifying Quantum Theory and Relativity. Proceedings of the Royal Society of London A, 165(921):291303, 1938.Google Scholar
Born, M.. Application of “Reciprocity” to Nuclei. Proceedings of the Royal Society of London A, 166:552557, 1938.Google Scholar
Born, M.. Reciprocity Theory of Elementary Particles. Reviews of Modern Physics, 21:463473, 1949.CrossRefGoogle Scholar
Born, M.. Non-Localizable Fields and Reciprocity. Nature, 165(4190):269270, 1950.CrossRefGoogle Scholar
Born, M.. The Conceptual Situation in Physics and the Prospects of its Future Development. Proceedings of the Royal Society of London A, 66:501513, 1953.Google Scholar
Bousso, R.. The Holographic Principle. Reviews of Modern Physics, 74:825874, 2002.CrossRefGoogle Scholar
Boyer, C.. The History of Calculus. Dover, New York, 1949.Google Scholar
Brown, H. and Pooley, O.. Minkowski Spacetime – a Glorious Non-Entity. In Dieks, D., editor, The Ontology of Spacetime, pages 6792. Elsevier, Amsterdam, 2006.CrossRefGoogle Scholar
Bub, J. and Pitowsky, I.. Two Dogmas About Quantum Mechanics. In Saunders, S., Barrett, J., Kent, A., and Wallace, D., editors, Many Worlds? Oxford University Press, Oxford, 2010.Google Scholar
Bohr, N. and Rosenfeld, L.. On the Question of the Measurability of Electromagnetic Field Quantities. In Cohen, R. and Stachel, J., editors, The Selected Papers of Leon Rosenfeld, pages 357400. Reidel, Dordrecht, 1957/1933.Google Scholar
Bohr, N. and Rosenfeld, L.. Field and Charge Measurements in Quantum Electrodynamics. Physical Review, 78(6):794798, 1950.CrossRefGoogle Scholar
Brown, H. and Redhead, M.. A Critique of the Disturbance Theory of the Indeterminacy of Quantum Mechanics. Foundations of Physics, 11:120, 1981.CrossRefGoogle Scholar
Brown, L. and Rechenberg, H.. Quantum Field Theories, Nuclear Forces, and Cosmic Rays (1934–1938). American Journal of Physics, 59(7):595605, 1991.CrossRefGoogle Scholar
Bronstein, M.. Qúantentheorie Schwacher Gravitationsfelder. Physikalische Zeitschrift der Sowjetunion, 9:140157, 1936.Google Scholar
Bromberg, J.. The Impact of the Neutron: Bohr and Heisenberg. Historical Studies in the Physical Sciences, 3:307341, 1971.CrossRefGoogle Scholar
Brown, H.. Correspondence, Invariance and Heuristics in the Emergence of Special Relativity. In French, S. and Kamminga, H., editors, Correspondence, Invariance and Heuristics, pages 227260. Kluwer, Amsterdam, 1993.CrossRefGoogle Scholar
Brown, H.. Einstein’s Misgiving about his 1905 Formulations of STR. European Journal of Physics, 26:S85S90, 2005.CrossRefGoogle Scholar
Brown, H.. Physical Relativity. Oxford University Press, Oxford, 2005.CrossRefGoogle Scholar
Bonder, Y. and Sudarsky, D.. Quantum Gravity Phenomenology without Lorentz Invariance Violation. Classical and Quantum Gravity, 25:105017, 2008.CrossRefGoogle Scholar
Buks, E., Schuster, R., Heiblum, M., Mahalu, D., and Umansky, V.. Dephasing in Electron Interference by a ‘Which-path’ Detector. Nature, 391:871874, 1998.CrossRefGoogle Scholar
Banks, T., Susskind, L., and Peskin, M. E.. Difficulties for the Evolution of Pure States into Mixed States. Nuclear Physics B, 244:125, 1984.CrossRefGoogle Scholar
Blau, M. and Theisen, S.. String Theory as a Theory of Quantum Gravity: a Status Report. General Relativity and Gravitation, 41:743755, 2009.CrossRefGoogle Scholar
Bub, J.. Interpreting the Quantum World. Cambridge University Press, Cambridge, 1997.Google Scholar
Bub, J.. Quantum Mechanics as a Principle Theory. Studies in the History and Philosophy of Modern Physics, 31(1):7594, 2000.CrossRefGoogle Scholar
Burgess, C.. An Introduction to Effective Field Theory. Annual Review of Nuclear and Particle Science, 57:329362, 2007.CrossRefGoogle Scholar
Callender, C.. Taking Thermodynamics too Seriously. Studies In the History and Philosophy of Modern Physics, 32(4):539553, 2001.CrossRefGoogle Scholar
Cao, T.. Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge, 1997.CrossRefGoogle Scholar
Carson, C.. The Peculiar Notion of Exchange Forces II: From Nuclear Forces to QED, 1929–1950. Studies in the History and Philosophy of Modern Physics, 21(2):99131, 1996.CrossRefGoogle Scholar
Carlip, S.. Black Hole Entropy from Horizon Conformal Field Theory. Nuclear Physics Proceedings Supplement, 88:1016, 2000.CrossRefGoogle Scholar
Cassidy, D.. Cosmic Ray Showers, High Energy Physics, and Quantum Field Theories: Programmatic Interactions in the 1930s. Historical Studies in the Physical Sciences, 12:139, 1981.CrossRefGoogle Scholar
Castellani, E.. Reductionism, Emergence, and Effective Field Theories. Studies in the History and Philosophy of Modern Physics, 33(2):251267, 2002.CrossRefGoogle Scholar
Cohen, P. and Hersh, R.. Non-Cantorian Set Theory. Scientific American, 217:104116, 1967.CrossRefGoogle Scholar
Chaitin, G.. Randomness and Mathematical Proof. Scientific American, 232(5):4752, 1975.CrossRefGoogle Scholar
Chew, G. F.. The Dubious Role of the Space-Time Continuum in Subatomic Physics. Science Progress, 51:529539, 1963.Google Scholar
Carazza, B. and Kragh, H.. Heisenberg’s Lattice World: The 1930 Theory Sketch. American Journal of Physics, 63:595, 1995.CrossRefGoogle Scholar
Caldeira, O. and Leggett, A.. Quantum Tunneling in a Dissipative system. Annals of Physics, 149:374456, 1983.CrossRefGoogle Scholar
Courant, E., Livingston, M., and Snyder, H.. The Strong-Focusing Synchroton – A New High Energy Accelerator. Physical Review, 88:11901196, 1952.CrossRefGoogle Scholar
Callan, C. and Maldacena, J.. Brane Dynamics from the Born–Infeld Action. Nuclear Physics B, 513:198212, 1998.CrossRefGoogle Scholar
Coish, H.R.. Elementary Particles in a Finite World Geometry. Physical Review, 114:383388, 1959.CrossRefGoogle Scholar
Connes, A.. Noncommutative Geometry. Academic Press, San Diego, CA, 1994.Google Scholar
Cobanera, E., Ortiz, G., and Nussinov, Z.. Unified Approach to Quantum and Classical Dualities. Physical Review Letters, 104(2):020402, 2010.CrossRefGoogle Scholar
Copeland, J.. The Church–Turing Thesis. In Zalta, E., editor, The Stanford Encyclopedia of Philosophy. 1996.Google Scholar
Cornwell, D. T.. Forces Due to Contraction on a Cord Spanning Between Two Spaceships. Europhysics Letters, 71(5):699704, 2005.CrossRefGoogle Scholar
Cheritien, M. and Peierls, R.. Properties of Form Factors in Non Local Field Theories. Il Nuovo Cimento, 10(5):668676, 1953.CrossRefGoogle Scholar
Cheritien, M. and Peierls, R.. A Study of Gauge-Invariant Non-Local Interactions. Proceedings of the Royal Society of London A, 223(1155):468481, 1954.Google Scholar
Collins, J., Perez, A., Sudarsky, D., Urrutia, L., and Vucetich, H.. Lorentz Invariance and Quantum Gravity: an Additional Fine-tuning Problem? Physical Review Letters, 93:191301, 2004.CrossRefGoogle Scholar
Collins, J., Perez, A., and Sudarsky, D.. Lorentz Invariance Violation and its Role in Quantum Gravity Phenomenology. In Oriti, D., editor, Approaches to Quantum Gravity, pages 528547. Cambridge University Press, Cambridge, 2010.Google Scholar
Cao, T. and Schweber, S.. The Conceptual Foundations and the Philosophical Aspects of Renormalization Theory. Synthese, 97(1):33108, 1993.CrossRefGoogle Scholar
Cummins, P.. Bayle, Leibniz, Hume and Reid on Extension, Composites and Simples. History of Philosophy Quarterly, 7(3):299314, 1990.Google Scholar
Darrigol, O.. The Origin of Quantized Matter Waves. Historical Studies in the Physical Sciences, 16(2):198253, 1986.Google Scholar
Darrigol, O.. The Quantum Electrodynamical Analogy in Early Nuclear Theory. Revue d’Histoire des Sciences, 41(3–4):225297, 1986.CrossRefGoogle Scholar
Darrigol, O.. From C-numbers to Q-numbers: the Classical Analogy in the History of Quantum Theory. University of California Press, Berkeley, CA, 1992.CrossRefGoogle Scholar
Davis, M.. The Undecidable. Dover, New York, 1958.Google Scholar
Dewan, E. and Beran, M.. Notes on Stress Effects Due to Relativistic Contraction. American Journal of Physics, 27:517518, 1959.CrossRefGoogle Scholar
Delamotte, B.. A Hint of Renormalization. American Journal of Physics, 72:170, 2004.CrossRefGoogle Scholar
Deser, S.. General Relativity and the Divergence Problem in Quantum Field Theory. Reviews of Modern Physics, 29(3):417423, 1957.CrossRefGoogle Scholar
Dewan, E.. Stress Effects Due to Lorentz Contraction. American Journal of Physics, 31:383386, 1963.CrossRefGoogle Scholar
Dowker, F., Henson, J., and Sorkin, R.. Quantum Gravity Phenomenology, Lorentz Invariance and Discreteness. Modern Physics Letters A, 19:1829, 2004.CrossRefGoogle Scholar
Diosi, L.. Models for Universal Reduction of Macroscopic Quantum Fluctuations. Physical Review A, 40:11651174, 1989.CrossRefGoogle Scholar
Dirac, P.. The Physical Interpretation of Quantum Dynamics. Proceedings of the Royal Society of London A, 118:621641, 1927.Google Scholar
Dirac, P.. Quantum Mechanics of Many Electron Systems. Proceedings of the Royal Society of London A, 123:714733, 1929.Google Scholar
Dirac, P.. Classical Theory of Radiating Electrons. Proceedings of the Royal Society of London A, 167:148169, 1938.Google Scholar
Dirac, P.. A Reformulation of the Born–Infeld Electrodynamics. Proceedings of the Royal Society A, 257:3243, 1960.Google Scholar
Dirac, P.. Particles of Finite Size in the Gravitational Field. Proceedings of the Royal Society of London A, 270:354356, 1962.Google Scholar
Dirac, P.. The Evolution of the Physicist’s Picture of Nature. Scientific American, 208(5):4553, 1963.CrossRefGoogle Scholar
Dirac, P.. Quantum Electrodynamics. In Hora, H. and Shepansky, J., editors, Directions in Physics. Wiley, New York, 1978.Google Scholar
Dirac, P.. Does Renormalization Make Sense? Perturbative QCD, AIP Conference Proceedings, 74:129130, 1981.CrossRefGoogle Scholar
Duncan, A. and Janssen, M.. (Never) Mind your p’s and q’s: Von Nuemann versus Jordan on the Foundations of Quantum Theory. European Journal of Physics H, 38:175259, 2013.CrossRefGoogle Scholar
Douglas, M. and Nekrasov, N.. Noncommutative Field Theory. Reviews of Modern Physics, 73:9771029, 2001.CrossRefGoogle Scholar
Dou, D.. Causal Sets, a Possible Interpretation for the Black Hole Entropy, and Related Topics. PhD Thesis, SISSA Trieste, 1999.Google Scholar
DeWitt, C. and Rickles, D., editors. The Role of Gravitation in Physics, Report from the 1957 Chapel Hill Conference. Max Planck Research Library for the History and Development of Knowledge, Berlin, 2011.Google Scholar
Dittrich, B. and Thiemann, T.. Are the Spectra of Geometrical Operators in Loop Quantum Gravity Really Discrete? Journal of Mathematical Physics, 50(1):01250311, 2009.CrossRefGoogle Scholar
Dyson, F.. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Physical Review, 75:486502, 1949.CrossRefGoogle Scholar
Earman, J.. A Primer on Determinism. Reidel, Boston, MA, 1986.CrossRefGoogle Scholar
Earman, J.. World Enough and Spacetime. MIT Press, Boston, MA, 1989.Google Scholar
Earman, J.. Thoroughly Modern Mctaggart: or, What Mctaggart Would Have Said If He Had Read the General Theory of Relativity. Philosophers’ Imprint, 2(3):128, 2002.Google Scholar
Earman, J.. The Cosmological Constant, the Fate of the Universe, Unimodular Gravity, and All That. Studies in the History and Philosophy of Modern Physics, 34(4):559577, 2003.CrossRefGoogle Scholar
Earman, J.. Tracking Down Gauge: an Ode to the Constrained Hamiltonian Formalism. In Brading, K. and Castellani, E., editors, Symmetries in Physics: Philosophical Reflections. Cambridge University Press, Cambridge, 2003.Google Scholar
Earman, J.. Determinism: What We Have Learned and What We Still Don’t Know. In Campbell, J., O’Rourke, M., and Shier, D., editors, Freedom and Determinism, Topics in Contemporary Philosophy Series, Vol. 2. Seven Springs Press, 2004.Google Scholar
Earman, J. and Belot, G.. Presocratic Quantum Gravity. In Callender, C. and Huggett, N., editors, Physics Meets Philosophy at the Planck Scale, pages 213255. Cambridge University Press, Cambridge, 1999.Google Scholar
Eddington, A.. The Mathematical Theory of Relativity. Cambridge University Press, Cambridge, 1923.Google Scholar
Eddington, A.. The Nature of the Physical World. Cambridge University Press, Cambridge, 1928.Google Scholar
Eddington, A.. Philosophy of Physical Science. Nature, 148:692693, 1941.CrossRefGoogle Scholar
Eddington, A.. Fundamental Theory. Cambridge University Press, Cambridge, 1946.Google Scholar
Efimov, G.. On the Construction of Nonlocal Quantum Electrodynamics. Annals of Physics, 71:466485, 1972.CrossRefGoogle Scholar
Eppley, K. and Hannah, E.. The Necessity of Quantizing the Gravitational Field. Foundations of Physics, 7:5168, 1977.CrossRefGoogle Scholar
Ellis, J., Hagelin, J., Nanopoulos, D., and Srednicki, M.. Search for Violations of Quantum Mechanics. Nuclear Physics B, 241(2):381405, 1984.CrossRefGoogle Scholar
Einstein, A.. Theoretische Atomistik. In Die Kultur der Gegenwart. Ihre Entwicklung und ihre Ziele. Part 3, Mathematik, Naturwissenschaften, Medizin. Section 3, Anorganischen Naturwissenschaften. 1915.Google Scholar
Einstein, A.. Naherungsweise Integration der Feldgleichungen der Gravitation. Koniglich Preussische Akademie der Wissenschaften, (Berlin) Sitzungsberichte, pages 688696, 1916.Google Scholar
Einstein, A.. Geometrie und Erfahrung. 1921. Reprinted as Doc. 52 in M. Janssen, et al., editors, The Collected Papers of Albert Einstein, Vol. 7. The Berlin Years: Writings, 1918–1921. Princeton University Press, Princeton, NJ, 2002. Translation (Geometry and experience) in Einstein, A., Ideas and Opinions. Crown, New York, 1954.Google Scholar
Einstein, A.. The History of Field Theory (The Olds and News of Field Theory). The New York Times. February 3, 1929.Google Scholar
Einstein, A.. What is the Theory of Relativity? In Ideas and Opinions, pages 232237. Crown, New York, 1919/1954.Google Scholar
Einstein, A.. Ideas and Opinions. Crown, New York, 1954.Google Scholar
Einstein, A.. Bemerkung zur Notiz des Haerrn P. Ehrenfest, Document 47. In Klein, M., editor, The Collected Papers of Albert Einstein, Vol. 5. The Swiss Years: Writings, 1900–1909 (English Supplement), pages 236237. Princeton University Press, Princeton, NJ, 1907/1989.Google Scholar
Einstein, A.. Letter to Sommerfeld, Document 73. In Klein, M., editor, The Collected Papers of Albert Einstein, Vol. 5. The Swiss Years: Correspondence, 1902–1914 (English Supplement). Princeton University Press, Princeton, NJ, 1908/1989.Google Scholar
Ellis, J., Mavromatos, N., and Nanopoulos, D.. Search for Quantum Gravity. General Relativity and Gravitation, 31:12571262, 1999.CrossRefGoogle Scholar
Eyges, L.. Physics of the Mössbauer Effect. American Journal of Physics, 33:790802, 1965.CrossRefGoogle Scholar
Falkenburg, B.. Particle Metaphysics. Springer, Berlin, 2007.Google Scholar
Feynman, R.. A Relativistic Cut-Off for Classical Electrodynamics. Physical Review, 74:939946, 1948.CrossRefGoogle Scholar
Feynman, R.. A Relativistic Cut-Off for Quantum Electrodynamics. Physical Review, 74:14301438, 1948.CrossRefGoogle Scholar
Feynman, R.. The Character of Physical Law. MIT Press, Cambridge, MA, 1965.Google Scholar
Feynman, R. and Hibbs, A. R.. Quantum Mechanics and Path Integrals. Dover Publications, New York, 1965.Google Scholar
Finkelstein, R.. On the Quantization of a Unitary Field Theory. Physical Review, 75:10791087, 1949.CrossRefGoogle Scholar
Fine, A.. The Shaky Game. University of Chicago Press, Chicago, IL, 1986.Google Scholar
Fitzgerald, J.. Alfred North Whitehead’s Early Philosophy of Space and Time. University Press of America, Washington, DC, 1979.Google Scholar
Freidel, L., Kowalski-Glikman, J., and Nowak, S.. From Noncommutative κ-Minkowski to Minkowski Spacetime. Physics Letters B, 648(1):7075, 2007.CrossRefGoogle Scholar
Flint, H.. Relativity and the Quantum Theory. Proceedings of the Royal Society of London A, 117(778):630637, 1928.Google Scholar
Flint, H.. On the Development of the Quantum Equation and a Possible Limit to its Application. Proceedings of the Physical Society, 48(3):433444, 1936.CrossRefGoogle Scholar
Flint, H.. The Ratio of the Masses of the Fundamental Particles. Proceedings of the Physical Society, 50(1):90, 1938.CrossRefGoogle Scholar
Feynman, R., Moringo, F., and Wagner, W.. Feynman Lectures on Gravitation. Westview Press, Cambridge, MA, 2003.Google Scholar
Fogelin, R.. Hume and Berkeley on the Proofs of Infinite Divisibility. Philosophical Review, 97(1):4769, 1988.CrossRefGoogle Scholar
Ford, J.. How Random is a Coin Toss. Physics Today, 4:4047, 1983.CrossRefGoogle Scholar
Forrest, P.. Is Spacetime Discrete or Continuous? – An Empirical Question. Synthese, 103(3):327354, 1995.CrossRefGoogle Scholar
Fox, T.. Haunted by the Spectre of Virtual Particles: a Philosophical Reconsideration. Journal for the General Philosophy of Science, 39:3551, 2008.CrossRefGoogle Scholar
Fraser, D.. The Fate of Particles in Quantum Field Theorieswith Interactions. Studies in the History and Philosophy of Modern Physics, 39(4):841859, 2008.CrossRefGoogle Scholar
Fraser, D.. Quantum Field Theory: Underdetermination, Inconsistency, and Idealization. Philosophy of Science, 76(4):536567, 2009.CrossRefGoogle Scholar
Fraser, D.. How to Take Particle Physics Seriously: a further Defense of Axiomatic Quantum Field Theory. Studies in the History and Philosophy of Modern Physics, 42(2):126135, 2011.CrossRefGoogle Scholar
Fredkin, E.. Digital Mechanics: an Informational Process Based on Reversible Universal Cellular Automata. Physica D, 45:254270, 1990.CrossRefGoogle Scholar
Friedman, M.. Foundations of Spacetime Theories. Princeton University Press, Princeton, NJ, 1983.Google Scholar
Friedman, M.. Geometry as a Branch of Physics. In Malament, D., editor, Reading Natural Philosophy, pages 193229. Open Court, Chicago, IL, 2002.Google Scholar
Flint, H. and Williamson, E.. Coordinate Operators and Fundamental Lengths. Physical Review, 90:318319, 1953.CrossRefGoogle Scholar
Ford, K. and Wheeler, J. A.. Geons, Black Holes, and Quantum Foam. W.W. Norton, New York, 1998.Google Scholar
Galison, P.. The Discovery of the Muon and the Failed Revolution against Quantum Electrodynamics. Centaurus, 26:262316, 1983.CrossRefGoogle Scholar
Galison, P.. How Experiments End. University of Chicago Press, Chicago, IL, 1987.Google Scholar
Gallavotti, G.. Statistical Mechanics. Springer-Verlag, Berlin, 1999.CrossRefGoogle Scholar
Gamow, G.. Gravity – Classical and Modern Views. Dover, New York, 1962.Google Scholar
Gandy, R.. Church’s Thesis and the Principles for Mechanisms. In Barwise, H., Keisler, H., and Kunen, K., editors, The Kleene Symposium, pages 123148. North Holland, 1980.CrossRefGoogle Scholar
Garay, L.. Quantum Gravity and Minimum Length. International Journal of Modern Physics A, 10:145165, 1995.CrossRefGoogle Scholar
Goldstein, S., Durr, D., and Zanghi, N.. Quantum Equilibrium and the Origin of Absolute Uncertainty. Journal of Statistical Physics, 67(5–6):843907, 1992.Google Scholar
Georgi, H.. Effective Field Theory. Annual Review of Nuclear and Particle Science, 43:209252, 1993.CrossRefGoogle Scholar
Gorelik, G. and Frenkel, V.. Matvei Petrovich Bronstein and Soviet Theoretical Physics in the Thirties. Birkhäuser, Basel, 1994.CrossRefGoogle Scholar
Ghirardi, G.. Collapse Theories. In Zalta, E., editor, The Stanford Encyclopedia of Philosophy. Winter 2011 edition, 2011.Google Scholar
Girelli, F. and Livine, E.. Physics of Deformed Special Relativity: Relativity Principle Revisited. Brazilian Journal of Physics, 35:432438, 2005.CrossRefGoogle Scholar
Gorelik, G.. First Steps of Quantum Gravity and the Planck Values. In Eisenstaedt, J. and Kox, A., editors, Studies in the History of General Relativity [Einstein Studies. Vol. 3], pages 364379. Birkhäuser, Basel, 1992.Google Scholar
Gorelik, G.. Matvei Bronstein and Quantum Gravity: 70th Anniversary of the Unsolved Problem, Physics Uspekhi, 48:1039, 2005.CrossRefGoogle Scholar
Gambini, R. and Pullin, J.. Nonstandard Optics from Quantum Spacetime. Physical Review D, 59:124021, 1999.CrossRefGoogle Scholar
Grünbaum, A.. A Consistent Conception of the Extended Linear Continuum as an Aggregate of Unextended Elements. Philosophy of Science, 19(4):288306, 1952.CrossRefGoogle Scholar
Grünbaum, A.. Whitehead’s Method of Extensive Abstraction. British Journal of the Philosophy of Science, 4(15):215226, 1953.CrossRefGoogle Scholar
Ghirardi, G., Rimini, A., and Weber, T.. A General Argument Against Superluminal Transmission through the Quantum Mechanical Measurement Process. Lettere al Nuovo Cimento, 27(10):293298, 1980.CrossRefGoogle Scholar
Ghirardi, G., Rimini, A., and Weber, T.. Unified Dynamics for Microscopic and Macroscopic Systems. Physical Review D, 34(2):470491, 1986.CrossRefGoogle Scholar
Gerla, G. and Volpe, R.. Geometry Without Points. American Mathematical Monthly, 92(10):707711, 1985.CrossRefGoogle Scholar
Hagar, A.. Quantum Computing. In Zalta, E., editor, The Stanford Encyclopedia of Philosophy. 2006.Google Scholar
Hagar, A.. Experimental Metaphysics2. Studies in the History and Philosophy of Modern Physics, 38(4):906919, 2007.CrossRefGoogle Scholar
Hagar, A.. Length Matters: the Einstein–Swann Correspondence. Studies in the History and Philosophy of Modern Physics, 39(3):532556, 2008.CrossRefGoogle Scholar
Hagar, A.. Minimal Length in Quantum Gravity and the Fate of Lorentz Invariance. Studies in the History and Philosophy of Modern Physics, 40(3):259267, 2009.CrossRefGoogle Scholar
Hagar, A.. The Complexity of Noise: A Philosophical Outlook on Quantum Error Correction. Morgan & Claypul Publishing, 2010.CrossRefGoogle Scholar
Hagar, A.. Decoherence: the View from the History and the Philosophy of Science. Philosophical Transactions of the Royal Society of London A, 370(1975):45944609, 2012.Google Scholar
Hawking, S.. Gravitational Radiation from Colliding Black Holes. Physical Review Letters, 26:13441346, 1971.CrossRefGoogle Scholar
Hawking, S.. Particle Creation by Black Holes. Communications in Mathematical Physics, 43(3):199220, 1975.CrossRefGoogle Scholar
Hazen, A.. The Mathematical Philosophy of Contact. Philosophy, 65:205211, 1990.CrossRefGoogle Scholar
Huggett, N. and Callender, C.. Physics Meets Philosophy at the Planck Scale. Cambridge University Press, Cambridge, 1999.Google Scholar
Healey, R.. Can Physics Coherently Deny the Reality of Time? Royal Institute of Philosophy Supplements, 50:293316, 2002.CrossRefGoogle Scholar
Heisenberg, W.. The Physical Content of Quantum Kinematics and Mechanics. In Wheeler, J. and Zurek, W., editors, Quantum Theory and Measurement, pages 6284. Princeton University Press, Princeton, NJ, 1983/1927.Google Scholar
Heisenberg, W.. The Physical Principles of Quantum Mechanics. Dover Publications, New York, 1930.Google Scholar
Heisenberg, W.. The Self-Energy of the Electron. In Miller, A., editor, Early Quantum Electrodynamics, pages 121128. Cambridge University Press, Cambridge, 1994/1930.CrossRefGoogle Scholar
Heisenberg, W.. Zur Theorie der ‘Schauer’ in der Höhenstrahlung. Zeitschrift für Physik, 101:533540, 1936.CrossRefGoogle Scholar
Heisenberg, W.. Die Grenzen der Anwendbarkeit der bisherigen Quantentheorie. Zeitschrift für Physik, 110:251266, 1938.CrossRefGoogle Scholar
Heisenberg, W.. The Universal Length Appearing in the Theory of Elementary Particles. Annalen der Physik, 32:2033, 1938.CrossRefGoogle Scholar
Heisenberg, W.. Die beobachtbaren Grössen in der Theorie der Elementarteilchen. Zeitschrift für Physik, 120:513538; 673–702, 1943.CrossRefGoogle Scholar
Heisenberg, W.. On the Mathematical Frame of the Theory of Elementary Particles. Communications on Pure and Applied Mathematics, 4(1):1522, 1951.CrossRefGoogle Scholar
Heisenberg, W.. Paradoxien des Zeitbegriffs in der Theorie der Elementarteilchen. In Born, M. et al. editors, Festschrift zur Feier des Zweihundertj ährigen Bestehens der Akademie der Wissenschaften in Göttingen, pages 5064. Springer-Verlag, Berlin, 1951.Google Scholar
Heisenberg, W.. Physics and Philosophy. Harper, New York, 1962.Google Scholar
Hempel, C.. Geometry and Empirical Science. American Mathematical Monthly, 52:717, 1945.CrossRefGoogle Scholar
Henson, J.. The Causal Set Approach to Quantum Gravity. In Oriti, D., editor, Approaches to Quantum Gravity, pages 393413. Cambridge University Press, Cambridge, 2010.Google Scholar
Hagar, A. and Hemmo, M.. The Primacy of Geometry. Studies in the History and Philosophy of Modern Physics, 44(3):357364, 2013.CrossRefGoogle Scholar
Hilbert, D.. On the Infinite. In Benacerraf, P. and Putnam, H., editors, The Philosophy of Mathematics, pages 183201. Cambridge University Press, Cambridge, 1983/1925.Google Scholar
Hill, E.. Relativistic Theory of Discrete Momentum Space and Discrete Spacetime. Physical Review, 100:17801783, 1955.CrossRefGoogle Scholar
Hovis, R. and Kragh, H.. Resource Letter HEPP-1: History of Elementary-Particle Physics. American Journal of Physics, 59(9):779807, 1991.CrossRefGoogle Scholar
Hogarth, M.. Non-Turing Computers and Non-Turing Computability. PSA, 1:126138, 1994.Google Scholar
Holton, G.. On Trying to Understand Scientific Genius. American Scholar, 41:95110, 1972.Google Scholar
Horowitz, G.. Quantum States of Black Holes. In Wald, R., editor, Black Holes and Relativistic Stars, pages 241266. University of Chicago Press, Chicago, IL, 1998.Google Scholar
Horowitz, G.. Spacetime in String Theory. New Journal of Physics, 7:201, 2005.CrossRefGoogle Scholar
Hossenfelder, S.. Interpretation of Quantum Field Theories with a Minimal Length Scale. Physical Review D, 73:105013, 2006.CrossRefGoogle Scholar
Hossenfelder, S.. Multiparticle States in Deformed Special Relativity. Physical Review D, 75:105005, 2007.CrossRefGoogle Scholar
Hossenfelder, S.. The Box-Problem in Deformed Special Relativity. Preprint, 2009. arXiv:0912.0090.Google Scholar
Hossenfelder, S.. Bounds on an Energy-Dependent and Observer-Independent Speed of Light from Violations of Locality. Physical Review Letters, 104:140402, 2010.CrossRefGoogle Scholar
Hossenfelder, S.. Quantum Superpositions of the Speed of Light. Foundations of Physics, 42:1452, 2012.CrossRefGoogle Scholar
Hossenfelder, S.. Minimal Length Scale Scenarios for Quantum Gravity. Living Reviews in Relativity, 16(2), 2013.CrossRefGoogle Scholar
Hanson, A., Ortiz, G., Sabry, A., and Tai, Y.. Discrete Quantum Theories. Preprint, 2013. arXiv:1305.3292.Google Scholar
Hanson, A., Ortiz, G., Sabry, A., and Tai, Y.. Geometry of Discrete Quantum Computing. Journal of Physics A: Mathematical and Theoretical, 46(18):185301, 2013.CrossRefGoogle Scholar
Howard, D.. Einstein on Locality and Separability. Studies in the History and the Philosophy of Science, 16:171201, 1985.CrossRefGoogle Scholar
Howard, D.. Einstein’s Philosophy of Science. Stanford Encyclopedia of Philosophy, 2004. Available at http://plato.stanford.edu/entries/einsteinphilscience/.Google Scholar
Heisenberg, W. and Pauli, W.. Zur Quantendynamik der Wellenfelder. Zeitschrift für Physik, 56:161, 1929.CrossRefGoogle Scholar
Heitler, W. and Sauter, F.. Stopping of Fast Particles with Emission of Radiation and the Birth of Positive Electrons. Nature, 132:892893, 1933.CrossRefGoogle Scholar
Hemmo, M. and Shenker, O.. Von Neumann’s Entropy does not Correspond to Thermodynamic Entropy. Philosophy of Science, 73:153174, 2006.CrossRefGoogle Scholar
Hemmo, M. and Shenker, O.. Maxwell’s Demon. Journal of Philosophy, 107(8):389411, 2010.CrossRefGoogle Scholar
Hagar, A. and Sergioli, G.. Counting Steps: a New Interpretation of Objective Chance in Statistical Physics. Preprint, 2011. arXiv:1101.3521.Google Scholar
Hughston, L. and Tod, K.. An Introduction to General Relativity. Cambridge University Press, Cambridge, 1990.Google Scholar
Hilgevoord, J. and Uffink, J.. Overall Width, Mean Peak Width, and the Uncertainty Principle. Physics Letters A, 95(9):474476, 1983.CrossRefGoogle Scholar
Hilgevoord, J. and Uffink, J.. Interference and Distinguishability in Quantum Mechanics. Physica B, 151:309, 1988.Google Scholar
Hilgevoord, J. and Uffink, J.. The Mathematical Expression of the Uncertainty Principle. In van der Merwe, A., Selleri, F., and Tarozzi, G., editors, Microphysical Reality and Quantum Description, pages 91114. Kluwer, Dordrecht, 1988.CrossRefGoogle Scholar
Hilgevoord, J. and Uffink, J.. Spacetime Symmetries and the Uncertainty Principle. Nuclear Physics B (Proc. Sup.), 6:246248, 1989.CrossRefGoogle Scholar
Hilgevoord, J. and Uffink, J.. A New View on the Uncertainty Principle. In Miller, A. E., editor, Sixty-Two years of Uncertainty, Historical and Physical Inquiries into the Foundations of Quantum Mechanics, pages 121139. Plenum, New York, 1990.Google Scholar
Huggett, N.. Understanding Spacetime. Philosophy of Science, 76(3):404422, 2009.CrossRefGoogle Scholar
Hurewicz, W. and Wallman, H.. Dimension Theory. Princeton University Press, Princeton, NJ, 1941.Google Scholar
Huggett, N. and Weingard, R.. The Renormalisation Group and Effective Field Theories. Synthese, 102(1):171194, 1995.CrossRefGoogle Scholar
Infeld, L.. Relativistic Theories of Gravitation. Pergamon Press, Oxford, 1964.Google Scholar
Isham, C.. Structural Issues in Quantum Gravity. Technical Report IMPERIAL/TP/95–96/07, Imperial College, 1995. Writeup of GR14 Plenary Lecture. See also http://arxiv.org/abs/gr-qc/9510063.Google Scholar
Jacobson, T.. Thermodynamics of Spacetime: the Einstein Equation of State. Physical Review Letters, 75:12601263, 1995.CrossRefGoogle Scholar
Jacobsen, A.. Crisis, Measurement Problems, and Controversy in Early Quantum Electrodynamics. In Carson, C., Kojevnikov, A., and Trischler, H., editors,Weimar Culture and Quantum Mechanics, pages 375396. Imperial College Press, London, 2010.Google Scholar
Jammer, M.. The Philosophy of Quantum Mechanics. John Wiley & Sons, New York, 1974.Google Scholar
Janssen, M.. A Comparison between Lorenz’s Ether Theory and Special Relativity in the Light of the Experiments of Trouton and Noble. PhD Thesis, University of Pittsburgh, 1995.Google Scholar
Janssen, M.. The Old Sage vs. the Young Turk, 2000. Talk slides, available at http://netfiles.umn.edu/users/janss011/homepage/sage.pdf.Google Scholar
Janssen, M.. Drawing the Line between Kinematics and Dynamics in Special Relativity. Studies in the History and Philosophy of Modern Physics, 40(1):2652, 2009.CrossRefGoogle Scholar
Jarret, J.. Bell’s Theorems: A Guide to the Implications. In Cushing, J. and Mcmullin, E., editors, Philosophical Consequences of Quantum Theory, pages 6079. University of Notre Dame Press, Notre Dame, IN, 1989.Google Scholar
Jeans, J. H.. The Philosophy of Physical Science. Nature, 148:140, 1941.CrossRefGoogle Scholar
Janssen, M. and Mecklenburg, M.. From Classical to Relativistic Mechanics: Electromagnetic Models of the Electron. In Hendricks, V. et al., editors, Interactions: Mathematics, Physics and Philosophy, 1860–1930, pages 65134. Springer, Dordrecht, 2007.Google Scholar
Judes, S. and Visser, M.. Conservation Laws in Doubly Special Relativity. Physical Review D, 68:045001, 2003.CrossRefGoogle Scholar
Kadanoff, L.. Scaling Laws for Ising Models near Tc. Physics, 2:263, 1966.CrossRefGoogle Scholar
Kalckar, J.. Measurability Problems in the Quantum Theory of Fields. In d’Espagnant, B., editor, Rendiconti della Scuola Internationale di Fisica: Fundamenti di Meccanica Quantistica, pages 127169. Academic Press, New York, 1971.Google Scholar
Kant, I.. Prolegomena to Any Future Metaphysics. Open Court, Chicago, IL, 1783/1902. Translated by Carus, P..Google Scholar
Kragh, H. and Carazza, B.. From Time Atoms to Spacetime Quantization: the Idea of Discrete Time, ca 1925–1936. Studies in the History and Philosophy of Science, 25(3):437462, 1994.CrossRefGoogle Scholar
Kowalski-Glikman, J. and Nowak, S.. Doubly Special Relativity and de Sitter Space. Classical and Quantum Gravity, 20:47994816, 2003.CrossRefGoogle Scholar
Kiefer, C.. Quantum Gravity. Oxford University Press, Oxford, 2007.CrossRefGoogle Scholar
Kirzhnits, D.. Field Theory with Nonlocal Interaction. I. Construction of the Unitary S-Matrix. Soviet Physics JETP, 14(2):395400, 1962.Google Scholar
Kirzhnits, D.. Field Theory with Nonlocal Interaction II. The Dynamical Apparatus of the Theory. Soviet Physics JETP, 18(1):103110, 1964.Google Scholar
Kirzhnits, D.. Nonlocal Quantum Field Theory. Soviet Physics Uspekhi, 9:692700, 1967.CrossRefGoogle Scholar
Klein, O.. Generalizations of Einstein’s Theory of Gravitation Considered from the Point of View of Quantum Field Theory. In Mercier, A. and Kervaire, M., editors, Jubilee of Relativity Theory, pages 5871. Birkhauser, Basel, 1956.Google Scholar
Klein, O.. Some Remarks on GTR and the Divergence Problem of QFT. Il Nuovo Cimento Supplement, 6(1):344348, 1957.CrossRefGoogle Scholar
Klein, M.. Thermodynamics in Einstein’s Thought. Science, 157:509516, 1967.CrossRefGoogle Scholar
Kline, A. and Matheson, C.. The Logical Impossibility of Collision. Philosophy, 62(242):509515, 1987.CrossRefGoogle Scholar
Kimberly, D., Magueijo, J., and Medeiros, J.. Non-Linear Relativity in Position Space. Physical Review D, 70:084007, 2004.CrossRefGoogle Scholar
Kostelecký., A. Gravity, Lorentz Violation, and the Standard Model. Physical Review D, 69:105009, 2004.CrossRefGoogle Scholar
Kragh, H.. Relativistic Collisions: The Work of Christian Möller in the Early 1930s. Archive for the History of Exact Sciences, 43:299328, 1992.CrossRefGoogle Scholar
Kragh, H.. Unifying Quanta and Relativity? In Bitbol, M. and Darigol, O., editors, Erwin Schrödinger: Philosophy and the Birth of Quantum Mechanics, pages 315337. Frontiérs, Paris, 1992.Google Scholar
Kragh, H.. Arthur March, Werner Heisenberg, and the Search for a Smallest Length. Revue d’Histoire des Sciences (Paris), 48(44):401434, 1995.CrossRefGoogle Scholar
Kochen, S. and Specker, E.. The Problem of Hidden Variables in Quantum Mechanics. Journal of Mathematics and Mechanics, 17:5987, 1967.Google Scholar
Kuhn, Thomas. Blackbody Theory and the Quantum Discontinuity, 1894– 1912. University of Chicago Press, Chicago, IL, 1978.Google Scholar
Leggett, A. et al. Dynamics of the Dissipative Two-State System. Reviews of Modern Physics, 59(1):185, 1987.CrossRefGoogle Scholar
Lange, M.. An Introduction to the Philosophy of Physics. Blackwell Publishers, Oxford, 2002.Google Scholar
Laraudogoitia, J.. Supertasks. In Zalta, E., editor, The Stanford Encyclopedia of Philosophy. 2009.Google Scholar
Laudan, L.. Demystifying Underdetermination. In Savage, C., editor, Scientific Theories, volume 14 of Minnesota Studies in the Philosophy of Science, pages 267297. University of Minnesota Press, Minneapolis, MN, 1990.Google Scholar
Laughlin, R.. Emergent Relativity. International Journal of Modern Physics A, 18(6):831853, 2003.CrossRefGoogle Scholar
Lee, H.. Zeno of Elea. Cambridge University Press, Cambridge, 1936.Google Scholar
Leznov, A.. Macrocausality Condition in Nonlocal Field Theories. Soviet Physics JETP, 22:545546, 1966.Google Scholar
Linsley, J.. Evidence for a Primary Cosmic-Ray Particle with Energy 1020 eV. Physical Review Letters, 10:146148, 1963.CrossRefGoogle Scholar
Leznov, A. and Kirzhnits, D.. Field Theory with Nonlocal Interaction IV. Questions of Convergence, Causality, and Gauge Invariance. Soviet Physics JETP, 21(2):411417, 1965.Google Scholar
Lorentz, H.. Theory of the Electron. Dover, New York, 1916.Google Scholar
Landau, L. and Peierls, R.. Extensions of the Uncertainty Principle to Relativistic Quantum Theory. In Wheeler, J. and Zurek, W., editors, Quantum Theory and Measurement, pages 465476. Princeton University Press, Princeton, NJ, 1983/1931.Google Scholar
Lin, C. and Segal, L.. Mathematics Applied to Deterministic Problems in the Natural Sciences. MacMillan, New York, 1974.Google Scholar
Lynn, A.. New Models for the Real Number Line. Scientific American, 224:9299, 1971.Google Scholar
Maggiore, M.. A Generalized Uncertainty Principle in Quantum Gravity. Physics Letters B, 304:6569, 1993.CrossRefGoogle Scholar
Magueijo, J.. New Varying Speed of Light Theories. Reports on Progress in Physics, 66(11):20252068, 2003.CrossRefGoogle Scholar
Maldacena, J.. The Large N Limit of Superconformal Field Theories and Supergravity. Advances in Theoretical and Mathematical Physics, 2:231252, 1998.CrossRefGoogle Scholar
March, A.. Die Geometrie Kleinster Röume. Zeitschrift für Physik, 104:161168, 1936.CrossRefGoogle Scholar
March, A.. Quantum Mechanics of Particles and Wave Fields. John Wiley, New York, 1951.CrossRefGoogle Scholar
Marnelius, R.. Action Principle and Nonlocal Field Theories. Physical Review D, 8:2472, 1973.CrossRefGoogle Scholar
Marnelius, R.. Can the S-Matrix be Defined in Relativistic Quantum Field Theories with Nonlocal Interaction? Physical Review D, 10:3411, 1974.CrossRefGoogle Scholar
Mattingly, D.. Modern Tests of Lorentz Invariance. Living Reviews in Relativity, 8:5, 2005.CrossRefGoogle Scholar
Mattingly, J.. Why Eppley and Hannah’s Thought Experiment Fails. Physical Review D, 73:064025, 2006.CrossRefGoogle Scholar
Mattingly, D.. Have We Tested Lorentz Invariance Enough? arXiv: grqc/0802.1561v1, 2008.Google Scholar
Maudlin, T.. Quantum Non Locality and Relativity. Blackwell, Oxford, 1994.Google Scholar
Maudlin, T.. Spacetime in the Quantum World. In Cushing, J. et al., editors, Bohmian Mechanics and Quantum Theory: an Appraisal, pages 285307. Kluwer Academic Publishers, Boston, MA, 1996.CrossRefGoogle Scholar
Maudlin, T.. Interpreting Probabilities: What’s Interference Got to Do with It? In Bricmont, J. et al., editors, Chance in Physics, volume 571, pages 283288. Springer Lecture Notes in Physics, Berlin, 2001.CrossRefGoogle Scholar
Maudlin, T.. What Could be Objective about Probabilities? Studies in the History and Philosophy of Modern Physics, 38:275291, 2007.CrossRefGoogle Scholar
McKinley, W.. Search for a Fundamental Length in Microscopic Physics. American Journal of Physics, 28(2):129134, 1960.CrossRefGoogle Scholar
McManus, H.. Classical Electrodynamics without Singularities. Proceedings of the Royal Society of London A, 195:323336, 1948.Google Scholar
Mead, C.. Possible Connection Between Gravitation and Fundamental Length. Physical Review, 135:849, 1964.CrossRefGoogle Scholar
Mead, C.. Observable Consequences of Fundamental-Length Hypotheses. Physical Review, 143:9901005, 1966.CrossRefGoogle Scholar
Mead, C.. Walking the Planck Length through History. Physics Today, 54:15, 2001.CrossRefGoogle Scholar
Mermin, N. D.. It’s About Time. Princeton University Press, Princeton, NJ, 2005.Google Scholar
Messiah, A.. Quantum Mechanics, Volume II. Interscience Publishers, New York, 1961.Google Scholar
Meyer, D.. Finite Precision Measurement Nullifies the Kochen–Specker Theorem. Physical Review Letters, 83:37513754, 1999.CrossRefGoogle Scholar
Mie, G.. Grundlagen einer Theorie der Materie. Annalen der Physik, 37:511, 1912.CrossRefGoogle Scholar
Miller, A.. Early Quantum Electrodynamics. Cambridge University Press, Cambridge, 1994.CrossRefGoogle Scholar
Misner, C.. Feynman Quantization of General Relativity. Reviews of Modern Physics, 29:497509, 1957.CrossRefGoogle Scholar
Moore, C.. Unpredictability and Undecidability in Dynamical Systems. Physical Review Letters, 64(20):23542357, 1990.CrossRefGoogle Scholar
Moore, C.. Recursion Theory on the Reals and Continuous-Time Computation. Theoretical Computer Science, 162(1):2344, 1996.CrossRefGoogle Scholar
Morris, H.. The Present Status of the Coish Model. International Journal of Theoretical Physics, 9(6):369377, 1974.CrossRefGoogle Scholar
Mössbauer, R.. Nuclear Resonance Fluorescence of Gamma Radiation in Ir191. In Frauenfelder, H., editor, The Mossbäuer Effect, pages 101126. W.A. Benjamin, New York, 1958/1962.Google Scholar
Moyal, E.. Quantum Mechanics as a Statistical Theory. Proceedings of the Cambridge Philosophical Society, 45:99124, 1949.CrossRefGoogle Scholar
Moyer, M.. Is Space Digital? Scientific American, 306(2):3037, 2012.CrossRefGoogle Scholar
Magueijo, J. and Smolin, L.. Lorentz Invariance with an Invariant Energy Scale. Physical Review Letters, 88:190403, 2002.CrossRefGoogle Scholar
Magueijo, J. and Smolin, L.. Generalized Lorentz Invariance with an Invariant Energy Scale. Physical Review D, 67:44017, 2003.CrossRefGoogle Scholar
Markopoulou, F. and Smolin, L.. Disordered Locality in Loop Quantum Gravity States. Classical and Quantum Gravity, 24:38133824, 2007.CrossRefGoogle Scholar
Marshall, W., Simon, C., Penrose, R., and Bouwmeester, D.. Towards Quantum Superpositions of a Mirror. Physical Review Letters, 91:130401, 2003.CrossRefGoogle Scholar
Mukhi, S.. String Theory: a Perspective Over the Last 25 Years. Classical and Quantum Gravity, 28(15):153001, 2011.CrossRefGoogle Scholar
Nishino, H. et al. Search for Proton Decay in a Large Water Cherenkov Detector. Physical Review Letters, 102:141801, 2009.CrossRefGoogle Scholar
Nielsen, M. and Chuang, I.. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2000.Google Scholar
Oppenheimer, J. and Snyder, H.. On Continued Gravitational Contraction. Physical Review, 56:455459, 1939.CrossRefGoogle Scholar
Overbye, D.. A Black Hole Mystery Wrapped in a Firewall Paradox. The New York Times, August 12, 2013.Google Scholar
Owen, G.. Zeno and the Mathematicians. In Salmon, W., editor, Zeno’s Paradoxes, pages 139163. Hacket, Indianapolis, IN, 1957/2001.Google Scholar
Pauli, W.. Theory of Relativity. Dover, New York, 1921.Google Scholar
Pauli, W.. On the Hamiltonian Structure of Nonlocal Field Theories. Il Nuovo Cimento, 10(5):648667, 1953.CrossRefGoogle Scholar
Pauli, W.. In Meyenn, K., editor, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg. Band I: 1919–1929. Springer Verlag, Berlin, 1979.Google Scholar
Pauli, W.. In Meyenn, K., editor, Wissenschaftlicher Briefwechsel mit Bohr, Einstein, Heisenberg. Band III. Springer Verlag, Berlin, 2005.Google Scholar
Pearle, P.. Suppose the State Vector is Real. In Greenberger, D., editor, New Techniques and Ideas in Quantum Measurement Theory, pages 539554. New York Academy of Science, New York, 1986.Google Scholar
Peierls, R.. Field Theory Since Maxwell. In Domb, C., editor, Clerk Maxwell and Modern Science, pages 2642. Athelone Press, University of London, 1963.Google Scholar
Peierls, R.. In Defense of ‘Measurement’. Physics Today, 1:1920, 1991.Google Scholar
Penrose, R.. Wavefunction Collapse as a Real Gravitational Effect. In Fokas, A. et al., editors, Mathematical Physics 2000, pages 266282. Imperial College Press, London, 2000.CrossRefGoogle Scholar
Pour-el, M. and Richards, I.. The Wave Equation with Computable Initial Data such that its Unique Solution is not Computable. Advances in Mathematics, 39:215239, 1981.CrossRefGoogle Scholar
Page, D. and Geilker, C.. Indirect Evidence for Quantum Gravity. Physical Review Letters, 47:979982, 1981.CrossRefGoogle Scholar
Pitowsky, I.. On the Status of Statistical Inferences. Synthese, 63(2):233247, 1985.CrossRefGoogle Scholar
Pitowsky, I.. Quantum Probability –Quantum Logic. Springer Verlag, Berlin, 1989.Google Scholar
Pitowsky, I.. The Physical Church Thesis and Physical Computational Complexity. Iyyun, 39(1):8199, 1990.Google Scholar
Pitowsky, I.. George Boole’s ‘Conditions of Possible Experience’ and the Quantum Puzzle. British Journal for the Philosophy of Science, 45(1):95125, 1994.CrossRefGoogle Scholar
Pitowsky, I.. Laplace’s Demon Consults and Oracle: The Computational Complexity of Prediction. Studies in the History and Philosophy of Modern Physics, 27(2):161180, 1996.CrossRefGoogle Scholar
Pitowsky, I.. From Logic to Physics: How the Meaning of Computation Changed over Time. Lecture Notes in Computer Science, 4497:621631, 2007.CrossRefGoogle Scholar
Planck, M.. Über Irreversible Strahlungsvorgänge. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 5:440480, 1899.Google Scholar
Poincaré., H. On the Foundations of Geometry. The Monist, 9, 1898.Google Scholar
Poincaré., H. Science and Hypothesis. Flammarion, Paris, 1902. Translated by Halsted, G..Google Scholar
Poincaré., H. Sur la Dynamique de l’Electron. Rendiconti del Circolo Matematico di Palermo, 21:129175, 1906.CrossRefGoogle Scholar
Polchinski, J.. String Theory. Cambridge University Press, Cambridge, 1998.Google Scholar
Polchinski, J.. All Strung Out. American Scientist, 4:16, 2007.Google Scholar
Peres, A. and Rosen, N.. Quantum Limitations on the Measurement of Gravitational Fields. Physical Review, 118:335336, 1960.CrossRefGoogle Scholar
Preskill, J.. Do Black Holes Destroy Information? Preprint, 1992. arXiv:hepth/9209058v1.Google Scholar
Prokof’ev, N. V. and Stamp, P.. Theory of the Spin Bath. Reports on Progress in Physics, 63:669726, 2000.CrossRefGoogle Scholar
Pais, A. and Uhlenbeck, G.. On Field Theories with Non-Localized Action. Physical Review, 79:145165, 1950.CrossRefGoogle Scholar
Putnam, H.. Philosophy and Our Mental Life. In Mind, Language, and Reality, Vol. 2, pages 291303. Cambridge University Press, Cambridge, 1975.CrossRefGoogle Scholar
Pauli, W. and Villars, F.. On the Invariant Regularization in Relativistic Quantum Theory. Reviews of Modern Physics, 21:434444, 1949.CrossRefGoogle Scholar
Pikovski, I., Vanner, M., Aspelmeyer, M., Kim, M., and Brukner, C.. Probing Planck-Scale Physics with Quantum Optics. Nature Physics, 8:393397, 2012.CrossRefGoogle Scholar
Prescod-Weinstein, C. and Smolin, L.. Disordered Locality as an Explanation for the Dark Energy. Physical Review D, 80(6):063505, 2009.CrossRefGoogle Scholar
Redhead, M.. A Philosopher Looks at Quantum Field Theory. In Brown, H. and Harre, R., editors, Philosophical Foundations of Quantum Field Theory, pages 923. Clarendon Press, Oxford, 1988.Google Scholar
Reichenbach, H.. Philosophical Foundations of Quantum Mechanics. Dover, New York, 1942.Google Scholar
Riemann, B.. On the Hypotheses which Lie at the Bases of Geometry. Nature, 8(183):1417, 1854/1873. Translated by Clifford, W..Google Scholar
Rogers, B.. On Discrete Spaces. American Philosophical Quarterly, 5(2):117123, 1968.Google Scholar
Rohrlich, F.. Self-Energy and Stability of the Classical Electron. American Journal of Physics, 28:639644, 1960.CrossRefGoogle Scholar
Rohrlich, F.. Classical Charged Particles. World Scientific, Singapore, 2007.CrossRefGoogle Scholar
Rosenfeld, L.. Über die Gravitationswirkungen des Lichtes. Zeitschrift für Physik, 65:589599, 1930.CrossRefGoogle Scholar
Rosen, N.. Statistical Geometry and Fundamental Particles. Physical Review, 72:298304, 1947.CrossRefGoogle Scholar
Rosenfeld, L.. On Quantum Electrodynamics. In Pauli, W., editor, Niels Bohr and the Development of Physics, pages 7095. McGraw-Hill, New York, 1955.Google Scholar
Rosen, N.. Quantum Geometry. Annals of Physics, 19:165172, 1962.CrossRefGoogle Scholar
Rosenfeld, L.. On Quantization of Fields. Nuclear Physics, 40:353356, 1963.CrossRefGoogle Scholar
Rosenfeld, L.. Quantum Theory and Gravitation. In Cohen, R. and Stachel, J., editors, The Selected Papers of Leon Rosenfeld, pages 599608. Reidel, Dordrecht, 1979/1966.Google Scholar
Ross, D.. Alternative Models of the Real Number Line in Physics. International Journal of Theoretical Physics, 23(12):12071219, 1984.CrossRefGoogle Scholar
Rovelli, C.. A Generally Covariant Quantum Field Theory and a Prediction on Quantum Measurements of Geometry. Nuclear Physics B, 405:797815, 1993.CrossRefGoogle Scholar
Rovelli, C.. Black Hole Entropy from Loop Quantum Gravity. Physical Review Letters, 77:32883291, 1996.CrossRefGoogle Scholar
Rovelli, C.. Quantum Gravity. Cambridge University Press, Cambridge, 2004.CrossRefGoogle Scholar
Rovelli, C.. Comment on ‘Are the spectra of geometrical operators in Loop Quantum Gravity really discrete?’ by B. Dittrich and T. Thiemann. Preprint, 2007. arXiv:gr-qc/0708.2481.Google Scholar
Rovelli, C.. A Note on DSR. Preprint, 2008. arXiv:gr-qc/0808.3505v2.Google Scholar
Rovelli, C.. Loop Quantum Gravity. Living Reviews in Relativity, 11, 2008.CrossRefGoogle Scholar
Rovelli, C.. A Critical Look at Strings. Foundations of Physics, 9:147, 2011.Google Scholar
Reisler, D. and Smith, N.. Geometry over a Finite Field. 1969. Defense Technical Information Center OAI-PMH Repository.CrossRefGoogle Scholar
Rovelli, C. and Smolin, L.. Discreteness of Area and Volume in Quantum Gravity. Nuclear Physics B, 442:593619, 1995.CrossRefGoogle Scholar
Rovelli, C. and Speziale, S.. Reconcile Planck-Scale Discreteness and the Lorentz–Fitz Gerald Contraction. Physical Review D, 67:064019, 2003.CrossRefGoogle Scholar
Ruark, A.. The Limits of Accuracy in Physical Measurements. Proceedings of the National Academy of Sciences, 14(4):322328, 1928.CrossRefGoogle Scholar
Ruark, A.. The Roles of Discrete and Continuous Theories in Physics. Physical Review, 37:315326, 1931.CrossRefGoogle Scholar
Rueger, A.. Attitudes Towards Infinites: Responses to Anomalies in Quantum Electrodynamics, 1927–1947. Historical Studies in the Physical and Biological Sciences, 22(2):309337, 1992.CrossRefGoogle Scholar
Russell, B.. The Analysis of Matter. Kegan Paul, London, 1927.Google Scholar
Russell, B.. Our Knowledge of the External World. W.W. Norton, New York, 1929.Google Scholar
Russell, B.. The Principles of Mathematics, second edition. W.W. Norton, New York, US, 1903/1938.Google Scholar
Rugh, S. and Zinkernagel, H.. The Quantum Vacuum and the Cosmological Constant Problem. Studies in the History and Philosophy of Modern Physics, 33(4):663705, 2002.CrossRefGoogle Scholar
Simon, C. et al. No-Signaling Condition and Quantum Dynamics. Physical Review Letters, 87:170405, 2001.CrossRefGoogle Scholar
Salmon, W.. Space, Time and Motion. University of Minnesota Press, Minneapolis, MN, 1980.Google Scholar
Salmon, W.. Zeno’s Paradoxes, second edition. Hacket, Indianapolis, IN, 2001.Google Scholar
Santayana, G.. The Life of Reason, or, The Phases of Human Progress. Introduction and Reason in Common Sense. Scribner’s, New York, 1905.Google Scholar
Sauer, T.. Einstein’s Unified Field Theory Program. In Janssen, M. and Lehner, C., editors, The Cambridge Companion to Einstein. Cambridge University Press, Cambridge, 2007.Google Scholar
Sieg, W. and Byrnes, J.. An Abstract Model for Parallel Computations. The Monist, 82:150164, 1999.CrossRefGoogle Scholar
Schrödinger, E.. Über die Unanwendbarkeit der Geometrie im Kleinen. Die Naturwissenschaften, 22:518520, 1934.CrossRefGoogle Scholar
Schönberg, M.. Letter to Mestre from 11/6/1936. In Hamburger, A. I., editor, Obra Scientifica de Mario Schönberg; Volume 1:1936–1948, pages xxiiixxiv. EdUSP, Sao Paulo, 2009/1936.Google Scholar
Schild, A.. Discrete Spacetime and Integral Lorentz Transformations. Physical Review, 73:414415, 1948.CrossRefGoogle Scholar
Schwinger, J.. On Quantum Electrodynamics and the Magnetic Moment of the Electron. Physical Review, 73:416, 1948.CrossRefGoogle Scholar
Schild, A.. Discrete Spacetime and integral Lorentz Transformations. Canadian Journal of Mathematics, 1(4):2947, 1949.CrossRefGoogle Scholar
Schilpp, P. A.. Albert Einstein, Philosopher-Scientist. Open Court, New York, 1949.Google Scholar
Schönberg, M.. Quantum Kinematics and Geometry. Il Nuovo Cimento Supplement, 6(1):356380, 1957.CrossRefGoogle Scholar
Schwinger, J.. Preface. In Schwinger, J., editor, Quantum Electrodynamics, pages viiixvii. Dover, New York, 1958.Google Scholar
Schweber, S.. QED and the Men Who Made It. Princeton University Press, Princeton, NJ, 1994.CrossRefGoogle Scholar
Schwinger, J.. Quantum Mechanics: Symbolism of Atomic Measurements. Springer, Berlin, 2001.CrossRefGoogle Scholar
Schweber, S.. Quantum Field Theory: From QED to the Standard Model. In The Cambridge History of Science, Volume 5: The Modern Physical and Mathematical Sciences, pages 375393. Cambridge University Press, Cambridge, 2002.Google Scholar
Schroer, B.. An Anthology of Nonlocal QFT and QFT on Noncommutative Spacetime. Annals of Physics, 319:92122, 2005.CrossRefGoogle Scholar
Schroer, B.. String Theory, the Crisis in Particle Physics and the Ascent of Metaphoric Arguments. International Journal of Modern Physics D, 17(13–14):23732431, 2008.CrossRefGoogle Scholar
Smolin, L. and Hossenfelder, S.. Conservative Solutions to the Black Hole Information Problem. Preprint, 2009. arXiv:0901.3156.Google Scholar
Shi, Y.. Early Gedanken Experiments of Quantum Mechanics Revisited. Annalen der Physik, 9:637648, 2000.CrossRefGoogle Scholar
Shoemaker, S.. Time Without Change. Journal of Philosophy, 66:363381, 1969.CrossRefGoogle Scholar
Silberstein, L.. The Theory of Relativity, second edition. Macmillan, London, 1924.Google Scholar
Silberstein, L.. Discrete Spacetime. A Course of Five Lectures Delivered in the McLennan Laboratory. University of Toronto Press, Toronto, 1936.Google Scholar
Smith, S.. Continuous Bodies, Impenetrability, and Contact Interactions: The View from the Applied Mathematics of Continuum Mechanics. British Journal of the Philosophy of Science, 58(3):503538, 2007.CrossRefGoogle Scholar
Smolin, L.. The Trouble with Physics. Houghton Mifflin, New York, 2001.Google Scholar
Smolin, L.. Atoms of Space and Time. Scientific American, January 1:6677, 2004.CrossRefGoogle Scholar
Smolin, L.. The case for Background Independence. Preprint, 2005. arXiv/hep-th/0507235.Google Scholar
Smolin, L.. Generic Predictions of Quantum Theories of Gravity. In Oriti, D., editor, Approaches to Quantum Gravity, pages 548570. Cambridge University Press, Cambridge, 2010.Google Scholar
Snyder, H.. Quantized Spacetime. Physical Review, 71(1):3841, 1947.CrossRefGoogle Scholar
Snyder, H.. The Electromagnetic Field in Quantized Space–Time. Physical Review, 72:6871, 1947.CrossRefGoogle Scholar
Sorkin, R.. The Statistical Mechanics of Black Hole Thermodynamics. In Wald, R., editor, Black Holes and Relativistic Stars, pages 177194. University of Chicago Press, Chicago, IL, 1998.Google Scholar
Shagrir, O. and Pitowsky, I.. Physical Hypercomputation and the Church– Turing Thesis. Minds and Machines, 13:87101, 2003.CrossRefGoogle Scholar
Stachel, J.. The Other Einstein. Science in Context, 6:275290, 1993.CrossRefGoogle Scholar
Stachel, J.. Einstein from ‘B’ to ‘Z’. Birkhauser, Boston, MA, 2002.Google Scholar
Stamp, P.. Environmental Decoherence versus Intrinsic Decoherence. Philosophical Transactions of the Royal Society of London A, 370(1975):44294453, 2012.Google Scholar
Stein, H.. Some Philosophical Prehistory of General Relativity. In Earman, J., Glymour, C., and Stachel, J., editors, Foundations of Spacetime Theories, pages 349. University of Minnesota Press, Minneapolis, MN, 1977.Google Scholar
Steinhart, E.. Digital Metaphysics. In Bynum, T. and Moor, J., editors, The Digital Phoenix: How Computers are Changing Philosophy, pages 117134. Basil Blackwell, New York, 1998.Google Scholar
Schützhold, R. and Unruh, W.. Large-scale Nonlocality in Doubly Special Relativity with an Energy-Dependent Speed of Light. Journal of Experimental and Theoretical Physics Letters, 78:431, 2003.CrossRefGoogle Scholar
Suppes, P.. The Transcendental Character of Determinism. Midwest Studies in Philosophy, 18:242257, 1993.CrossRefGoogle Scholar
Suppes, P.. Finitism in Geometry. Erkenntnis, 54(1):133144, 2001.CrossRefGoogle Scholar
Suskind, L.. The World as a Hologram. Journal of Mathematical Physics, 36:63776396, 1995.CrossRefGoogle Scholar
Strominger, A. and Vafa, C.. Microscopic Origin of the Bekenstein–Hawking Entropy. Physics Letters B, 379(1–4):99104, 1996.CrossRefGoogle Scholar
Stueckelberg, E. and Wanders, G.. Acausalité de l’Interaction Non-locale. Helvetica Physica Acta, 27:667, 1954.Google Scholar
Salecker, H. and Wigner, E.. Quantum Limitations of the Measurement of Space–Time Distances. Physical Review, 109:571, 1958.CrossRefGoogle Scholar
Swann, W. F. G.. A Deduction of the Effects of Uniform Translatory Motion from the Electrical Theory of Matter. Philosophical Magazine, 23(133):6586, 1912.Google Scholar
Swann, W. F. G.. The Fitz Gerald Lorentz Contraction. Philosophical Magazine, 23(133):8694, 1912.Google Scholar
Swann, W. F. G.. Relativity and Electrodynamics. Reviews of Modern Physics, 2(3):243304, 1930.CrossRefGoogle Scholar
Swann, W. F. G.. The Significance of Scientific Theories. Philosophy of Science, 7:273287, 1940.CrossRefGoogle Scholar
Swann, W. F. G.. Philosophy of the Physical Sciences. Nature, 148:692, 1941.CrossRefGoogle Scholar
Swann, W. F. G.. The Relation of Theory to Experiment in Physics. Reviews of Modern Physics, 13:190196, 1941.CrossRefGoogle Scholar
Swann, W. F. G.. Relativity, the Fitz Gerald–Lorentz Contraction. Reviews of Modern Physics, 13:197202, 1941.CrossRefGoogle Scholar
Swann, W. F. G.. Certain Matters in Relation to the Restricted Theory of Relativity, with Special Reference to the Clocks Paradox and the Paradox of the Identical Twins. American Journal of Physics, 28:5564, 319–323, 1960.CrossRefGoogle Scholar
Teller, P.. An Interpretive Introduction to Quantum Field Theory. Princeton University Press, Princeton, NJ, 1995.Google Scholar
’tHooft, G.. Dimensional Reduction in Quantum Gravity. Preprint, 1993. arXiv:gr-qc/9310026.Google Scholar
’tHooft, G.. Quantum Mechanical Behavior in a Deterministic Model. Foundations of Physics Letters, 10:105111, 1997.CrossRefGoogle Scholar
Thomson, J.. Tasks and Super-Tasks. Analysis, 15:113, 1954.CrossRefGoogle Scholar
Toffoli, T.. Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations. Physica D, 10:117127, 1984.CrossRefGoogle Scholar
Turing, A.. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2, 42(1):230265, 1937.CrossRefGoogle Scholar
Uffink, J.. Verification of the Uncertainty Principle in Neutron Interferometry. Physics Letters A, 108(2):5962, 1985.CrossRefGoogle Scholar
Uffink, J. and Hilgevoord, J.. Uncertainty Principle and Uncertainty Relations. Foundations of Physics, 15(9):925944, 1985.CrossRefGoogle Scholar
Unruh, W.. Experimental Black-Hole Evaporation? Physical Review Letters, 46:13511353, 1981.CrossRefGoogle Scholar
Unruh, W.. Steps Towards a Quantum Theory of Gravity. In Christensen, S., editor, Quantum Theory of Gravity, pages 234242. Adam Hilger, Bristol, 1984.Google Scholar
Unruh, W.. Sonic Analogue of Black Holes and the Effects of High Frequencies on Black Hole Evaporation. Physical Review D, 51:28272838, 1995.CrossRefGoogle Scholar
Unruh, W.. Minkowski Spacetime and Quantum Mechanics. In Petkov, V., editor, Minkowski Spacetime: A Hundred Years Later, pages 133150. Springer, Berlin, 2010.CrossRefGoogle Scholar
Unruh, W.. Decoherence without Dissipation. Philosophical Transactions of the Royal Society of London A, 370(1975):44544459, 2012.Google Scholar
Valente, M. B.. Are Virtual Quanta Nothing but Formal Tools? International Studies in the Philosophy of Science, 25(1):3953, 2011.CrossRefGoogle Scholar
Veneziano, G.. Classical and Quantum Gravity from String Theory. In Classical and Quantum Gravity; Proceedings of the 1st Iberian Meeting on Gravity, Evora, Portugal, pages 134180. World Scientific, 1992.Google Scholar
Van Bendegem, J.. Zeno’s Paradoxes and the Tile Argument. Philosophy of Science, 54(2):295302, 1987.CrossRefGoogle Scholar
Van Bendegem, J.. Finitism in Geometry. In Zalta, E., editor, Stanford Encyclopedia for Philosophy. 2010.Google Scholar
Vandegrift, G. and Fultz, B.. The Mössbauer effect explained. American Journal of Physics, 66(7):593596, 1998.CrossRefGoogle Scholar
von Liechtenstern, C. R.. Die Beseitigung von Wlderspruchen bei der Ableitung der UnschŁrferelation. In Proceedings of the Second International Congress of the International Union for the Philosophy of Science (Zurich 1954), pages 6770. Editions du Griffon, Neuchatel, 1955.Google Scholar
von Neumann, J.. Mathematical Foundations of Quantum Theory. Princeton University Press, Princeton, NJ, 1932.Google Scholar
von Neumann, J.. Quantum Mechanics of Infinite Systems. In Redei, M. and Stolzner, M., editors, John von Neumann and the Foundations of Quantum Physics, pages 249269. Kluwer Academic Publishers, Dordrecht, 2001/1936.CrossRefGoogle Scholar
Volovik, G.. What Can the Quantum Liquid Say on the Brane Black Hole, the Entropy of an Extremal Black Hole, and the Vacuum Energy? Foundations of Physics, 33(2):349368, 2003.CrossRefGoogle Scholar
Wagon, S.. The Banach–Tarski Paradox. Cambridge University Press, Cambridge, 1993.Google Scholar
Wald, R.. The Thermodynamics of Black Holes. Living Reviews in Relativity, 4(6), 2001.CrossRefGoogle Scholar
Wallace, D.. In Defense of Naiveté: The Conceptual Status of Lagrangian Quantum Field Theory. Synthese, 151:3380, 2006.CrossRefGoogle Scholar
Wallace, D.. Taking Particle Physics Seriously: A Critique of the Algebraic Approach to Quantum Field Theory. Studies in the History and Philosophy of Modern Physics, 42(2):116125, 2011.CrossRefGoogle Scholar
Wataghin, G.. Über die Unbestimmtheitsrelationen der Quantentheorie. Zeitschrift für Physik, 65:285288, 1930.CrossRefGoogle Scholar
Wataghin, G.. Über eine Genauigkeitsgrenze der Ortsmessungen. Zeitschrift für Physik, 66(9–10):650651, 1930.CrossRefGoogle Scholar
Wataghin, G.. Bemerkung über die Selbstenergie der Elektronen. Zeitschrift für Physik, 88:9298, 1934.CrossRefGoogle Scholar
Wataghin, G.. Über die relativitiche Quantenelectrdynamik und die ausstarhlung bei Stösen sher Energierecher Elektronen. Zeitschrift für Physik, 92:547560, 1934.CrossRefGoogle Scholar
Wataghin, G.. Sulle Forze d’Inerzia Secondo la Teoria Quantistica della Gravitazione. La Ricerca Scientifica, 7(2)(5–6):341, 1936.Google Scholar
Wataghin, G.. Sopra un Sistema di Equazioni Gravitazionali del Primo Ordine. Atti della Reale Accademia Nazionale dei Lincei. Rendiconti, Classi di Scienze Fisiche, Matematiche e Naturali, 6(26)(11):285289, 1937.Google Scholar
Wataghin, G.. Sulla Teoria Quantica della Gravitazione. La Ricerca Scientifica, 8(2)(5–6):12, 1937.Google Scholar
Wataghin, G.. Quantum Theory and Relativity. Nature, 142:393394, 1938.CrossRefGoogle Scholar
Wataghin, G.. Thermal Equilibrium Between Elementary Particles. Physical Review, 63(3–4):137, 1943.CrossRefGoogle Scholar
Wataghin, G.. Relativity and Supplementary Indeterminacy. Physical Review, 65(5–6):205205, 1944.CrossRefGoogle Scholar
Wataghin, G.. Remarks on Some Symmetry Problems in Cosmology and in the Theory of Particles and Fields. Lettere al Nuovo Cimento, 4(3):608610, 1972.CrossRefGoogle Scholar
Wataghin, G.. On Cosmology and Thermodynamics. Symposia Mathematica, 2:163174, 1973.Google Scholar
Wataghin, G., 1975. Interview with Cylon Eudóxio Silva held in Rio de Janeiro. Available at CPDOC, Fundacao Getulio Vargas.Google Scholar
Weinberg, S.. The Search for Unity: Notes for a History of Quantum Field Theory. Daedalus, 106(4):1735, 1977.Google Scholar
Weinberg, S.. Critical Phenomena for Field Theorists. In Zichichi, A., editor, Understanding the Fundamental Constituents of Matter, pages 152. Springer, Berlin, 1978.Google Scholar
Weinberg, S.. Conceptual Foundations of the Unified Theory of Weak and Electromagnetic Interactions. Reviews of Modern Physics, 52:515523, 1980.CrossRefGoogle Scholar
Weinberg, S.. Newtonianism, Reductionism, and the Art of Congressional Testimony. Nature, 330:433437, 1987.CrossRefGoogle Scholar
Weingard, R.. Virtual Particles and the Interpretation of Quantum Field Theory. In Brown, H. and Harre, R., editors, Philosophical Foundations of Quantum Field Theory, pages 4358. Clarendon Press, Oxford, 1988.Google Scholar
Wentzel, G.. Über die Eigenkräfte der Elementarteilchen. Zeitschrift für Physik, 86:479494; 635–645, 1933.CrossRefGoogle Scholar
Wess, J.. Nonabelian Gauge Theories on Noncommutative Spaces. In Nath, P. and Zerwas, P., editors, Hamburg 2002, Supersymmetry and Unification of Fundamental Interactions, vol. 1, pages 586599. Deutsches Elektronensynchrotron DESY, Hamburg, 2002.Google Scholar
Weyl, H.. Philosophy of Mathematics and the Natural Sciences. Princeton University Press, Princeton, NJ, 1949.CrossRefGoogle Scholar
Whitehead, A.. An Enquiry Concerning the Principles of Natural Knowledge. Cambridge University Press, Cambridge, 1919.Google Scholar
Whitehead, A.. Process and Reality. Cambridge University Press, Cambridge, 1929.Google Scholar
Wilson, K.. The Renormalization Group: Critical Phenomena and the Kondo Problem. Reviews of Modern Physics, 47:773840, 1975.CrossRefGoogle Scholar
Will, C.. The Confrontation between General Relativity and Experiment. Living Reviews in Relativity, 9(3), 2006.CrossRefGoogle ScholarPubMed
Winnie, J.. Deterministic Chaos and the Nature of Chance. In Earman, J. and Norton, J., editors, The Cosmos of Science, pages 299324. University of Pittsburgh Press, Pittsburgh, PA, 1997.Google Scholar
Witten, E.. Reflections on the Fate of Spacetime. Physics Today, 49:24, 1996.CrossRefGoogle Scholar
Witten, E.. Duality, Spacetime, and Quantum Mechanics. Physics Today, 50(5):2833, 1997.CrossRefGoogle Scholar
Witten, E.. Anti de Sitter Space and Holography. Advances in Theoretical and Mathematical Physics, 2:253291, 1998.CrossRefGoogle Scholar
Wilson, K. and Kogut, J.. The Renormalization Group and the Expansion. Physics Reports, 12(2):75199, 1974.CrossRefGoogle Scholar
Woit, P.. Not Even Wrong. Basic Books, New York, 2006.Google Scholar
Wolfram, S.. Undecidability and Intractability in Theoretical Physics. Physical Review Letters, 54:735, 1985.CrossRefGoogle Scholar
Wolfram, S.. Theory and Applications of Cellular Automata. World Scientific, Singapore, 1986.Google Scholar
Yang, C.. On Quantized Spacetime. Physical Review, 72:874, 1947.CrossRefGoogle Scholar
Yukawa, H.. Quantum Theory of Non-Local Fields. Part I. Free Fields. Physical Review, 77:219226, 1950.CrossRefGoogle Scholar
Zee, T.. Quantum Field Theory in a Nutshell, second edition. Princeton University Press, Princeton, NJ, 2003.Google Scholar
Zimmerman, D.. Indivisible Parts and Extended Objects: Some Philosophical episodes from Topology’s Prehistory. The Monist, 79(1):148180, 1996.CrossRefGoogle Scholar
Zwiebach, B.. A First Course in String Theory. Cambridge University Press, Cambridge, 2008.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Amit Hagar, Indiana University, Bloomington
  • Book: Discrete or Continuous?
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107477346.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Amit Hagar, Indiana University, Bloomington
  • Book: Discrete or Continuous?
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107477346.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Amit Hagar, Indiana University, Bloomington
  • Book: Discrete or Continuous?
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107477346.011
Available formats
×