Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T03:54:04.961Z Has data issue: false hasContentIssue false

9 - The past, present, and future for dendrons and dendrimers

Published online by Cambridge University Press:  05 November 2012

Donald A. Tomalia
Affiliation:
NanoSynthons, LLC
Jørn B. Christensen
Affiliation:
University of Copenhagen
Ulrik Boas
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Pre-1980s

Before the early 1980s, the possibility of synthesizing and isolating discrete tree-like, macromolecular structures was considered to be an impossible challenge [1]. However, such hypothetical, tree-like entities were often visualized and proposed as transient intermediates by Flory to explain his pioneering concepts in the area of gelation theory during the early 1940s [2–4]. Flory’s seminal work ultimately led to recognition of the second major macromolecular polymer (architecture) after Staudinger’s linear architecture, namely, cross-linked polymers. The traditional polymer world during this era was quite simple. All synthetic polymers at that time were classified into two major categories based on physico-chemical properties. They were referred to as either (I) thermoplastics or (II) thermosets as described earlier (Chapter 1, Section 1.1.2, Figure 1.3). The very first examples of simple branched polymer architectures were just beginning to emerge. The notion of polymeric architecture consisting of “branches upon branches” was not in the vocabulary of polymer scientists at that time. However, it is noteworthy that Flory occasionally made references to “tree branching” polymeric architecture. He often used this architectural term as a visual for describing transient hyperbranched species that he hypothesized were involved in pathways to the “crosslinked” or “gelation state.” These vague but prophetic concepts were soon demonstrated experimentally toward the end of the 1970s, and led to the fourth major class of macromolecular architecture, namely; “dendritic polymers.”

Metaphorically speaking, dendrons are now referred to as “nanoscale molecular trees.” Anatomically, the tree root is the focal point (i.e. apex) of the dendron, whereas the interior consists of amplified branching layers growing from the root, and these are terminated by the molecular tree leaves (Z) or surface moieties of the dendron. As described in Chapter 1, the term dendrimer, coined by Tomalia et al. [5], is now a widely accepted scientific term or descriptor [6] for multiples or clusters of these nanoscale trees. More specifically, dendrimers are discrete, soft matter nano-building blocks.

Type
Chapter
Information
Dendrimers, Dendrons, and Dendritic Polymers
Discovery, Applications, and the Future
, pp. 378 - 406
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tomalia, D. A.Fréchet, J. M. J.Discovery of dendrimers and dendritic polymers: a brief historical perspectiveJ. Polym. Sci. Part A: Polym. Chem 40 2002 2719CrossRefGoogle Scholar
Flory, P. J.Molecular size distribution in three dimensional polymers. I. GelationJ. Am. Chem. Soc 63 1941 3083CrossRefGoogle Scholar
Flory, P. J.Molecular size distribution in three dimensional polymers. II. Trifunctional branching unitsJ. Am. Chem. Soc 63 1941 3091CrossRefGoogle Scholar
Flory, P. J.Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching unitsJ. Am. Chem. Soc 63 1941 3096CrossRefGoogle Scholar
Tomalia, D. A.Baker, H.Dewald, J.A new class of polymers: Starburst dendritic macromoleculesPolym. J. (Tokyo) 17 1985 117CrossRefGoogle Scholar
The American Heritage Science DictionaryBostonHoughton Mifflin Company 2005
Buhleier, E.Wehner, W.Vögtle, F.Cascade – and nonskid-chain-like syntheses of molecular cavity topologiesSynthesis 405 1978 155CrossRefGoogle Scholar
Maciejewski, M.Concepts of trapping topologically by shell moleculesJ. Macromol. Sci. Chem A17 1982 689CrossRefGoogle Scholar
Tomalia, D. A. 1983
de Gennes, P. G.Hervet, H. J.Statistics of starburst polymersJ. Physique-Lett. (Paris) 44 1983 351CrossRefGoogle Scholar
Tomalia, D. A.Great Lakes/Central Regional Meeting of Am. Chem. Soc 1984 Kalamazoo, MI
Tomalia, D. A.Akron Polymer Lecture Series 1984 Akron, Ohio
Tomalia, D. A.Dewald, J. R.Hall, M. J.Martin, S. J.Smith, P. B. 1984
Tomalia, D. A.Dewald, J. R.Hall, M. J.Martin, S. J.Smith, P. B. 1984
Tomalia, D. A.Sixth Biennial Carl S Marvel Symposium, Advances in Synthetic Polymer Chemistry 1985 Tucson, AZ
Tomalia, D. A.Baker, H.Dewald, J.Dendritic macromolecules: synthesis of Starburst dendrimersMacromolecules 19 1986 2466CrossRefGoogle Scholar
Tomalia, D. A.Berry, V.Hall, M.Hedstrand, D. M.Starburst dendrimers IV. Covalently fixed unimolecular assemblages reminiscent of spheroidal micellesMacromolecules 20 1987 1164CrossRefGoogle Scholar
Padias, A. B.Hall, H. K.Tomalia, D. A.McConnell, J. R.Starburst polyether dendrimersJ. Org. Chem 52 1987 5305CrossRefGoogle Scholar
Smith, P. B.Martin, S. J.Hall, M. J.Tomalia, D. A.Mitchell, JAppl Polym Analysis CharacterizationMunichHanser Publishers 1987Google Scholar
Friberg, S. E.Podzimek, M.Tomalia, D. A.Hedstrand, D. M.Non-aqueous lyotropic liquid crystal with a STARBURST® dendrimer as a solventMol. Cryst. Liq. Cryst 164 1988 157Google Scholar
Naylor, A. M.Goddard, W. A.Keifer, G. E.Tomalia, D. A.Starburst dendrimers 5. Molecular shape controlJ. Am. Chem. Soc 111 1989 2339CrossRefGoogle Scholar
Moreno-Bondi, G.Orellana, G.Turro, N. J.Tomalia, D. A.Photoinduced electron transfer reaction to probe the structure of Starburst dendrimersMacromolecules 23 1990 910CrossRefGoogle Scholar
Tomalia, D. A.Naylor, A. M.Goddard, W. A.Starburst dendrimers: molecular level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matterAngew. Chem. Int. Ed. Engl 29 1990 138CrossRefGoogle Scholar
Caminati, G.Turro, N. J.Tomalia, D. A.Photophysical investigation of STARBURST® dendrimers and their interactions with anionic and cationic surfactantsJ. Am. Chem. Soc 112 1990 8515CrossRefGoogle Scholar
Roberts, J. C.Adams, Y. E.Tomalia, D.Mercer-Smith, J. A.Lavallee, D. K.Using Starburst dendrimers as linker molecules to radiolabel antibodiesBioconjugate Chemistry 2 1990 305CrossRefGoogle Scholar
Tomalia, D. A. 1987
Newkome, G. R.Baker, G. R.Arai, S.Cascade molecules. Part 6. Synthesis and characterization of two-directional cascade molecules and formation of aqueous gelsJ. Am. Chem. Soc. 112 1990 8458CrossRefGoogle Scholar
Newkome, G. R.Yao, Z.-Q.Baker, G. R.Gupta, V. K.Cascade molecules: A new approach to micellesJ. Org. Chem. 50 1985 2003CrossRefGoogle Scholar
Newkome, G. R.Yao, Z.-Q.Baker, G. R.Chemistry of micelles series. Part 2. Cascade molecules. Synthesis and characterization of a benzene[9]3-arborolJ. Am. Chem. Soc. 108 1986 849CrossRefGoogle Scholar
Newkome, G. R.Baker, G. R.Saunders, M. J.Two-directional cascade molecules: synthesis and characterization of [9]-n-[9] arborolsJ. Chem. Soc., Chem. Commun. 1986 752CrossRefGoogle Scholar
Hawker, C. J.Fréchet, J. M. J.J Chem. Soc. Chem. Commun. 1990 1010CrossRef
Hawker, C. J.Fréchet, J. M. J.Control of surface functionality in the synthesis of dendritic macromolecules using the convergent-growth approachMacromolecules 23 1990 4726CrossRefGoogle Scholar
Hawker, C. J.Fréchet, J. M. J.Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromoleculesJ. Am. Chem. Soc. 112 1990 7638CrossRefGoogle Scholar
Miller, T. M.Neenan, T. X.Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenesChem. Mat. 2 1990 346CrossRefGoogle Scholar
Kwock, E. W.Neenan, T. X.Miller, T. M.Convergent synthesis of monodisperse aryl ester dendrimersChem. Mater. 3 1991 775CrossRefGoogle Scholar
Gunatillake, P. A.Odian, G.Tomalia, D. A.Thermal polymerization of a 2-(carboxyalkyl)-2-oxazolineMacromolecules 21 1988 1556CrossRefGoogle Scholar
Kim, Y. H.Webster, O. W.Water-soluble hyperbranched polyphenylene: A unimolecular micelleJ. Am. Chem. Soc. 112 1990 4592CrossRefGoogle Scholar
Hawker, C. J.Lee, R.Fréchet, J. M. J.One-step synthesis of hyperbranched dendritic polyestersJ. Am. Chem. Soc. 113 1991 4583CrossRefGoogle Scholar
Tomalia, D. A.Hedstrand, D. M.Ferrito, M. S.COMBBURST™ dendrimers – a new macromolecular architectureMacromolecules 24 1991 1435CrossRefGoogle Scholar
Gauthier, M.Möller, M.Uniform highly branched polymers by anionic grafting: Arborescent graft polymersMacromolecules 24 1991 4548CrossRefGoogle Scholar
Tomalia, D. A.Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistryProg. Polym. Sci. 30 2005 294CrossRefGoogle Scholar
Tomalia, D. A.Fréchet, J. M.Introduction to dendrimers and dendritic polymersProg. Polym. Sci. 30 2005 217CrossRefGoogle Scholar
Tomalia, D. A.The dendritic stateMaterials. Today 2005 34CrossRefGoogle Scholar
Lothian-Tomalia, M. K.Hedstrand, D. M.Tomalia, D. A.A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogical directed synthesis leading to the de Gennes dense packed stateTetrahedron 53 1997 15495CrossRefGoogle Scholar
Tomalia, D. A.Durst, H. D.Weber, E. W.Supramolecular. Chemistry. I – Directed. Synthesis. and Molecular. RecognitionBerlin/HeidelbergSpringer Verlag 1993Google Scholar
Newkome, G. R.Moorfield, C. N.Baker, G. R.Saunders, M. J.Grossman, S. H.Unimolecular micellesAngew. Chem. Int. Ed. 30 1991 1178CrossRefGoogle Scholar
Aoi, K.Tsutsumiuchi, K.Yamamoto, A.Okada, M.Globular carbohydrate macromolecule “sugar balls” 3. “Radial-growth polymerization” of sugar-substituted alpha-amino acid N-carboxyanhydrides (glycoNCAs) with a dendritic initiatorTetrahedron 53 1997 15415CrossRefGoogle Scholar
Xu, Z.Kahr, M.Walker, K. L.Wilkins, C. L.Moore, J. S.Phenylacetylene dendrimers by the divergent, convergent and double stage convergent methodsJ. Am. Chem. Soc. 116 1994 4537CrossRefGoogle Scholar
Xu, Z.Moore, J. S.Synthesis and characterization of a high molecular weight stiff dendrimerAngew. Chem. Int. Ed. 32 1993 246CrossRefGoogle Scholar
Percec, V.Heck, J.Tomazos, D.Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophaseChem. Soc., Perkin. Trans. 1 1993 2799CrossRefGoogle Scholar
Percec, V.Chu, P.Kawasumi, M.Toward “willowlike” thermotropic dendrimersMacromolecules 27 1994 4441CrossRefGoogle Scholar
Percec, V.Chu, P.Ungar, G.Zhou, J.Rational design of the first nonspherical dendrimer which displays calamitic nematic and smectic thermotropic liquid crystalline phasesJ. Am. Chem. Soc. 117 1995 11441CrossRefGoogle Scholar
Zimmerman, S. C.Zeng, F.Reichert, E. C.Kolotuchin, S. V.Self-assembling dendrimersScience 271 1996 1095CrossRefGoogle ScholarPubMed
Zeng, F.Zimmerman, S. C.Dendrimers in supramolecular chemistry: From molecular recognition to self-assemblyChem. Rev. 97 1997 1681CrossRefGoogle ScholarPubMed
Zeng, F.Zimmerman, S. C.Kolotuchin, S. V.Reichert, E. C.Ma, Y.Supramolecular polymer chemistry: design, synthesis, characterization and kinetics, thermodynamics, and fidelity of formation of self-assembled dendrimersTetrahedron 58 2002 825CrossRefGoogle Scholar
Meltzer, A. D.Tirrell, D. A.Jones, A. A.Inglefield, P. T.Hedstrand, D. M.Chain dynamics of poly(amidoamine) dendrimers. A study of 13C NMR relaxation parametersMacromolecules 25 1992 4541CrossRefGoogle Scholar
Jackson, J. L.Chanzy, H. D.Booy, F. P.Visualization of dendrimer molecules by transmission electron (TEM): staining methods and cryo-TEM of vitrified solutionsMacromolecules 31 1998 6259CrossRefGoogle Scholar
Prosa, T. J.Bauer, B. J.Amis, E. J.Tomalia, D. A.Scherrenberg, R.A SAXS study of the internal structure of dendritic polymer systemsJ. Polym. Sci., Part. B: Polym. Physics 35 1997 29133.0.CO;2-A>CrossRefGoogle Scholar
Ottaviani, M. F.Turro, N. J.Jockusch, S.Tomalia, D. A.Characterization of Starburst dendrimers by EPR. 3. Aggregational processes of a positively charged nitroxide surfactantJ. Phys. Chem. 100 1996 13675CrossRefGoogle Scholar
Ottaviani, M. F.Favuzza, P.Bigazzi, M.A TEM and EPR investigation of the competitive binding of uranyl ions to starburst dendrimers and liposomes: Potential use of dendrimers as uranyl ion spongesLangmuir 16 2000 7368CrossRefGoogle Scholar
Li, J.Swanson, D. R.Qin, D.Characterization of core-shell tecto(dendrimers) molecules by tapping mode atomic force microscopyLangmuir 15 1999 7347CrossRefGoogle Scholar
Kallos, G. J.Tomalia, D. A.Hedstrand, D. M.Lewis, S.Zhou, J.Molecular weight determination of a polyamidoamine starburst polymer by electrospray ionization mass spectrometryRapid. Commun. Mass. Spectrom. 5 1991 383CrossRefGoogle Scholar
Tolic, L. P.Anderson, G. A.Smith, R. D.Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric characterization of high molecular mass starburst dendrimersInt. J. Mass. Spect. Ion. Proc. 165 1997 405CrossRefGoogle Scholar
Dvornic, P. R.Tomalia, D. A.Genealogically directed syntheses (polymerizations): direct evidence by electrospray mass spectroscopyMacromol. Symp. 98 1995 403CrossRefGoogle Scholar
Peterson, J.Allikmaa, V.Subbi, J.Pehk, T.Lopp, M.Structural deviations in poly(amidoamine) dendrimers: a MALDI-TOF MS analysisEur. Polym. J. 39 2003 33CrossRefGoogle Scholar
Gopidas, K. R.Leheny, A. R.Caminati, G.Turro, N. J.Tomalia, D. A.Photophysical investigation of similarities between starburst dendrimer and anionic micellesJ Am. Chem. Soc. 113 1991 7335CrossRefGoogle Scholar
Turro, N. J.Barton, J. K.Tomalia, D. A.Molecular recognition and chemistry in restricted reaction spacesAcc. Chem. Res. 24 1991 332CrossRefGoogle Scholar
Brothers Ii, H. M.Piehler, L. T.Tomalia, D. A.Slab-gel and capillary electrophoretic characterization of polyamidoamine dendrimersJ. Chromatogr. A 814 1998 233CrossRefGoogle Scholar
Dubin, P. L.Edwards, S. L.Mehta, M. S.Tomalia, D.Quantization of non-ideal behavior in protein size-exclusion chromatographyJ. Chromatogr. 635 1993 51CrossRefGoogle Scholar
Uppuluri, S.Keinath, S. E.Tomalia, D. A.Dvornic, P. R.Rheology of dendrimers. I. Newtonian flow behavior of medium and highly concentrated solutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA) solventMacromolecules 31 1998 4498CrossRefGoogle Scholar
Uppuluri, S.Tomalia, D. A.Dvornic, P. R.A dense-shell model for intramolecular morphology of polyamidoamine dendrimers based on experimental rheological dataProc of the ACS Division of PMSE 77 1997 116Google Scholar
Maiti, P. K.Cagin, T.Wang, G.Goddard, W. A.Structure of PAMAM dendrimers: generation 1 through 11Macromolecules 37 2004CrossRefGoogle Scholar
Moors, R.Vogtle, F.Dendrimere polyamineChem. Ber. 126 1993 2133CrossRefGoogle Scholar
Singh, P.Terminal groups in starburst dendrimers: activation and reactions with proteinsBioconjugate. Chem. 9 1998 54CrossRefGoogle ScholarPubMed
Singh, P.Moll, F.Lin, S. H.Ferzli, C.Starburst dendrimers: a novel matrix for multifunctional reagents in immunoassaysClin. Chem. 42 1996 1567Google Scholar
Singh, P.Moll, F.Lin, S. H.Starburst dendrimers: enhanced performance and flexibility for immunoassaysClin. Chem. 40 1994 1845Google ScholarPubMed
Singh, P.Fréchet, J.M.J.Tomalia, D. A.Dendrimers and Dendritic PolymersChichesterWiley 2001Google Scholar
Bielinska, A.Kukowska-Latallo, J. F.Johnson, J.Tomalia, D. A.Baker, J.Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimersNucleic. Acids. Res. 24 1996 2176CrossRefGoogle ScholarPubMed
Kukowska-Latallo, J. F.Bielinska, A. U.Johnson, J.Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimersProc. Natl. Acad. Sci. USA 93 1996 4897CrossRefGoogle ScholarPubMed
Tang, M. X.Redemann, C. T.Szoka, F. C.In vitro gene delivery by degraded polyamidoamine dendrimersBioconjugate. Chem. 7 1996 703CrossRefGoogle ScholarPubMed
Tang, M. X.Szoka, F. C.The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexesGene. Ther. 4 1997 823CrossRefGoogle ScholarPubMed
Wiener, E. C.Tomalia, D. A.Lauterbur, P. C. 1990
Wiener, E. C.Brechbiel, M. W.Brothers II, H. M.Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agentsMagnetic Resonance in Medicine 31 1994 1CrossRefGoogle ScholarPubMed
Villaraza, A. J. L.Bumb, A.Brechbiel, M. W.Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokineticsChem. Rev. 110 2010 2921CrossRefGoogle ScholarPubMed
Tomalia, D. A.Dvornic, P. R.Uppuluri, S.Swanson, D. R.Balogh, L.Skeletal macromolecular isomerism: A comparison of dendritic polymer properties to those of classical macromolecular architecturesPolym. Mater. Sci. & Eng. 77 1997 95Google Scholar
Hawker, C. J.Malmstrom, E. E.Frank, C. W.Kampf, J. P.Exact linear analogs of dendritic polyether macromolecules: design, synthesis, and unique propertiesJ. Am. Chem. Soc. 119 1997 9903CrossRefGoogle Scholar
Rosen, B. M.Wilson, C. J.Wilson, D. A.Dendron-mediated self-assembly, disassembly, and self-organization of complex systemsChem. Rev. 109 2009 6275CrossRefGoogle ScholarPubMed
Schluter, A.-D.Rabe, P. J.Dendronized polymers: synthesis, characterization, assembly at interfaces and manipulationAngew. Chem. Int. Ed. 39 2000 8653.0.CO;2-E>CrossRefGoogle ScholarPubMed
Guo, Y.Van Beek, J. D.Zhang, B.Turning polymer thickness: synthesis and scaling theory of homologous series of dendronized polymersJ. Am. Chem. Soc. 131 2009 11841CrossRefGoogle Scholar
Tomalia, D. A.Brothers Ii, H. M.Piehler, L. T.Durst, H. D.Swanson, D. R.Partial shell-filled core-shell tecto(dendrimers): a strategy to surface differentiated nano-clefts and cuspsProc. Natl. Acad. Sci. USA 99 2002 5081CrossRefGoogle ScholarPubMed
Uppuluri, S.Piehler, L. T.Li, J.Core-shell tecto(dendrimers): I. Synthesis and characterization of saturated shell modelsAdv. Mater. 12 2000 7963.0.CO;2-1>CrossRefGoogle Scholar
Tomalia, D. A.Uppuluri, S.Swanson, D. R.Li, J.Dendrimers as reactive modules for the synthesis of new structure controlled, higher complexity megamersPure Appl. Chem. 72 2000 2343CrossRefGoogle Scholar
Boydston, A. J.Holcombe, T. W.Unruh, D. A.Fréchet, J. M. J.Grubbs, R. H.A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of dendronized macromonomersJ. Am. Chem. Soc. 131 2009 5388CrossRefGoogle Scholar
O’Sullivan, M. C.Sprafke, J. K.Kondratuk, D. V.Vernier templating and synthesis of a 12-porphyrin nano-ringNature 469 2011 72CrossRefGoogle ScholarPubMed
Ornelas, C.Ruiz, J.Belin, C.Astruc, D.Giant dendritic molecular electrochrome batteries with ferrocenyl and pentamethylferrocencyl terminiJ. Am. Chem. Soc. 131 2009 590CrossRefGoogle ScholarPubMed
Majoral, J.-P.State of the art developments in the chemistry and properties of dendrimers and hyperbranched polymersNew J. Chem. 31 2007 1039Google Scholar
Van Der Made, A. W.Van Leeuwen, P. W. N. M.De Wilde, J. C.Brandes, R. A. C.Dendrimeric silanesAdv. Mater. 5 1993 466CrossRefGoogle Scholar
Vögtle, F.Richardt, G.Werner, N.Rackstraw, A. J.Dendrimer Chemistry: Concepts, Syntheses, Properties, ApplicationsWeinheimWiley-VCH 2009CrossRefGoogle Scholar
Wu, P.Feldman, A. K.Nugent, A. K.Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynesAngew. Chem. Int. Ed. 43 2004 3928CrossRefGoogle Scholar
Wu, P.Malkoch, M.Hunt, J. N.Multivalent, bifunctional dendrimers prepared by click chemistryChem. Commun. 2005 5775CrossRefGoogle ScholarPubMed
Carlmark, A.Hawker, C.Hult, A.Malkoch, M.New methodologies in the construction of dendritic materialsChem. Soc. Rev. 38 2009 352CrossRefGoogle ScholarPubMed
Antoni, P.Nyström, D.Hawker, C. J.Hult, A.Malkoch, M.A chemoselective approach for the accelerated synthesis of well-defined dendritic architecturesChem. Commun. 2007 2249CrossRefGoogle ScholarPubMed
Kolb, H. C.Finn, M. G.Sharpless, K. B.Click chemistry: diverse chemical function from a few good reactionsAngew. Chem. Int. Ed. 40 2001 20043.0.CO;2-5>CrossRefGoogle ScholarPubMed
Kolb, H. C.Sharpless, K. B.The growing impact of click chemistry on drug discoveryDDT 8 2003 1128CrossRefGoogle ScholarPubMed
Gitsov, I.Hybrid linear dendritic macromolecules: From synthesis to applicationsJ. Polym. Sci. Part A: Polym. Chem. 46 2008 5295CrossRefGoogle Scholar
Gitsov, I.Ivanova, P. T.Fréchet, J. M. J.Dendrimers as macroinitiators for anionic ring-opening polymerization. Polymerization of ε-caprolactoneMacromolecular Rapid Comm. 15 1994 387CrossRefGoogle Scholar
Gitsov, I.Simonyan, A.Vladimirov, N. G.Synthesis of novel asymmetric dendritic-linear-dendritic block copolymers via “living” anionic polymerization of ethylene oxide initiated by dendritic macroinitiatorsJ. Polym. Sci. Part A: Poly. Chem. 45 2007 5136CrossRefGoogle Scholar
Fréchet, J. M. J.Dendrimers and supramolecular chemistryProc. Nat. Acad. Sci. 99 2002 4782CrossRefGoogle ScholarPubMed
Kojima, C.Tsumura, S.Harada, A.Kono, K.A collagen-mimic dendrimer capable of controlled releaseJ. Am. Chem. Soc. 131 2009 6052CrossRefGoogle ScholarPubMed
Kojima, C.Toi, Y.Kono, K.Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapyBioconjugate Chem. 18 2007 663CrossRefGoogle ScholarPubMed
Suehiro, T.Kojima, C.Tsumura, S.Harada, A.Kono, K.Higher order structure of short collagen model peptides attached to dendrimers and linear polymersBiopolymers 93 2010 640CrossRefGoogle ScholarPubMed
Jiang, D.-L.Aida, T.Photoisomerization in dendrimers by harvesting of low-energy photonsNature 388 1997 454CrossRefGoogle Scholar
Li, W.-S.Aida, T.Dendrimer porphyrins and phthalocyaninesChem. Rev. 109 2009 6047CrossRefGoogle ScholarPubMed
Balzani, V.Ceroni, P.Maestri, M.Vicinelli, V.Light-harvesting dendrimersCurr. Opin. Chem. Biol. 7 2003 657CrossRefGoogle ScholarPubMed
Balzani, V.Credi, A.Venturi, M.Molecular Devices and Machines – Concepts and Perspectives for the NanoworldWeinheimWiley-VCH 2008Google Scholar
Branchi, B.Ceroni, P.Balzani, V.Klarner, F.-G.Vöglte, F.A light-harvesting antenna resulting from the self-assembly of five luminescent components: a dendrimer, two clips, and two lanthanide ionsChem. Eur. J 16 2010 6048CrossRefGoogle ScholarPubMed
Vögtle, F.Plevoets, M.Nieger, M.Dendrimers with a photoactive and redox-active [Ru(bpy)3]2+-type core: photophysical properties, electrochemical behavior and excited-state electron-transfer reactionsJ. Am. Chem. Soc. 122 1999 6290CrossRefGoogle Scholar
Daniel, M.-C.Ruiz, J.Blais, J.-C.Daro, N.Astruc, D.Synthesis of five generations of redox-stable pentamethylamidoferrocenyl dendrimers and comparison of amidoferrocenyl-and pentamethylamidoferrocenyl dendrimers as electrochemical exoreceptors for the selective recognition of H2PO4–, HSO4–, and adenosine 5′-triphosphate (ATP) anions: stereoelectronic and hydrophobic roles of Clopentadienyl permethylationChemistry – A European Journal 9 2003 4371CrossRefGoogle ScholarPubMed
Ornelas, C.Ruiz, J.Astruc, D.Giant cobalticinium dendrimersOrganometallics 28 2009 2716CrossRefGoogle Scholar
Valerio, C.Fillaut, J. L.Ruiz, J.The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anionsJ. Am. Chem. Soc. 119 1997 2588CrossRefGoogle Scholar
Adronov, A.Fréchet, J. M. J.Light-harvesting dendrimersChem. Commun. 2000 1701CrossRefGoogle Scholar
Adronov, A.Gilat, S. L.Fréchet, J. M. J.Light harvesting and energy transfer in laser – dye-labeled poly(aryl ether) dendrimersJ. Am. Chem. Soc. 122 2000 1175CrossRefGoogle Scholar
Andronov, A.Fréchet, J. M. J.Light-harvesting dendrimersChem. Commun. 2000 1701CrossRefGoogle Scholar
Gilat, S. L.Adronov, A.Fréchet, J. M. J.Light harvesting and energy transfer in novel convergently constructed dendrimersAngew. Chem. Int. Ed. 38 1999 14223.0.CO;2-V>CrossRefGoogle ScholarPubMed
Chu, C.-C.Imae, T.Synthesis of poly(amidoamine) dendrimer with redox-active spacersMacromolecules 42 2009 2295CrossRefGoogle Scholar
Caminade, A.-M.Hameau, A.Majoral, J.-P.Multicharged and/or water-soluble fluorescent dendrimers: properties and usesChem. Eur. J 15 2009 9270CrossRefGoogle ScholarPubMed
Al-Jamal, K. T.Ruenraroengsak, P.Hartell, N.Florence, A. T.An intrinsically fluorescent dendrimer as a nanoprobe of cell transportJ. Drug Targeting 14 2006 405CrossRefGoogle ScholarPubMed
Van De Coevering, R.Gebbink, J. M. K.Van Koten, G.Soluble organic supports for the non-covalent immobilization of homogeneous catalysts; modular approaches towards sustainable catalystsProg. Polym. Sci. 30 2005 474CrossRefGoogle Scholar
Kleij, A. W.Gossage, R. A.Jastrzebski, J. T. B. H.Boersma, J.Van Koten, G.The “dendritic effect” in homogeneous catalysis with carbosilane-supported arylnickel(II) catalysts: observation of active-site proximity effects in atom-transfer radical additionAngew. Chem. Int. Ed. 39 2000 1763.0.CO;2-3>CrossRefGoogle ScholarPubMed
Crooks, R. M.Zhao, M.Sun, L.Chechik, V.Yeung, L. K.Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization and application to catalysisAcc. Chem. Res. 34 2001 181CrossRefGoogle Scholar
Wilson, O. M.Knecht, M. R.Garcia-Martinez, J. C.Crooks, R. M.Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcoholJ. Am. Chem. Soc. 128 2006 4510CrossRefGoogle ScholarPubMed
Gong, E.Matthews, B.McCarthy, T.Evaluation of dendrimer SPL7013, a lead microbicide candidate against herpes simplex virusesAntiviral Res. 68 2005 139CrossRefGoogle ScholarPubMed
Jiang, Y. H.Emau, P.Cairns, J. S.SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaquesAIDS Res. Hum. Retroviruses 21 2005 207CrossRefGoogle ScholarPubMed
Mccarthy, T. D.Karellas, P.Henderson, S. A.Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI preventionMol. Pharmacol. 2 2005 312CrossRefGoogle ScholarPubMed
Chen, C. Z.Beck-Tan, N. C.Dhurjati, P.Quaternary ammonium functionalized poly(propylene imine) dendrimer as effective antimicrobials: structure – activity studiesBiomacromolecules 1 2000 473CrossRefGoogle ScholarPubMed
Chen, C. Z.Cooper, S. L.Recent advances in antimicrobial dendrimersAdv. Materials 12 2000 8433.0.CO;2-T>CrossRefGoogle Scholar
Chauhan, A. S.Diwan, P. V.Jain, N. K.Tomalia, D. A.Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimersBiomacromolecules 10 2009 1195CrossRefGoogle ScholarPubMed
Tekade, R. K.Kumar, P. V.Jain, N. K.Dendrimers in oncology: an expanding horizonChem. Rev. 109 2009 49CrossRefGoogle Scholar
Jain, K.Kesharwani, P.Gupta, U.Jain, N. K.Dendrimer toxicity: Let’s meet the challengeInt. J. Pharmaceutics 394 2010 122CrossRefGoogle ScholarPubMed
Klajnert, B.Bryszewska, M.Dendrimers in MedicineNew YorkNova Science Publishers, Inc. 2007Google Scholar
Boas, U.Christensen, J. B.Heegaard, P. M. H.Dendrimers. in Medicine. and BiotechnologyCambridge, UK:The Royal Society of Chemistry 2006Google Scholar
Jain, T. K.Reddy, M. K.Morales, M. A.Leslie-Pelecky, D. L.Labhasetwar, V.Biodistribution, clearance, and biocompatibility of iron oxide, magnetic nanoparticles in ratsMolecular Pharmaceutics 5 2008 316CrossRefGoogle ScholarPubMed
Boas, U.Heegaard, P. M. H.Dendrimers in drug researchChem. Soc. Rev. 33 2004 43CrossRefGoogle ScholarPubMed
Chabre, Y. M.Roy, R.Design and creativity in synthesis of multivalent neoglycoconjugatesAdvances. in Carbohydrate Chem. Biochem. 63 2010 165CrossRefGoogle ScholarPubMed
Reuter, J. D.Myc, A.Hayes, M. M.Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymersBioconjugate Chem. 10 1999 271CrossRefGoogle ScholarPubMed
Jacobson, K. A.Functionalized congener approach to the design of ligands for G protein-coupled receptors (GPCRs)Bioconjugate. Chem. 20 2009 1816CrossRefGoogle Scholar
Menjoge, A. R.Kannan, R. M.Tomalia, D. A.Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applicationsDrug. Discovery Today 15 2010 171CrossRefGoogle ScholarPubMed
Tomalia, D. A.Reyna, L. A.Svenson, S.Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imagingBiochem. Soc. Trans. 35 2007 61CrossRefGoogle ScholarPubMed
Jiang, T.Olson, E. S.Nguyen, Q. T.Tumor imaging by means of proteolytic activation of cell-penetrating peptidesPNAS 101 2004 17867CrossRefGoogle ScholarPubMed
Nguyen, Q. T.Olson, E. S.Aguilera, T. A.Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survivalProc. Nat. Acad. Sci. 107 2010 4317CrossRefGoogle ScholarPubMed
Olson, E. S.Jiang, T.Aguilera, T. A.Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteasesProc. Nat. Acad. Sci. 107 2010 4311CrossRefGoogle Scholar
Beezer, A. E.King, A. S. H.Martin, I. K.Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivativesTetrahedron 59 2003 3873CrossRefGoogle Scholar
Diaz, D. D.Punna, S.Holzer, P.Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloadditionJ. Polym. Sci.: Part. A: Polym. Chem. 42 2004 4392CrossRefGoogle Scholar
Antoni, P.Hed, Y.Nordberg, A.Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applicationsAngew. Chem. Int. Ed. 48 2009 2126CrossRefGoogle ScholarPubMed
Iha, R. K.Wooley, K. L.Nystrom, A. M.Applications of orthogonal “click” chemistries in the synthesis of functional soft materialsChem. Rev. 109 2009 5620CrossRefGoogle ScholarPubMed
Joralemon, M. J.O’Reilly, R. K.Matson, J. B.Dendrimers clicked together divergentlyMacromolecules 38 2005 5436CrossRefGoogle Scholar
Helms, B.Mynar, J. L.Hawker, C. J.Fréchet, J. M.Dendronized linear polymers via “click chemistry”J. Am. Chem. Soc. 126 2004 15020CrossRefGoogle ScholarPubMed
Amir, R. J.Pessah, N.Shamis, M.Shabat, D.Self-immolative dendrimersAngew. Chem. Int. Ed. 42 2003 4494CrossRefGoogle ScholarPubMed
Amir, R. J.Shabat, D.Self-immolative dendrimer biodegradability by multi-enzymatic triggeringChem. Commun. 2004 1614CrossRefGoogle ScholarPubMed
Haba, K.Popkov, M.Shamis, M.Single-triggered trimeric prodrugsAngew. Chem. Int. Ed. 44 2005 716CrossRefGoogle ScholarPubMed
Avital-Shmilovici, M.Shabat, D.Self-immolative dendrimers: A distinctive approach to molecular amplificationSoft Matter 6 2010 1073CrossRefGoogle Scholar
De Groot, F. M. H.Albrecht, C.Koekkoek, R.Beusker, P. H.Scheeren, H. W.Cascade-release dendrimers” liberate all end groups upon a single triggering event in the dendritic coreAngew. Chem. Int. Ed. 42 2003 4490CrossRefGoogle ScholarPubMed
Szalai, M. L.Kevwitch, R. M.Mcgrath, D. V.Geometric disassembly of dendrimers: dendritic amplificationJ. Am. Chem. Soc. 125 2003 15688CrossRefGoogle ScholarPubMed
Kevwitch, R. M.Mcgrath, D. V.Synthesis and degradation of photolabile dendrimer based on -nitrobenzyl ether photolabile coresNew J. Chem. 2007 2007 1332CrossRefGoogle Scholar
Wolinsky, J. B.Grinstaff, M. W.Therapeutic and diagnostic applications of dendrimers for cancer treatmentAdvanced Drug Delivery Reviews 60 2008 1037CrossRefGoogle ScholarPubMed
Lee, C. A.Mackay, J. A.Fréchet, J. M. J.Szoka, F. C.Designing dendrimers for biological applicationsNature Biotechnology 23 2005 1517CrossRefGoogle ScholarPubMed
Percec, V.Johansson, G.Ungar, G.Zhou, J. P.Fluorophobic effect induces the self-assembly of semifluorinated tapered monodendrons containing crown ethers into supramolecular columnar dendrimers which exhibit a homeotropic hexagonal columnar liquid crystalline phaseJ. Am. Chem. Soc. 118 1996 9855CrossRefGoogle Scholar
Tomalia, D. A.Fluorine makes a differenceNature Materials 2 2003 711CrossRefGoogle ScholarPubMed
Percec, V.Rudick, J. G.Peterca, M.Supramolecular structural diversity among first-generation hybrid dendrimers and twin dendronsChem. Eur. J 14 2008 3355CrossRefGoogle ScholarPubMed
Percec, V.Peterca, M.Dulcey, A. E.Hollow spherical supramolecular dendrimersJ. Am. Chem. Soc. 130 2008 13079CrossRefGoogle ScholarPubMed
Percec, V.Wilson, D. A.Leowanawat, P.Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architecturesScience 328 2010 1009CrossRefGoogle ScholarPubMed
Ritter, S. K.Bryson, R.Blair, T. K.Dendrimersomes debut in chemical year in review 2010Chemical & Engineering. News 2010 15
Tomalia, D. A.In quest of a systematic framework for unifying and defining nanoscienceJ. Nanopart. Res. 11 2009 1251CrossRefGoogle ScholarPubMed
Tomalia, D. A.Dendrons/dendrimer: quantized, nano-element like building blocks for soft–soft and soft–hard nano-compound synthesisSoft Matter 6 2010 456CrossRefGoogle Scholar
Rosen, B. M.Wilson, D. A.Wilson, C. J.Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendronsJ. Am. Chem. Soc. 131 2009 17500CrossRefGoogle ScholarPubMed
Tomalia, D. A.Kaplan, D.Kruper, W.
Tomalia, D. A.Baker, J. R.Cheng, R. 1998
http://wwwwtecorg/nano2 2010
Grinstaff, M. W.Dendritic macromers for hydrogel formation: tailored materials for ophthalmic, orthopedic, and biotech applicationsJ. Polym. Sci.: Part A: Poly. Chem. 46 2008 383CrossRefGoogle Scholar
Flory, P. J.Principles of Polymer ChemistryIthaca, NYCornell University Press 1953Google Scholar
Tomalia, D. A.Hall, M.Hedstrand, D. M.Starburst dendrimers III. The importance of branch junction symmetry in the development of topological shell moleculesJ. Am. Chem. Soc. 109 1987 1601CrossRefGoogle Scholar
Teertstra, S. J.Gauthier, M.Dendrigraft polymers: macromolecular engineering on a mesoscopic scaleProg. Polym. Sci. 29 2004 277CrossRefGoogle Scholar
Hierlemann, A.Campbell, J. K.Baker, L. A.Crooks, R. M.Ricco, A. J.J. Am. Chem. Soc. 120 1998 5323CrossRef
Balogh, L.Tomalia, D. A.Poly(amidoamine) dendrimer-templated nanocomposites 1. Synthesis of zero valent copper nanosclustersJ. Am. Chem. Soc. 120 1998 7355CrossRefGoogle Scholar
Balogh, L.Valluzzi, R.Laverdure, K. S.Formation of silver and gold dendrimer nanocompositesJ. Nanoparticle Res. 1 1999 353CrossRefGoogle Scholar
Tomalia, D. A.Balogh, L. 2003
Crooks, R. M.Lemon, B.Sun, L.Yeung, L. K.Zhao, M.Topics. in Current. Chemistry., Vol. 212Berlin/HeidelbergSpringer-Verlag 2001Google Scholar
Dockendorff, J.Gauthier, M.Mourran, A.Möller, M.Arborescent amphiphilic copolymers as templates for the preparation of gold nanoparticlesMacromolecules 41 2008 6621CrossRefGoogle Scholar
Campagna, S.Denti, G.Serroni, S.Chem. Eur. J 1 1995 211CrossRef
Knapen, J. W. J.Van Der Made, A. W.De Wilde, J. C.Homogeneous catalysts based on silane dendrimers functionalized with arylnickel(II) complexesNature 372 1994 659CrossRefGoogle Scholar
Servin, P.Laurent, R.Gonsalvi, L.Grafting of water-soluble phosphines to dendrimers and their use in catalysis: positive dendritic effects in aqueous mediaDalton. Trans. 2009 4432
Lambert, J. G.Pflug, J. L.Stern, C. L.Synthesis and structure of a dendritic polysilaneAngew. Chem. Int. Ed. Engl. 34 1995 98CrossRefGoogle Scholar
Majoral, J.-P.Caminade, A.-M.Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi)Chem. Rev. 99 1999 845CrossRefGoogle Scholar
Astruc, D.Organometallic chemistry at the nanoscale. Dendrimers for redox processes and catalysisPure Appl. Chem. 75 2003 461CrossRefGoogle Scholar
Hwang, S.-H.Shreiner, C. D.Moorfield, C. N.Newkome, G. R.Recent progress and applications for metallodendrimersNew J. Chem. 31 2007 1192CrossRefGoogle Scholar
Guillot-Nieckowski, M.Eisler, S.Diederich, F.Dendritic vectors for gene transfectionNew J. Chem. 31 2007 1111CrossRefGoogle Scholar
Miller, L. L.Duan, R. G.Tully, D. C.Tomalia, D. A.Electrically conducting dendrimersJ. Am. Chem. Soc. 119 1997 1005CrossRefGoogle Scholar
Tabakovic, I.Miller, L. L.Duan, R. G.Tully, D. C.Tomalia, D. A.Dendrimers peripherally modified with anion radicals that form Pi-dimers and Pi-stacksChem. Mater. 9 1997 736CrossRefGoogle Scholar
Killops, K. L.Campos, L. M.Hawker, C. J.Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistryJ. Am. Chem. Soc. 130 2008 5062CrossRefGoogle ScholarPubMed
Ornelas, C.Aranzaes, J. R.Cloutet, E.Alves, S.Astruc, D.Click assembly of 1,2,3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cationsAngew. Chem. Int. Ed. 45 2006 1Google Scholar
Taton, D.Feng, X.Gnanou, Y.Dendrimer-like polymers: a new class of structurally precise dendrimers with macromolecular generationsNew J. Chem. 31 2007 1097CrossRefGoogle Scholar
Tomalia, D. A.Baker, J. R.Cheng, R. 1998
Baker, J. R.Quintana, L.Piehler, L.The synthesis and testing of anti-cancer therapeutic nanodevicesBiomedical Microdevices 3 2001 61CrossRefGoogle Scholar
Kurtoglu, Y.Mishra, M. K.Kannan, S.Kannan, R. M.Drug release characteristics of PAMAM dendrimer-drug conjugates with different linkersInt. J. Pharmaceutics 384 2010 189CrossRefGoogle ScholarPubMed
Supattapone, W.Wille, H.Uyechi, L.Journal of Virology 75 2001 3453CrossRef
Supattapone, S.Nguyen, H. O.Cohen, F. E.Prusiner, S. B.Scott, M. R.Proc. Natl. Acad. Sci. USA 96 1999 14529CrossRef
Imberty, A.Chabre, Y. M.Roy, R.Glycomimetics and glycodendrimers as high affinity microbial anti-adhesinsChemistry. – A European Journal 14 2008 7490CrossRefGoogle ScholarPubMed
Shaunak, S.Thomas, S.Gianasi, E.Polyvalent dendrimer glucosamine conjugates prevent scar tissue formationNature Biotechnology 22 2004 977CrossRefGoogle ScholarPubMed
Fruchon, S.Poupot, M.Martinet, L.Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimerJ. Leukoc. Biol 85 2009 553CrossRefGoogle ScholarPubMed
Deguise, I.Lagnoux, D.Roy, R.Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from New J. Chem. 31 2007 1321CrossRefGoogle Scholar
Johansson, E. M. V.Kolomiets, E.Rosenau, F. R.Combinatorial variation of branching and multivalency in a larger (390625 member) glycopeptide dendrimer library: ligands for fucose-specific lectinsNew J. Chem. 31 2007 1291CrossRefGoogle Scholar
Nishiyama, N.Jang, W.-D.Kataoka, K.Supramolecular nanocarriers integrated with dendrimers encapsulating photosensitizers for effective photodynamic therapy and photochemical gene deliveryNew J. Chem. 31 2007 1074CrossRefGoogle Scholar
Braugea, L.Vériotb, G.Franca, G.Synthesis of phosphorus dendrimers bearing chromophoric end groups: toward organic blue light-emitting diodesTetrahedron 62 2006 11891CrossRefGoogle Scholar
Rudick, J. G.Percec, V.Induced helical backbone conformations of self-oganizable dendronized polymersAccts. Chem. Res. 41 2008 1641CrossRefGoogle ScholarPubMed
Hahn, U.Cardinali, F.Nierengarten, J.-F.Supramolecular chemistry for the self-assembly of fullerene-rich dendrimersNew J. Chem. 31 2007 1128CrossRefGoogle Scholar
Swanson, D. R.Huang, B.Abdelbady, H. G.Tomalia, D. A.Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly(ester-acrylate) (PEA) dendrimersNew J. Chem. 31 2007 1368CrossRefGoogle Scholar
Goller, R.Vors, J.-P.Caminade, A.-M.Majoral, J.-P.Phosphorus dendrimers as new tools to delivery active substancesTetrahedron Letters 42 2001 3587CrossRefGoogle Scholar
Mongin, O.Pla-Quintana, A.Terenziani, F.Organic nanodots for multiphotonics: synthesis and photophysical studiesNew J. Chem. 31 2007 1354CrossRefGoogle Scholar
Tomalia, D. A.Periodic patterns, relationships and categories of well-defined nanoscale building blockshttp://www.nsf.gov/crssprgm/nano/GC_Charact08_Tomalia_nsf9_29_08.pdfNational Science Foundation Final Workshop Report 2008 1Google Scholar
Larpent, C.Genies, C.De Sousa Delgado, A. P.Giant dendrimer-like particles from nanolatexesChem. Commun. 2004 1816CrossRefGoogle ScholarPubMed
Huang, B.Tomalia, D. A.Dendronization of gold and CdSe/CdS (core-shell) quantum dots with Tomalia type, thiol core, functionalized poly(amidoamine) (PAMAM) dendronsJournal of Luminescence 111 2005 215CrossRefGoogle Scholar
Jensen, A. W.Maru, B. S.Zhang, X.Preparation of fullerene-shell dendrimer-core nanoconjugatesNanoLetters 5 2005 1171CrossRefGoogle ScholarPubMed
Chaize, B.Nguyen, M.Ruysschaert, T.Microstructured liposome arrayBioconjugate Chem. 17 2006 245CrossRefGoogle ScholarPubMed
Le Berre, V.Trévisiol, E.Dagkessamanskaia, A.Dendrimeric coating of glass slides for sensitive DNA microarrays analysisNucleic Acids Research 31 2003 e88CrossRefGoogle ScholarPubMed
Sánchez-Sancho, F.Pérez-Inestrosa, E.Suau, R.Dendrimers as carrier protein mimetics for IgE antibody recognition: synthesis and characterization of densely penicilloylated dendrimersBioconjugate Chem. 13 2002 647CrossRefGoogle ScholarPubMed
Montanez, M. I.Perez-Inestrosa, E.Suau, R.Dendrimerized cellulose as a scaffold for artificial antigens with applications in drug allergy diagnosisBiomacromolecules 9 2008 1461CrossRefGoogle ScholarPubMed
Zhou, J.Wu, J.Hafdi, N.PAMAM dendrimers for efficient siRNA delivery and potent gene silencingChem. Commun. 2006 2362CrossRefGoogle ScholarPubMed
Kobayashi, H.Ogawa, M.Alford, R.Choyke, P. L.Urano, Y.New strategies for fluorescent probe design in medical diagnostic imagingChem. Rev. 110 2010 2620CrossRefGoogle ScholarPubMed
Talanov, V. S.Regino, C. A. S.Kobayashi, H.Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imagingNano Letters 6 2006 1459CrossRefGoogle ScholarPubMed
Jain, R.Dandekar, P.Patravale, V.Diagnostic nanocarriers for sentinel lymph node imagingJ. Controlled Release 138 2009 90CrossRefGoogle ScholarPubMed
Langereis, S.Dirksen, A.Hackeng, T. M.Van Gendersen, M. H. P.Meijer, E. W.Dendrimers and magnetic resonance imagingNew J. Chem. 31 2007 1152CrossRefGoogle Scholar
Kele, P.Mezo, G.Achatz, D.Wolfbeis, O. S.Dual labeling of biomolecules by using click chemistry: A sequential approachAngew. Chem. Int. Ed. 48 2009 344CrossRefGoogle ScholarPubMed
Li, W.Zhang, A.Schluter, A. D.Thermoresponsive dendronized polymers with tunable lower critical solution temperaturesChem. Commun. 2008 5523CrossRefGoogle ScholarPubMed
Li, W.Zhang, A.Feldman, K.Walde, P.Schluter, A. D.Thermoresponsive dendronized polymersMacromolecules 41 2008 3659CrossRefGoogle Scholar
Knecht, M. R.Crooks, R. M.Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atomsNew J. Chem. 31 2007 1349CrossRefGoogle Scholar
Lebedev, A. Y.Cheprakov, A. V.Sakadzic, S.Dendritic phosphorescent probes for oxygen imaging in biological systemsACS Applied Materials & Interfaces 1 2009 1292CrossRefGoogle ScholarPubMed
Leiding, T.Gorecki, K.Kjellman, T.Precise detection of pH inside large unilamellar vesicles using membrane-impermeable dendritic porphyrin-based nanoprobesAnalytical Biochemistry 388 2009 296CrossRefGoogle ScholarPubMed
Spataro, G.Malecazec, F.Turrin, C.-O.Designing dendrimers for ocular drug deliveryEur. J. Med. Chem. 45 2010 326CrossRefGoogle ScholarPubMed
Terenziani, F.Parthasarathy, V.Pla-Quintana, A.Cooperative two-photon absorption enhancement by through-space interactions in multichromophoric compoundsAngew. Chem. Int. Ed. 48 2009 8691CrossRefGoogle ScholarPubMed
Solassol, J.Crozet, C.Perrier, V.Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapieJ. Gen. Virol. 85 2004 1791CrossRefGoogle ScholarPubMed
Klajnert, B.Cangiotti, M.Calici, S.Interactions between dendrimers and heparin and their implications for the anti-prion activity of dendrimersNew J. Chem. 33 2009 1087CrossRefGoogle Scholar
Blanzat, M.Turrin, C.-O.Aubertin, A.-M.Dendritic catanionic assemblies: In vitro anti-HIV activity of phosphorus-containing dendrimers bearing Galβ1cer analoguesChemBioChem 6 2005 2207CrossRefGoogle ScholarPubMed
Griffe, L.Poupot, M.Marchand, P.Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimersAngew. Chem. Int. Ed. 46 2007 2523CrossRefGoogle ScholarPubMed
Poupot, M.Griffe, L.Marchand, P.Design of phosphorylated dendritic architectures to promote human monocyte activationThe FASEB Journal 2006 2339CrossRefGoogle ScholarPubMed
Perez, J.Bax, L.Escalano, P.Willems, Wildenberg, van denhttp://www.phantomsnet.net/files/NRM_Dendrimers_final.pdf 2005
Tomalia, D. A.Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parametersNew J. Chem. 2012CrossRefGoogle Scholar
Peterca, M.Percec, V.Leowanawat, P.Bertin, A.Predicting the size and properties of dendrimersomes from the lamellar structure of their amphiphilic Janus dendrimersJ. Am. Chem. Soc. 133 2011 20507CrossRefGoogle ScholarPubMed
Zhang, A.Schluter, A. D.Campagna, SCeroni, PPuntoriero, FDesigning DendrimersHoboken, NJJohn Wiley & Sons, Inc. 2012Google Scholar
Cheng, Y.Dendrimer-Based Drug Delivery SystemsHoboken, NJJohn Wiley & Sons Inc. 2012CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×