Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T12:01:43.878Z Has data issue: false hasContentIssue false

2 - Fluid mechanics with interfaces

Published online by Cambridge University Press:  07 October 2011

Grétar Tryggvason
Affiliation:
University of Notre Dame, Indiana
Ruben Scardovelli
Affiliation:
Università degli Studi, Bologna, Italy
Stéphane Zaleski
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

The equations governing multiphase flows, where a sharp interface separates immiscible fluids or phases, are presented in this chapter. We first derive the equations for flows without interfaces, in a relatively standard manner. Then we discuss the mathematical representation of a moving interface and the appropriate jump conditions needed to couple the equations across the interfaces. Finally, we introduce the so-called “one-fluid” approach, where the interface is introduced as a singular distribution in equations written for the whole flow field. The “one-fluid” form of the equations plays a fundamental rôle for the numerical methods discussed in the rest of the book.

General principles

The derivation of the governing equations is based on three general principles: the continuum hypothesis, the hypothesis of sharp interfaces, and the neglect of intermolecular forces. The assumption that fluids can be treated as a continuum is usually an excellent approximation. Real fluids are, of course, made of atoms or molecules. To understand the continuum hypothesis, consider the density or amount of mass per unit volume. If this amount were measured in a box of sufficiently small dimensions ℓ, it would be a wildly fluctuating quantity (see Batchelor (1970), for a detailed discussion). However, as the box side ℓ increases, the density becomes ever smoother, until it is well approximated by a smooth function ρ. For liquids in ambient conditions this happens for ℓ above a few tens of nanometers (1 nm = 10−9 m).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×