Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T00:01:06.671Z Has data issue: false hasContentIssue false

18 - Diatoms on coral reefs and in tropical marine lakes

from Part IV - Diatoms as indicators in marine and estuarine environments

Published online by Cambridge University Press:  05 June 2012

Christopher S. Lobban
Affiliation:
University of Guam
Richard W. Jordan
Affiliation:
Yamagata University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Coral reef communities as diatom habitats

Coral reefs, well known for their tremendous biodiversity and beauty (Veron, 2000; Spalding et al., 2001), are the most complex ecosystems in the sea, and are often compared to rainforests, both because of the large numbers of organisms (estimates in both cases based on larger organisms and extrapolated wildly to small animals and microorganisms!) and because corals, like rainforest trees, create the structure and habitat for the wealth of other organisms. Coral reefs are formed by a highly successful yet environmentally sensitive symbiotic association between animals (cnidarians; scleractinian corals) and protists (dinoflagellate algae; zooxanthellae in the genus Symbiodinium). The term coral is generally used to denote the holobiont, i.e. both partners in the symbiosis. On a healthy coral reef, macroalgae are generally sparse and coral cover is high, but the balance can be tipped to communities dominated by fleshy algae by nutrient inputs that promote algal growth in the otherwise oligotrophic waters, or by reduction of normally high grazing pressure (Littler & Littler, 1984).

Coral reefs are vital resources for millions of humans in tropical, especially developing countries, who depend on them for fisheries (Cesar, 2000; Sadovy, 2005; Vincent, 2006), tourism income (Brander et al., 2007), storm protection (UNEP-WCMC, 2006), and sometimes structural materials (Berg et al., 1998; Mallik, 1999). Biodiversity of coral reefs is also recognized for its pharmacological potential (Adey, 2000).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 346 - 356
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adey, W. H. (2000). Coral reef ecosystems and human health: biodiversity counts! Ecosystem Health, 6, 227–36.CrossRefGoogle Scholar
Amato, A., Kooistra, W. H. C. F., Ghiron, J. H. L., et al. (2006). Reproductive isolation among sympatric cryptic species in marine diatoms. Protist, 158, 193–207.CrossRefGoogle ScholarPubMed
Berg, H., Linden, O., Ohman, M. C., & Troeng, S. (1998). Environmental economics of coral reef destruction in Sri Lanka. Ambio, 27, 627.Google Scholar
Brander, L. M., Beukering, P., & Cesar, H. S. J. (2007). The recreational value of coral reefs: a meta-analysis. Ecological Economics, 63, 209–18.CrossRefGoogle Scholar
Carpenter, K. E. & Springer, V. G. (2005). The center of marine shore fish biodiversity: the Philippine Islands. Environmental Biology of Fishes, 72, 467–80.CrossRefGoogle Scholar
Ceccarelli, D. M., Jones, G. P., & McCook, L. J. (2001). Territorial damselfishes as determinants of the structure of benthic communities on coral reefs. Oceanography and Marine Biology Annual Review, 39, 355–89.Google Scholar
Ceccarelli, D. M., Jones, G. P., & McCook, L. J. (2005). Effects of territorial damselfish on an algal-dominated coastal coral reef. Coral Reefs, 24, 606–20.CrossRefGoogle Scholar
Cesar, H. S. J. (ed.) (2000). Collected Essays on the Economics of Coral Reefs. Kalmar, Sweden: Coral Degradation in the Indian Ocean (CORDIO).Google Scholar
Cox, E. J. (1979). Studies on the diatom genus Navicula Bory. Navicula scopulorum Bréb. and a further comment on the genus Berkeleya Grev. British Phycological Journal, 14, 161–74.CrossRefGoogle Scholar
Dawson, M. N. (2005). Five new subspecies of Mastigias (Scyphozoa: Rhizostomeae: Mastigiidae) from marine lakes, Palau, Micronesia. Journal of the Marine Biological Association UK, 85, 679–94.CrossRefGoogle Scholar
Dawson, M. N. & Hamner, W. M. (2005). Rapid evolutionary radiation of marine zooplankton in peripheral environments. Proceedings of the National Academy of Sciences of the United States of America, 102, 9235–40.CrossRefGoogle ScholarPubMed
Dawson, M. N., Martin, L. E., & Penland, L. K. (2001). Jellyfish swarms, tourists, and the Christ-child. Hydrobiologia, 451, 131–44.CrossRefGoogle Scholar
Fenchel, T. & Finlay, B. J. (2004). The ubiquity of small species: patterns of local and global diversity. BioScience, 54, 777–84.CrossRefGoogle Scholar
Foissner, W. (2006). Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozoologica, 45, 111–36.Google Scholar
Foissner, W. (2008). Protist diversity and distribution: some basic considerations. Biodiversity and Conservation, 17, 235–42.CrossRefGoogle Scholar
Frankovich, T. A., Gaiser, E. E., Zieman, J. C., & Wachnicka, A. H. (2006). Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex König: relationships to water quality. Hydrobiologia, 569, 259–71.CrossRefGoogle Scholar
Gaiser, E., Wachnicka, A., Ruiz, P., Tobias, F., & Ross, M. (2005). Diatom indicators of ecosystem change in subtropical coastal wetlands. In Estuarine Indicators, ed. Bortone, S. A., Boca Raton, FL: CRC Press.Google Scholar
Giffen, M. H. (1970). Contributions to the diatom flora of South Africa IV. The marine littoral diatoms of the estuary of the Kowie River, Port Alfred, Cape Province. Nova Hedwigia, Beiheft, 31, 259–312.Google Scholar
Gordon, I. (2007). Linking land to ocean: feedbacks in the management of socio-ecological systems in the Great Barrier Reef catchments. Hydrobiologia, 591, 29–33.CrossRefGoogle Scholar
Gottschalk, S., Uthicke, S., & Heimann, K. (2007). Benthic diatom community composition in three regions of the Great Barrier Reef, Australia. Coral Reefs, 26, 345–57.CrossRefGoogle Scholar
Hallock, P. (1984). Distribution of selected species of living algal symbiont-bearing foraminifera on two Pacific coral reefs. Journal of Foraminiferal Research, 14, 250–61.CrossRefGoogle Scholar
Hamner, W. M., Gilmer, R. W., & Hamner, P. P. (1982). The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau. Limnology and Oceanography, 27, 896–909.CrossRefGoogle Scholar
Hamner, W. M. & Hamner, P. P. (1998). Stratified marine lakes of Palau (Western Caroline Islands). Physical Geography, 19 (3), 175–220.Google Scholar
Hara, Y., Horiguchi, T., Hanzawa, N., et al. (2002). The phylogeny of marine microalgae from Palau's marine lakes. Kaiyo Monthly, 29, 19–26 (in Japanese).Google Scholar
Hata, H. & Kato, M. (2002). Weeding by the herbivorous damselfish Stegastes nigricans in nearly monocultural algae farms. Marine Ecology Progress Series, 237, 227–31.CrossRefGoogle Scholar
Hata, H. & Kato, M. (2003). Demise of monocultural algal farms by exclusion of territorial damselfish. Marine Ecology Progress Series, 263, 159–67.CrossRefGoogle Scholar
Hata, H. & Kato, M. (2004). Monoculture and mixed-species algal farms on a coral reef are maintained through intensive and extensive management by damselfishes. Journal of Experimental Marine Biology and Ecology, 313, 285–96.CrossRefGoogle Scholar
Hata, H. & Kato, M. (2006). A novel obligate cultivation mutualism between damselfish and Polysiphonia algae. Biology Letters, 2, 593–96.CrossRefGoogle ScholarPubMed
Hein, M. K., Winsborough, B. M., & Sullivan, M. J. (2008). Bacillariophyta (Diatoms) of the Bahamas. Iconographia Diatomologica, 19, 1–300.Google Scholar
Hendey, N. I. (1964). An Introductory Account of the Smaller Algae of British Coastal Waters. Part V: Bacillariophyceae (Diatoms). London: Her Majesty's Stationery Office.Google Scholar
Hixon, M. A. & Brostoff, W. N. (1983). Damselfish as keystone species in reverse: intermediate disturbance and diversity of reef algae. Science, 220, 511–13.CrossRefGoogle ScholarPubMed
Hixon, M. A. & Brostoff, W. N. (1996). Succession and herbivory: effects of differential fish grazing on Hawaiian coral-reef algae. Ecological Monographs, 66, 67–90.CrossRefGoogle Scholar
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., et al. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318, 1737–42.CrossRefGoogle ScholarPubMed
Hogarth, P. J. (2007). The Biology of Mangroves and Seagrasses. Oxford: Oxford University Press.CrossRefGoogle Scholar
Honeywill, C. (1998). A study of British Licmophora species and a discussion of its morphological features. Diatom Research, 13, 221–71.CrossRefGoogle Scholar
Hughes, T. P., Baird, A. H., Bellwood, D. R., et al. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–33.CrossRefGoogle ScholarPubMed
Hughes, T. P., Bellwood, D. R., & Connolly, S. R. (2002). Biodiversity hotspots, centres of endemicity, and the conservation of reefs. Ecology Letters, 5, 775–84.CrossRefGoogle Scholar
Hustedt, F. (1931). Die Kieselalgen Deutschlands, Österreichs und der Schweiz unter Berücksichtigung der übrigen Länder Europa sowie der angrenzenden Meeresgebiete. In Rabenhorsts Kryptogamen-Flora von Deutschland, Österreich und der Schweiz, Leipzig: Akademische Verlagsgesellschaft. vol. 7, part 2, section 1.Google Scholar
Jones, G. P., Santana, L., McCook, L. J., & McCormick, M. I. (2006). Resource use and impact of three herbivorous damselfishes on coral reef communities. Marine Ecology Progress Series, 328, 215–24.CrossRefGoogle Scholar
Jordan, R. W., Lobban, C. S., & Theriot, E. C. (2009). Western Pacific diatoms project. ProtistCentral. See http://www.protistcentral.org/Project/get/project/id/17.
Kawagata, S., Yamasaki, M., Genka, R., & Jordan, R. W. (2005a). Shallow-water benthic foraminifers from Mecherchar Jellyfish Lake (Ongerul Tketau Uet), Palau. Micronesica, 37, 215–33.Google Scholar
Kawagata, S., Yamasaki, M., & Jordan, R. W. (2005b). Acarotrochus lobulatus, a new genus and species of shallow-water foraminifer from Mecherchar Jellyfish Lake, Palau, NW Equatorial Pacific Ocean. Journal of Foraminiferal Research, 35, 44–9.CrossRefGoogle Scholar
Kempe, S. & Kazmierczak, J. (1990). Chemistry and stromatolites of the sea-linked Satonda Crater Lake, Indonesia: a recent model for the Precambrian sea? Chemical Geology, 81, 299–310.CrossRefGoogle Scholar
Kerswell, A. P. (2006). Global biodiversity patterns of benthic marine algae. Ecology, 87, 2479–88.CrossRefGoogle ScholarPubMed
King, R. J. (1990). Macroalgae associated with the mangrove vegetation of Papua New Guinea. Botanica Marina, 33, 55–62.CrossRefGoogle Scholar
Kleypas, J. A., McManus, J. W., & Menez, L. A. B. (1999). Environmental limits to coral reef development: where do we draw the line? American Zoologist, 39, 146–59.CrossRefGoogle Scholar
Lassuy, D. R. (1980). Effects of “farming” behavior by Eupomacentrus lividus and Hemiglyphidodon plagiometapon on algal community structure. Bulletin of Marine Science, 30, 304–12.Google Scholar
Lee, S. Y. (1999). The effect of mangrove leaf litter enrichment on macrobenthic colonization of defaunated sandy substrates. Estuarine, Coastal and Shelf Science, 49, 703–12.CrossRefGoogle Scholar
Lewis, A. R. (1997). Effects of experimental coral disturbance on the structure of fish communities on large patch reefs. Marine Ecology Progress Series, 161, 37–50.CrossRefGoogle Scholar
Lipps, J. H. & Langer, M. R. (1999). Benthic foraminifera from the meromictic Mecherchar Jellyfish Lake, Palau (western Pacific). Micropaleontology, 45, 278–84.CrossRefGoogle Scholar
Littler, M. M. & Littler, D. S. (1984). Models of tropical reef biogenesis: the contribution of algae. Progress in Phycological Research, 3, 323–64.Google Scholar
Lobban, C. S. & Harrison, P. J. (1994). Seaweed Ecology and Physiology. New York: Cambridge University Press.CrossRefGoogle Scholar
Mackenzie, F. T., Vink, S., Wollast, R., & Chou, L. (1995). Comparative geochemistry of marine saline lakes. In Physics and Chemistry of Lakes, ed. Lerman, A., Imboden, D., & Gat, J., New York, NY: Springer-Verlag, 265–78.CrossRefGoogle Scholar
Mallik, T. K. (1999). Calcareous sands from a coral atoll – should it be mined or not? Marine Georesources and Geotechnology, 17, 27–32.CrossRefGoogle Scholar
Martin, L., Dawson, M. N., Bell, L. J., & Colin, P. L. (2005). Marine lake ecosystem dynamics illustrate ENSO variation in the tropical western Pacific. Biology Letters, 2, 144–7.CrossRefGoogle Scholar
Miller, W. I., Montgomery, R. T., & Collier, A. W. (1977). A taxonomic survey of the diatoms associated with Florida Keys coral reefs. Proceedings of the Third International Coral Reef Symposium. Miami, CA: Rosenstiel School of Marine and Atmospheric Science.Google Scholar
Montgomery, R. T. (1978). Environmental and ecological studies of the diatom communities associated with the coral reefs of the Florida Keys, vols. I. & II. Unpublished Ph.D. thesis, Florida State University, Tallahassee. Accessible online at.
Montgomery, W. L. (1980a). Comparative feeding ecology of two herbivorous damselfishes (Pomacentridae: Teleostei) from the Gulf of California, Mexico. Journal of Experimental Marine Biology and Ecology, 47, 9–24.CrossRefGoogle Scholar
Montgomery, W. L. (1980b). The impact of non-selective grazing by the giant blue damselfish, Microspathodon dorsalis, on algal communities in the Gulf of California, Mexico. Bulletin of Marine Science, 30, 290–303.Google Scholar
Mumby, P. J. (2006) Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biological Conservation, 128, 215–22.CrossRefGoogle Scholar
Mumby, P. J., Edwards, A. J., Arias-González, J. E., et al. (2004). Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature, 427, 533–6.CrossRefGoogle ScholarPubMed
Myers, R. (1989). Micronesian Reef Fishes, Barrigada, Guam: Coral Graphics.Google Scholar
Nagumo, T. & Hara, Y. (1990). Species composition and vertical distribution of diatoms occurring in a Japanese mangrove forest. The Japanese Journal of Phycology (Sôrui), 38, 333–43.Google Scholar
Navarro, J. N. (1982). Marine diatoms associated with mangrove prop roots in the Indian River, Florida, U.S.A. Bibliotheca Phycologica, 61, 1–151.Google Scholar
Navarro, J. N. (1983). A survey of the marine diatoms of Puerto Rico. VII. Suborder Raphidineae: families Auriculaceae, Epithemiaceae, Nitzschiaceae and Surirellaceae. Botanica Marina, 26, 393–408.Google Scholar
Navarro, J. N. & Lobban, C. S. (2009). Freshwater and marine diatoms from the western Pacific islands of Yap and Guam, with notes on some diatoms in damselfish territories. Diatom Research, 24, 123–57.CrossRefGoogle Scholar
Navarro, J. N., Micheli, C. J., & Navarro, A. O. (2000). Benthic diatoms of Mona Island (Isla de Mona), Puerto Rico. Acta Cientifica, 14, 103–43.Google Scholar
Navarro, J. N., Pérez, C., Arce, N., & Arroyo, B. (1989). Benthic marine diatoms of Caja de Muertos Island, Puerto Rico. Nova Hedwigia, 49, 333–67.Google Scholar
Navarro, J. N. & Torres, R. (1987). Distribution and community structure of marine diatoms associated with mangrove prop roots in the Indian River, Florida, U.S.A. Nova Hedwigia, 45, 101–12.Google Scholar
Pandolfi, J. M., Bradbury, R. H., Sala, E., et al. (2003). Global trajectories of long-term decline of coral reef ecosystems. Science, 301, 955–8.CrossRefGoogle Scholar
Pastorak, R. A. & Bilyard, G. R. (1985). Effects of sewage pollution on coral reef communities. Marine Ecology Progress Series, 21, 175–89.CrossRefGoogle Scholar
Paulay, G. (ed.) (2003). Marine biodiversity of Guam and the Marianas. Micronesica, 35–36, 1–682.Google Scholar
Podzorski, A. C. (1985). An illustrated and annotated check list of diatoms from the Black River Waterways, St. Elizabeth, Jamaica. Bibliotheca Diatomologica, 7, 1–177.Google Scholar
Polunin, N. V. C. (1988). Efficient uptake of algal production by a single resident herbivorous fish on the reef. Journal of Experimental Marine Biology and Ecology, 123, 61–76.CrossRefGoogle Scholar
Post, E. (1967). Zur Ökologie des Bostrychietum. Hyrdrobiologia, 29, 263–87.CrossRefGoogle Scholar
Poulíčková, A., Špačková, J., Kelly, M., Duchoslav, M., & Mann, D. G. (2008). Ecological variation within Sellaphora species complexes (Bacillariophyceae): specialists or generalists? Hydrobiologia, 614, 373–86.CrossRefGoogle Scholar
Reimer, C. W. (1996). Diatoms from some surface waters on Great Abaco Island in the Bahamas (Little Bahama Bank). Nova Hedwigia, Beiheft, 112, 343–54.Google Scholar
Richmond, R. (1994). Effects of coastal runoff on coral production. In Proceedings of the Colloquium on Global Aspects of Coral Reefs: Health, Hazards and History, ed. Ginsburg, R. N., Miami: University of Miami Press, pp. 360–4.Google Scholar
Roopin, M. & Chadwick, N. E. (2009). Benefits to host sea anemones from ammonia contributions of resident anemonefish. Journal of Experimental Marine Biology and Ecology, 370, 27–34.CrossRefGoogle Scholar
Roopin, M., Henry, R. P., & Chadwick, N. E. (2008). Nutrient transfer in a marine mutualism : patterns of ammonia excretion by anemonefish and uptake by giant sea anemones. Marine Biology, 154, 547–56.CrossRefGoogle Scholar
Round, F. E. (1978). Stictocyclus stictodiscus (Bacillariophyta): comments on its ecology, structure and classification. Journal of Phycology, 14, 150–6.CrossRefGoogle Scholar
Sadovy, Y. (2005). Trouble on the reef: the imperative for managing vulnerable and valuable fisheries. Fish and Fisheries, 6, 167–85.CrossRefGoogle Scholar
Sar, E. A. & Ferrario, M. E. (1990). Licmophora flabellata. Ultrastructure and taxonomy. 1. Implication. Diatom Research, 4, 403–8.CrossRefGoogle Scholar
Simonsen, R. (1970). Protoraphidaceae, eine neue Familie der Diatomeen. Nova Hedwigia, Beiheft, 31, 377–94.Google Scholar
Siqueiros-Beltrones, D., López-Fuerte, F. O., & Gárate-Lizárraga, I. (2005). Structure of diatom assemblages living on prop roots of the red mangrove (Rhizophora mangle) from the west coast of Baja California Sur, Mexico. Pacific Science, 59, 79–96.CrossRefGoogle Scholar
Siqueiros-Beltrones, D. A. & Castrejón, E. S. (1999). Structure of benthic diatom assemblages from a mangrove environment in a Mexican subtropical lagoon. Biotropica, 31, 48–70.Google Scholar
Skelton, P. A. & South, G. R. (2002). Mangrove-associated algae from Samoa, South Pacific. Constancea, 83.12. See http://ucjeps.berkeley.edu/constancea/83/skelton_south/skelton_south.html; accessed August 18, 2008.Google Scholar
Spalding, M. D., Ravilious, C., & Green, E. P. (2001) World Atlas of Coral Reefs. Berkeley, CA: University of California Press.Google Scholar
Sullivan, M. J. (1981a). Community structure of diatoms epiphytic on mangroves and Thalassia in Bimini Harbour, Bahamas. In Proceedings of the Sixth Symposium on Recent and Fossil Diatoms, Budapest, ed. Ross, R., pp. 385–98. Königstein: Koeltz Scientific Books.Google Scholar
Sylvestre, F., Guiral, D., & Debenay, J. P. (2004). Modern diatom distribution in mangrove swamps from the Kaw Estuary (French Guiana). Marine Geology, 208, 281–93.CrossRefGoogle Scholar
Tomasetti, R. (2007). Global biogeography of marine algae. Unpublished M.Sc. thesis, University of Guam.
Tomlinson, P. B. (1995). The Botany of Mangroves, Cambridge: Cambridge University Press.Google Scholar
,UNEP-WCMC. (2006) In the Front Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs, Biodiversity series number 24, Cambridge: United Nations Environmental Programme – World Conservation Monitoring Centre, See http://www.unep-wcmc.org/resources/publications/UNEP_WCMC_bio_series/24.cfm, accessed August 28, 2008.
Vanormelingen, P., Verleyen, E., & Vyverman, W. (2008). The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation, 17, 393–405.CrossRefGoogle Scholar
Venkateswaran, K., Shimada, A., Maruyama, A., et al. (1993). Microbial characteristics of Palau Jellyfish Lake. Canadian Journal of Microbiology, 39, 506–12.CrossRefGoogle Scholar
Veron, J. E. N. (2000). Corals of the World (three volumes), Townsville: Australian Institute of Marine Science.Google Scholar
Vincent, A. C. J. (2006). Live food and non-food fisheries on coral reefs, and their potential management. In Coral Reef Conservation, ed. Côté, I. M. & Edwards, J. M., New York: Cambridge University Press, pp. 183–235.CrossRefGoogle Scholar
Wachnicka, A. & Gaiser, E. E. (2007). Morphological characterization of Amphora and Seminavis (Bacillariophycea) from South Florida, U.S.A. Diatom Research, 22, 387–455.CrossRefGoogle Scholar
Witkowski, A., Lange-Bertalot, H., & Metzeltin, D. (2000). Diatom Flora of Marine Coasts I. In Iconographia diatomologica, ed. Lange-Bertalot, H., Ruggell: A.R.G. Gantner Verlag.Google Scholar
Zemke-White, L. W., & Beatson, E. L. (2005). Algal community composition within territories of the damselfish Stegastes nigricans (Pomacentridae, Labroidei) in Fiji and the Cook Islands. The South Pacific Journal of Natural Science, 23, 43–7.CrossRefGoogle Scholar
Zolan, W. J. (1980). Periphytic diatom assemblages on a windward fringing reef flat in Guam. Unpublished M.S. thesis, University of Guam.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×