Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T14:56:50.085Z Has data issue: false hasContentIssue false

1 - Subpopulations and differentiation of mouse dendritic cells

from I - Dendritic cells and their role in immunity

Published online by Cambridge University Press:  12 August 2009

Maria Rescigno
Affiliation:
European Institute of Oncology, Milan
Get access

Summary

DENDRITIC CELL SUBPOPULATIONS

Dendritic cells (DCs) have an essential function in the immune system by participating in primitive defense responses that constitute the innate immunity, as well as in the induction and regulation of antigen-specific immune responses. This allows DCs to control infections caused by parasitic and microbial pathogens, to block tumour growth and to exert a precise regulation of T cell, B cell and NK cell immune responses. In addition, DCs also fulfill a pivotal role in the induction and maintenance of T cell tolerance. The functional diversity characterizing the DC system relies essentially on the remarkable plasticity of the DC differentiation process, which dictates the acquisition of DC functional specialization through the generation of a large collection of DC subpopulations (reviewed by Shortman and Liu, 2002). Dendritic cells are located both in the lymphoid organs (such as the spleen or the lymph nodes), and in non-lymphoid tissues (such as the skin or the liver), and can be classified in two major categories: conventional DCs (cDCs), and plasmacytoid DCs (pDCs). Whereas in turn cDCs comprise multiple DC subpopulations endowed with specific functions, little is known about the functional heterogeneity of pDCs. A summary of the most relevant phenotypic and functional characteristics of the main DC subpopulations present in mice is shown in Table 1.1.

A first group of cDCs includes those that are common, and largely restricted, to the majority of organized lymphoid organs of the immune system, and perform their specific functions, as immature or mature DCs, within these organs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliberti, J., Sousa, C. Reis e, Schito, M., Hieny, S., Wells, T., Huffnagle, G. B. and Sher, A. (2000). CCR5 provides a signal for microbial induced production of interleukin-12 by CD8 alpha+ dendritic cells. Nat. Immunol., 1, 83–7CrossRefGoogle ScholarPubMed
Aliberti, J., Schulz, O., Pennington, D. J., Tsujimura, H., Sousa, C. Reis e, Ozato, K. and Sher, A. (2003). Essential role for ICSBP in the in vivo development of murine CD8alpha+ dendritic cells. Blood, 101, 305–10CrossRefGoogle ScholarPubMed
Allan, R. S., Smith, C. M., Belz, G. T., Lint, A. L., Wakim, L. M., Heath, W. R. and Carbone, F. R. (2003). Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science, 301, 1925–8CrossRefGoogle Scholar
Ardavín, C. (1997). Thymic dendritic cells. Immunol Today, 18, 350–61CrossRefGoogle ScholarPubMed
Ardavín, C. (2003). Origin, precursors and differentiation of mouse dendritic cells. Nat. Rev. Immunol., 3, 582–90CrossRefGoogle ScholarPubMed
Ardavín, C., Wu, L., Li, C. L. and Shortman, K. (1993). Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature, 362, 761–3CrossRefGoogle Scholar
Asselin-Paturel, C., Brizard, G., Pin, J. J., Briere, F. and Trinchieri, G. (2003). Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J. Immunol., 171, 6466–77CrossRefGoogle ScholarPubMed
Barchet, W., Cella, M., Odermatt, B., Asselin-Paturel, C., Colonna, M. and Kalinke, U. (2002). Virus-induced interferon alpha production by a dendritic cell subset in the absence of feedback signaling in vivo. J. Exp. Med., 195, 507–16CrossRefGoogle ScholarPubMed
Barchet, W., Cella, M. and Colonna, M. (2005). Plasmacytoid dendritic cells-virus experts of innate immunity. Semin. Immunol., 17, 253–61CrossRefGoogle ScholarPubMed
Belz, G. T., Behrens, G. M., Smith, C. M., Miller, J. F., Jones, C., Lejon, K., Fathman, C. G., Mueller, S. N., Shortman, K., Carbone, F. R. and Heath, W. R. (2002). The CD8alpha(+) dendritic cell is responsible for inducing peripheral self-tolerance to tissue-associated antigens. J. Exp. Med., 196, 1099–104CrossRefGoogle ScholarPubMed
Belz, G. T., Smith, C. M., Kleinert, L., Reading, P., Brooks, A., Shortman, K., Carbone, F. R. and Heath, W. R. (2004). Distinct migrating and nonmigrating dendritic cell populations are involved in major histocompatibility complex class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. U S A, 101, 8670–5CrossRefGoogle Scholar
Belz, G. T., Shortman, K., Bevan, M. J. and Heath, W. R. (2005). CD8alpha+ dendritic cells selectively present major histocompatibility complex class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J. Immunol., 175, 196–200CrossRefGoogle Scholar
Benvenuti, F., Hugues, S., Walmsley, M., Ruf, S., Fetler, L., Popoff, M., Tybulewicz, V. L. and Amigorena, S. (2004). Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science, 305, 1150–3CrossRefGoogle ScholarPubMed
Blasius, A., Vermi, W., Krug, A., Facchetti, F., Cella, M. and Colonna, M. (2004). A cell-surface molecule selectively expressed on murine natural interferon-producing cells that blocks secretion of interferon-alpha. Blood, 103, 4201–6CrossRefGoogle ScholarPubMed
Borkowski, T. A., Letterio, J. J., Farr, A. G. and Udey, M. C. (1996). A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: the skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J. Exp. Med., 184, 2417–22CrossRefGoogle ScholarPubMed
Chicha, L., Jarrossay, D. and Manz, M. G. (2004). Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations. J. Exp. Med., 200, 1519–24CrossRefGoogle ScholarPubMed
Colonna, M., Trinchieri, G. and Liu, Y. J. (2004). Plasmacytoid dendritic cells in immunity. Nat. Immunol., 5, 1219–26CrossRefGoogle ScholarPubMed
D'Amico, A. and Wu, L. (2003). The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med., 198, 293–303CrossRefGoogle ScholarPubMed
Daro, E., Pulendran, B., Brasel, K., Teepe, M., Pettit, D., Lynch, D. H., Vremec, D., Robb, L., Shortman, K., McKenna, H. J., Maliszewski, C. R. and Maraskovsky, E. (2000). Polyethylene glycol-modified granulocyte-macrophage colony-stimulating factor expands CD11b(high)CD11c(high) but not CD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol., 165, 49–58CrossRefGoogle Scholar
Smedt, T., Pajak, B., Muraille, E., Lespagnard, L., Heinen, E., Baetselier, P., Urbain, J., Leo, O. and Moser, M. (1996). Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med., 184, 1413–24CrossRefGoogle ScholarPubMed
Haan, J. M., Lehar, S. M. and Bevan, M. J. (2000). CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med., 192, 1685–96CrossRefGoogle Scholar
Edwards, A. D., Diebold, S. S., Slack, E. M., Tomizawa, H., Hemmi, H., Kaisho, T., Akira, S. and Sousa, C. Reis e (2003). Toll-like receptor expression in murine dendritic cell subsets: lack of Toll-like receptor7 expression by CD8 alpha+ dendritic cell correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol., 33, 827–33CrossRefGoogle Scholar
Fallarino, F., Grohmann, U., Vacca, C., Bianchi, R., Fioretti, M. C. and Puccetti, P. (2002). CD40 ligand and cytotoxic T lymphocytesA-4 are reciprocally regulated in the Th1 cell proliferative response sustained by CD8(+) dendritic cells. J. Immunol., 169, 1182–8CrossRefGoogle Scholar
Filippi, C., Hugues, S., Cazareth, J., Julia, V., Glaichenhaus, N. and Ugolini, S. (2003). CD4+ T cell polarization in mice is modulated by strain-specific major histocompatibility complex-independent differences within dendritic cells. J. Exp. Med., 198, 201–9CrossRefGoogle ScholarPubMed
Fleeton, M. N., Contractor, N., Leon, F., Wetzel, J. D., Dermody, T. S. and Kelsall, B. L. (2004). Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J. Exp. Med., 200, 235–45CrossRefGoogle ScholarPubMed
Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. and Steinman, R. M. (2003). Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med., 198, 267–79CrossRefGoogle Scholar
Gilliet, M., Boonstra, A., Paturel, C., Antonenko, S., Xu, X. L., Trinchieri, G., O'Garra, A. and Liu, Y. J. (2002). The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med., 195, 953–8CrossRefGoogle ScholarPubMed
Hacker, C., Kirsch, R. D., Ju, X. S., Hieronymus, T., Gust, T. C., Kuhl, C., Jorgas, T., Kurz, S. M., Rose-John, S., Yokota, Y. and Zenke, M. (2003). Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol., 4, 380–6CrossRefGoogle ScholarPubMed
Henri, S., Vremec, D., Kamath, A., Waithman, J., Williams, S., Benoist, C., Burnham, K., Saeland, S., Handman, E. and Shortman, K. (2001). The dendritic cell populations of mouse lymph nodes. J. Immunol., 167, 741–8CrossRefGoogle ScholarPubMed
Honda, K., Mizutani, T. and Taniguchi, T. (2004). Negative regulation of interferon-alpha/beta signaling by interferon regulatory factor 2 for homeostatic development of dendritic cells. Proc. Natl Acad. Sci. U S A, 101, 2416–21CrossRefGoogle Scholar
Ichikawa, E., Hida, S., Omatsu, Y., Shimoyama, S., Takahara, K., Miyagawa, S., Inaba, K. and Taki, S. (2004). Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for interferon regulatory factor-2. Proc. Natl Acad. Sci. U S A, 101, 3909–14CrossRefGoogle Scholar
Itano, A. A., McSorley, S. J., Reinhardt, R. L., Ehst, B. D., Ingulli, E., Rudensky, A. Y. and Jenkins, M. K. (2003). Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity, 19, 47–57CrossRefGoogle ScholarPubMed
Iwasaki, A. (2003). The importance of CD11b+ dendritic cells in CD4+ T cell activation in vivo: with help from interleukin 1. J. Exp. Med., 198, 185–90CrossRefGoogle ScholarPubMed
Iwasaki, A. and Kelsall, B. L. (1999). Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med., 190, 229–39CrossRefGoogle Scholar
Iwasaki, A. and Kelsall, B. L. (2000). Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J. Exp. Med., 191, 1381–94CrossRefGoogle ScholarPubMed
Iwasaki, A. and Kelsall, B. L. (2001). Unique functions of CD11b+, CD8 alpha+, and double-negative Peyer's patch dendritic cells. J. Immunol., 166, 4884–90CrossRefGoogle ScholarPubMed
Iwasaki, A. and Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nat. Immunol., 5, 987–95CrossRefGoogle ScholarPubMed
Iyoda, T., Shimoyama, S., Liu, K., Omatsu, Y., Akiyama, Y., Maeda, Y., Takahara, K., Steinman, R. M. and Inaba, K. (2002). The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med., 195, 1289–302CrossRefGoogle ScholarPubMed
Johansson, C. and Kelsall, B. L. (2005). Phenotype and function of intestinal dendritic cells. Semin. Immunol., 17, 284–94CrossRefGoogle ScholarPubMed
Kabashima, K., Banks, T. A., Ansel, K. M., Lu, T. T., Ware, C. F. and Cyster, J. G. (2005). Intrinsic lymphotoxin-beta receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity, 22, 439–50CrossRefGoogle ScholarPubMed
Kamogawa-Schifter, Y., Ohkawa, J., Namiki, S., Arai, N., Arai, K. and Liu, Y. (2005). Ly49Q defines 2 pdendritic cell subsets in mice. Blood, 105, 2787–92CrossRefGoogle ScholarPubMed
Karsunky, H., Merad, M., Mende, I., Manz, M. G., Engleman, E. G. and Weissman, I. L. (2005). Developmental origin of interferon-alpha-producing dendritic cells from hematopoietic precursors. Exp. Hematol., 33, 173–81CrossRefGoogle ScholarPubMed
Kobayashi, T., Walsh, P. T., Walsh, M. C., Speirs, K. M., Chiffoleau, E., King, C. G., Hancock, W. W., Caamano, J. H., Hunter, C. A., Scott, P., Turka, L. A. and Choi, Y. (2003). TRAF6 is a critical factor for dendritic cell maturation and development. Immunity, 19, 353–63CrossRefGoogle ScholarPubMed
Krug, A., Veeraswamy, R., Pekosz, A., Kanagawa, O., Unanue, E. R., Colonna, M. and Cella, M. (2003). Interferon-producing cells fail to induce proliferation of naive T cells but can promote expansion and T helper 1 differentiation of antigen-experienced unpolarized T cells. J. Exp. Med., 197, 899–906CrossRefGoogle Scholar
Krug, A., French, A. R., Barchet, W., Fischer, J. A., Dzionek, A., Pingel, J. T., Orihuela, M. M., Akira, S., Yokoyama, W. M. and Colonna, M. (2004). Toll-like receptor9-dependent recognition of MCMV by IPC and dendritic cell generates coordinated cytokine responses that activate antiviral natural killer cell function. Immunity, 21, 107–19CrossRefGoogle Scholar
Laouar, Y., Welte, T., Fu, X. Y. and Flavell, R. A. (2003). STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity, 19, 903–12CrossRefGoogle ScholarPubMed
Leenen, P. J., Radosevic, K., Voerman, J. S., Salomon, B., Rooijen, N., Klatzmann, D. and Ewijk, W. (1998). Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover. J. Immunol., 160, 2166–73Google ScholarPubMed
Leon, B., Lopez-Bravo, M. and Ardavín, C. (2005). Monocyte-derived dendritic cells. Semin. Immunol., 17, 313–18CrossRefGoogle ScholarPubMed
Liu, K., Iyoda, T., Saternus, M., Kimura, Y., Inaba, K. and Steinman, R. M. (2002). Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med., 196, 1091–7CrossRefGoogle ScholarPubMed
Maldonado-Lopez, R., Maliszewski, C., Urbain, J. and Moser, M. (2001). Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(−) dendritic cells to prime Th1/Th2 cells in vivo. J. Immunol., 167, 4345–50CrossRefGoogle ScholarPubMed
Manz, M. G., Traver, D., Miyamoto, T., Weissman, I. L. and Akashi, K. (2001). Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood, 97, 3333–41CrossRefGoogle ScholarPubMed
Martin, P., Ruiz, S. R., del Hoyo, G. M., Anjuere, F., Vargas, H. H., Lopez-Bravo, M. and Ardavín, C. (2002). Dramatic increase in lymph node dendritic cell number during infection by the mouse mammary tumor virus occurs by a CD62L-dependent blood-borne dendritic cell recruitment. Blood, 99, 1282–8CrossRefGoogle Scholar
Mayerova, D., Parke, E. A., Bursch, L. S., Odumade, O. A. and Hogquist, K. A. (2004). Langerhans cells activate naive self-antigen-specific CD8 T cells in the steady state. Immunity, 21, 391–400CrossRefGoogle ScholarPubMed
McKenna, H. J., Stocking, K. L., Miller, R. E., Brasel, K., Smedt, T., Maraskovsky, E., Maliszewski, C. R., Lynch, D. H., Smith, J., Pulendran, B., Roux, E. R., Teepe, M., Lyman, S. D. and Peschon, J. J. (2000). Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood, 95, 3489–97Google ScholarPubMed
Pooley, J. L., Heath, W. R. and Shortman, K. (2001). Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8-dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol., 166, 5327–30CrossRefGoogle ScholarPubMed
Prakash, A., Smith, E., Lee, C. K. and Levy, D. E. (2005). Tissue-specific positive feedback requirements for production of type I interferon following virus infection. J. Biol. Chem., 280, 18651–7CrossRefGoogle ScholarPubMed
Sousa, C. Reis e, Hieny, S., Scharton-Kersten, T., Jankovic, D., Charest, H., Germain, R. N. and Sher, A. (1997). In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med., 186, 1819–29CrossRefGoogle Scholar
Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P. and Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol., 2, 361–7CrossRefGoogle ScholarPubMed
Ritter, U., Meissner, A., Scheidig, C. and Korner, H. (2004). CD8 alpha- and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis. Eur. J. Immunol., 34, 1542–50CrossRefGoogle Scholar
Sato, A., Hashiguchi, M., Toda, E., Iwasaki, A., Hachimura, S. and Kaminogawa, S. (2003). CD11b+ Peyer's patch dendritic cells secrete interleukin-6 and induce IgA secretion from naive B cells. J. Immunol., 171, 3684–90CrossRefGoogle ScholarPubMed
Scheinecker, C., McHugh, R., Shevach, E. M. and Germain, R. N. (2002). Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med., 196, 1079–90CrossRefGoogle ScholarPubMed
Schiavoni, G., Mattei, F., Sestili, P., Borghi, P., Venditti, M., Morse, H. C., 3rd, , Belardelli, F. and Gabriele, L. (2002). ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J. Exp. Med., 196, 1415–25CrossRefGoogle ScholarPubMed
Schiavoni, G., Mattei, F., Borghi, P., Sestili, P., Venditti, M., Morse, H. C., 3rd, , Belardelli, F. and Gabriele, L. (2004). ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood, 103, 2221–8CrossRefGoogle ScholarPubMed
Schlecht, G., Garcia, S., Escriou, N., Freitas, A. A., Leclerc, C. and Dadaglio, G. (2004). Murine plasmacytoid dendritic cells induce effector/memory CD8+ T-cell responses in vivo after viral stimulation. Blood, 104, 1808–15CrossRefGoogle ScholarPubMed
Schulz, O. and Sousa, C. Reis e (2002). Cross-presentation of cell-associated antigens by CD8alpha+ dendritic cells is attributable to their ability to internalize dead cells. Immunology, 107, 183–9CrossRefGoogle ScholarPubMed
Shigematsu, H., Reizis, B., Iwasaki, H., Mizuno, S., Hu, D., Traver, D., Leder, P., Sakaguchi, N. and Akashi, K. (2004). Plasmacytoid dendritic cells activate lymphoid-specific genetic programs irrespective of their cellular origin. Immunity, 21, 43–53CrossRefGoogle ScholarPubMed
Shortman, K. and Liu, Y. J. (2002). Mouse and human dendritic cell subtypes. Nat. Rev. Immunol., 2, 151–61CrossRefGoogle ScholarPubMed
Steinman, R. M. and Nussenzweig, M. C. (2002). Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl Acad. Sci. U S A, 99, 351–8CrossRefGoogle ScholarPubMed
Suzuki, S., Honma, K., Matsuyama, T., Suzuki, K., Toriyama, K., Akitoyo, I., Yamamoto, K., Suematsu, T., Nakamura, M., Yui, K. and Kumatori, A. (2004). Critical roles of interferon regulatory factor 4 in CD11bhighCD8alpha− dendritic cell development. Proc. Natl Acad. Sci. U S A, 101, 8981–6CrossRefGoogle ScholarPubMed
Tamura, T., Tailor, P., Yamaoka, K., Kong, H. J., Tsujimura, H., O'Shea, J. J., Singh, H. and Ozato, K. (2005). interferon regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J. Immunol., 174, 2573–81CrossRefGoogle ScholarPubMed
Thery, C., Duban, L., Segura, E., Veron, P., Lantz, O. and Amigorena, S. (2002). Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat. Immunol., 3, 1156–62CrossRefGoogle ScholarPubMed
Traver, D., Akashi, K., Manz, M., Merad, M., Miyamoto, T., Engleman, E. G. and Weissman, I. L. (2000). Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. Science, 290, 2152–4CrossRefGoogle ScholarPubMed
Tsujimura, H., Tamura, T. and Ozato, K. (2003). Cutting edge: interferon consensus sequence binding protein/interferon regulatory factor 8 drives the development of type I interferon-producing plasmacytoid dendritic cells. J. Immunol., 170, 1131–5CrossRefGoogle Scholar
Turley, S., Poirot, L., Hattori, M., Benoist, C. and Mathis, D. (2003). Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J. Exp. Med., 198, 1527–37CrossRefGoogle Scholar
Valladeau, J. and Saeland, S. (2005). Cutaneous dendritic cells. Semin. Immunol., 17, 273–83CrossRefGoogle ScholarPubMed
Villadangos, J. A. and Heath, W. R. (2005). Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: Limitations of the Langerhans cells paradigm. Semin. Immunol., 17, 262–72CrossRefGoogle ScholarPubMed
Wu, L., Nichogiannopoulou, A., Shortman, K. and Georgopoulos, K. (1997). Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity, 7, 483–92CrossRefGoogle ScholarPubMed
Wu, L., D'Amico, A., Winkel, K. D., Suter, M., Lo, D. and Shortman, K. (1998). RelB is essential for the development of myeloid-related CD8alpha− dendritic cells but not of lymphoid-related CD8alpha+ dendritic cells. Immunity, 9, 839–47CrossRefGoogle Scholar
Wu, L., D'Amico, A., Hochrein, H., O'Keeffe, M., Shortman, K. and Lucas, K. (2001). Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood, 98, 3376–82CrossRefGoogle ScholarPubMed
Zhang, Y., Zhang, Y. Y., Ogata, M., Chen, P., Harada, A., Hashimoto, S. and Matsushima, K. (1999). Transforming growth factor-beta1 polarizes murine hematopoietic progenitor cells to generate Langerhans cell-like dendritic cells through a monocyte/macrophage differentiation pathway. Blood, 93, 1208–20Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×