Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T09:07:31.452Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  05 June 2012

Paulo S. R. Diniz
Affiliation:
Universidade Federal do Rio de Janeiro
Eduardo A. B. da Silva
Affiliation:
Universidade Federal do Rio de Janeiro
Sergio L. Netto
Affiliation:
Universidade Federal do Rio de Janeiro
Get access

Summary

When we hear the word “signal” we may first think of a phenomenon that occurs continuously over time that carries some information. Most phenomena observed in nature are continuous in time, such as for instance our speech or heart beating, the temperature of the city where we live, the car speed during a given trip, the altitude of the airplane we are traveling in – these are typical continuous-time signals. Engineers are always devising ways to design systems, which are in principle continuous time, for measuring and interfering with these and other phenomena.

One should note that, although continuous-time signals pervade our daily lives, there are also several signals which are originally discrete time; for example, the stock-market weekly financial indicators, the maximum and minimum daily temperatures in our cities, and the average lap speed of a racing car.

If an electrical or computer engineer has the task of designing systems to interact with natural phenomena, their first impulse is to convert some quantities from nature into electric signals through a transducer. Electric signals, which are represented by voltages or currents, have a continuous-time representation. Since digital technology constitutes an extremely powerful tool for information processing, it is natural to think of processing the electric signals generated using it. However, continuous-time signals cannot be processed using computer technology (digital machines), which are especially suited to deal with sequential computation involving numbers.

Type
Chapter
Information
Digital Signal Processing
System Analysis and Design
, pp. 1 - 4
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×