Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T02:40:42.815Z Has data issue: false hasContentIssue false

7 - The dendritic effect

Published online by Cambridge University Press:  05 November 2012

Donald A. Tomalia
Affiliation:
NanoSynthons, LLC
Jørn B. Christensen
Affiliation:
University of Copenhagen
Ulrik Boas
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

Introduction/definitions

The descriptor “dendritic effects” is a collective term widely used since the 1990s to describe unusual physico-chemical property patterns or trends observed for dendrons/dendrimers as a function of their generation level. These properties may be either maximized (i.e. a positive effect) or minimized (i.e. a negative effect) within a dendron/dendrimer series. A dendritic effect is referred to as either a positive or negative effect depending on whether it was accentuated or attenuated as a function of generation level. The term was generally used in an empirical sense to describe generation-dependent physico-chemical property patterns that were initially assumed to be dependent upon nanoscale sizes associated with the generation. However, accumulated evidence now reveals that these effects are dependent on more subtle parameters than mere size variations. The object of this chapter is to analyze these subtle dependences in an effort to gain insights into the cause–effect principles and predictive value of these dendritic effects. Understanding these nano-periodic property relationships should assist in dendrimer design optimization for both function and applications.

Some of the earliest dendritic effects were reported by Tomalia et al. [1–3], Astruc et al. [4] and Seebach et al. [5]. Undoubtedly, there are similar architecturally driven effects associated with the other three major polymer architectures (i.e. linear, crosslinked, and branched); however, they are generally less quantifiable due to their polydisperse structures. In any case, dendrons/dendrimers exhibit architecturally driven properties that are dramatically different to those observed for equivalent architectural isomeric types (i.e. linear, bridged (crosslinked), or branched) possessing common elemental compositions and molecular weights. In the context of a new emerging nano-periodic concept, described later in Chapter 8, dendritic effects may now be viewed as intrinsic and functional nano-periodic property patterns. In all cases they display a first-order dependency upon one of the critical nanoscale design parameters (CNDPs), namely, architecture. However, it must also be noted that dendritic effects are inextricably influenced by one or more interrelated CNDPs such as (a) size, (b) shape, (c) surface chemistry, (d) flexibility/rigidity, or (e) elemental composition, as illustrated in Figure 7.1 and 7.8. Both physical and chemical nanoscale properties are influenced by these well-defined CNDPs. This results in the manifestation of unique, intrinsic features, a few which are listed in the left and right hand columns in Figure 7.1. Many of these issues have been examined extensively elsewhere [73].

Type
Chapter
Information
Dendrimers, Dendrons, and Dendritic Polymers
Discovery, Applications, and the Future
, pp. 276 - 292
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Naylor, A. M.Goddard, W. A.Keifer, G. E.Tomalia, D. A.Starburst dendrimers 5: Molecular shape controlJ. Am. Chem. Soc 111 1989 2339CrossRefGoogle Scholar
Tomalia, D. A.Hall, M.Hedstrand, D. M.Starburst dendrimers III. The importance of branch junction symmetry in the development of topological shell moleculesJ. Am. Chem. Soc 109 1987 1601CrossRefGoogle Scholar
Tomalia, D. A.Naylor, A. M.Goddard, W. A.Starburst dendrimers: molecular level control of size, shape, surface chemistry, topology and flexibility from atoms to macroscopic matterAngew. Chem. Int. Ed. Engl. 29 1990 138CrossRefGoogle Scholar
Valerio, C.Fillaut, J. L.Ruiz, J.The dendritic effect in molecular recognition: ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anionsJ. Am. Chem. Soc 119 1997 2588CrossRefGoogle Scholar
Murer, P. K.Lapierre, J.-M.Greiveldinger, G.Seebach, D.Synthesis and properties of first and second generation chiral dendrimers with triply branched units: A spectacular case of diastereoselectivityHelvetica Chimica Acta 80 1997 1648CrossRefGoogle Scholar
Rosen, B. M.Wilson, D. A.Wilson, C. J.Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendronsJ. Am. Chem. Soc 131 2009 17500CrossRefGoogle ScholarPubMed
Berzelius, J.J. Fortsch. Phys. Wissensch 11 1832 44
Hawker, C. J.Malmstrom, E. E.Frank, C. W.Kampf, J. P.Exact linear analogs of dendritic polyether macromolecules: design, synthesis, and unique propertiesJ. Am. Chem. Soc 119 1997 9903CrossRefGoogle Scholar
Bosman, A. W.Janssen, H. M.Meijer, E. W.About dendrimers: Structure, physical properties, and applicationsChem. Rev 99 1999 1665CrossRefGoogle ScholarPubMed
Tomalia, D. A.Esfand, R.Piehler, L. T.Swanson, D. R.Uppuluri, S.Architecturally driven properties based on the dendritic stateHigh Performance Polymers 13 2001 S1CrossRefGoogle Scholar
Caminade, A.-M.Laurent, R.Majoral, J.-P.Characterization of dendrimersAdvanced Drug Delivery Reviews 57 2005 2130CrossRefGoogle ScholarPubMed
Tomalia, D. A.Dvornic, P.What promise for dendrimers?Nature 372 1994 617CrossRefGoogle Scholar
Lothian-Tomalia, M. K.Hedstrand, D. M.Tomalia, D. A.A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogical directed synthesis leading to the de Gennes dense packed stateTetrahedron 53 1997 15495CrossRefGoogle Scholar
Crampton, H.Hollink, E.Perez, L. M.Simanek, E. E.A divergent route towards single-chemical entity triazine dendrimers with opportunities for structural diversityNew. J. Chem 31 2007 1283CrossRefGoogle ScholarPubMed
Tomalia, D. A.Durst, H. D.Weber, E.W.Supramolecular Chemistry I – Directed Synthesis and Molecular RecognitionBerlin/HeidelbergSpringer Verlag 1993Google Scholar
Tomalia, D. A.Nixon, L. S.Mark, J.E.Polymer Data Handbook, second editionNew York, NYOxford University Press 2009Google Scholar
Swanson, D. R.Huang, B.Abdelbady, H. G.Tomalia, D. A.Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly(ester-acrylate) (PEA) dendrimersNew. J. Chem 31 2007 1368CrossRefGoogle Scholar
Tomalia, D. A.Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistryAldrichimica Acta 37 2004 39Google Scholar
Tomalia, D. A.Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistryProg. Polym. Sci 30 2005 294CrossRefGoogle Scholar
Ujihara, M.Imae, T.Hierarchical structures of dendritic polymersPolym. Int 59 2010 137Google Scholar
Tomalia, D. A.Berry, V.Hall, M.Hedstrand, D. M.Starburst dendrimers IV. Covalently fixed unimolecular assemblages reminiscent of spheroidal micellesMacromolecules 20 1987 1164CrossRefGoogle Scholar
Miller, L. L.Duan, R. G.Tully, D. C.Tomalia, D. A.Electrically conducting dendrimersJ. Am. Chem. Soc 119 1997 1005CrossRefGoogle Scholar
Tabakovic, I.Miller, L. L.Duan, R. G.Tully, D. C.Tomalia, D. A.Dendrimers peripherally modified with anion radicals that form Pi-dimers and Pi-stacksChem. Mater 9 1997 736CrossRefGoogle Scholar
Majoral, J.-P.Caminade, A.-M.Vogtle, F.Topics in Current ChemistryBerlinSpringer-Verlag 1998
Djeda, R.Rapakousiou, A.Liang, L.Click synthesis of 1,2,3-triazolylbiferrocenyl dendrimers and the selective roles of the inner and outer ferrocenyl groups in the redox recognition of ATP2- and Pd2+Angew. Chem. Int. Ed. 49 2010 8152CrossRefGoogle ScholarPubMed
Ornelas, C.Ruiz, J.Belin, C.Astruc, D.Giant dendritic molecular electrochrome batteries with ferrocenyl and pentamethylferrocencyl terminiJ. Am. Chem. Soc 131 2009 590CrossRefGoogle ScholarPubMed
Valerio, C.Alonso, E.Ruiz, J.Blais, J.-C.Astruc, D.A polycationic metallodendrimer with 24 [Fe(n5-C5Me5)(n6-N-alkylaniline)]+ termini that recognizes chloride and bromide anionsAngew. Chem. Int. Ed. 38 1999 17473.0.CO;2-G>CrossRefGoogle Scholar
Albrecht, M.Gossage, R. A.Spek, A. L.Van Koten, G.Sulfur dioxide gas detection by reversible n1-SO2-Pt bond formation as a novel application for periphery functionalized metallo-dendrimersChem. Commun. 1998 1003CrossRefGoogle Scholar
Caminade, A.-M.Hameau, A.Majoral, J.-P.Multicharged and/or water-soluble fluorescent dendrimers: properties and usesChem. Eur. J 15 2009 9270CrossRefGoogle ScholarPubMed
De Brabander-Van Den Berg, E. M. M.Meijer, E. W.Poly(propylene imine) dendrimers: Large-scale synthesis by hetereogeneously catalyzed hydrogenationsAngew. Chem. Int. Ed. Engl. 32 1993 1308CrossRefGoogle Scholar
Uppuluri, S.Keinath, S. E.Tomalia, D. A.Dvornic, P. R.Rheology of dendrimers. I. Newtonian flow behavior of medium and highly concentrated solutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA) solventMacromolecules 31 1998 4498CrossRefGoogle Scholar
Klajnert, B.Bryszewska, M.Dendrimers in MedicineNew YorkNova Science Publishers, Inc. 2007Google Scholar
Boas, U.Christensen, J. B.Heegaard, P. M. H.Dendrimers in Medicine and BiotechnologyCambridge, UK:The Royal Society of Chemistry 2006Google Scholar
Balogh, L.Tomalia, D. A.Poly(amidoamine) dendrimer-templated nanocomposites 1. Synthesis of zero valent copper nanosclustersJ. Am. Chem. Soc 120 1998 7355CrossRefGoogle Scholar
Crooks, R. M.Zhao, M.Sun, L.Chechik, V.Yeung, L. K.Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization and application to catalysisAcc. Chem. Res. 34 2001 181CrossRefGoogle Scholar
Hummelen, J. C.Van Dongen, J. L. J.Meijer, E. W.Electrospray mass spectrometry of poly(propylene imine) dendrimers – the issue of dendritic purity of polydispersityChem. Eur. J 3 1997 1489CrossRefGoogle Scholar
Albrecht, K.Yamamoto, K.Dendritic structure having a potential gradient: new synthesis and properties of carbazole dendrimersJ. Am. Chem. Soc 131 2009 2244CrossRefGoogle ScholarPubMed
Balzani, V.Campagna, S.Denti, G.Designing dendrimers based on transition-metal complexes. Light-harvesting properties and predetermined redox patternsAcc. Chem. Res. 31 1998 26CrossRefGoogle Scholar
Ornelas, C.Ruiz, J.Astruc, D.Giant cobalticinium dendrimersOrganometallics 28 2009 2716CrossRefGoogle Scholar
Mourey, T. H.Turner, S. R.Rubinstein, M.Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimersMacromolecules 25 1992 2401CrossRefGoogle Scholar
Rosen, B. M.Wilson, C. J.Wilson, D. A.Dendron-mediated self-assembly, disassembly, and self-organization of complex systemsChem. Rev 109 2009 6275CrossRefGoogle ScholarPubMed
Percec, V.Wilson, D. A.Leowanawat, P.Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architecturesScience 328 2010 1009CrossRefGoogle ScholarPubMed
Chooi, K. W.Gray, A. I.Tetley, L.Fan, Y.Uchegbu, I. F.The molecular shape of poly(propylenimine) dendrimer amphiphiles has profound effect on their self-assemblyLangmuir 26 2010 2301CrossRefGoogle ScholarPubMed
Gorman, C. B.Smith, J. C.Structure–property relationships in dendritic encapsulationAcc. Chem. Res. 34 2001 60CrossRefGoogle ScholarPubMed
Antoni, P.Hed, Y.Nordberg, A.Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applicationsAngew. Chem. Int. Ed. 48 2009 2126CrossRefGoogle ScholarPubMed
Chen, C. Z.Beck-Tan, N. C.Dhurjati, P.Quaternary ammonium functionalized poly(propylene imine) dendrimer as effective antimicrobials: structure – activity studiesBiomacromolecules 1 2000 473CrossRefGoogle ScholarPubMed
Lee, C. Y.Sharma, A.Cheong, J. E.Nelson, J. L.Synthesis and antioxidant properties of dendritic polyphenolsBioorganic & Medicinal Chemistry Letters 19 2009 6326CrossRefGoogle ScholarPubMed
Reuter, J. D.Myc, A.Hayes, M. M.Inhibition of viral adhesion and infection by sialic-acid-conjugated dendritic polymersBioconjugate Chem 10 1999 271CrossRefGoogle ScholarPubMed
Francavilla, C.Drake, M. D.Bright, F. V.Detty, M. R.Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: improved catalytic activity through statistical effects and cooperativity in successive generationsJ. Am. Chem. Soc 123 2001 57CrossRefGoogle ScholarPubMed
Ropartz, L.Morris, R. E.Foster, D. F.Cole-Hamilton, D. J.Increased selectivity in hydroformylation reactions using dendrimer based catalysts; a positive dendrimer effectChem. Commun 2001 361CrossRefGoogle Scholar
Kleij, A. W.Gossage, R. A.Jastrzebski, J. T. B. H.Boersma, J.Van Koten, G.The “dendritic effect” in homogenous catalysis with carbosilane-supported arylnickel(II) catalysts: observation of active-site proximity effects in atom-transfer radical additionAngew. Chem. Int. Ed. 39 2000 1763.0.CO;2-3>CrossRefGoogle Scholar
Davis, A. V.Driffield, M.Smith, D. K.A dendritic active site: catalysis of the Henry reactionOrganic Letters 3 2001 3075CrossRefGoogle ScholarPubMed
Vriezema, D. M.Aragones, M. C.Elemans, J. A. A. W.Self-assembled nanoreactorsChem. Rev 105 2005 1445CrossRefGoogle ScholarPubMed
Andres, R.De Jesus, E.Flores, J. C.Catalysts based on palladium dendrimersNew. J. Chem 31 2007 1161CrossRefGoogle Scholar
Singh, P.Terminal groups in Starburst dendrimers: activation and reactions with proteinsBioconjugate Chem 9 1998 54CrossRefGoogle ScholarPubMed
Fox, M. E.Szoka, F. C.Fréchet, J. M. J.Soluble polymer carriers for the treatment of cancer: the importance of molecular architectureAcc. Chem. Res 42 2009 1141CrossRefGoogle ScholarPubMed
Darbre, T.Reymond, J.-L.Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agentsAcc. Chem. Res. 39 2006 925CrossRefGoogle ScholarPubMed
Tomalia, D. A.Reyna, L. A.Svenson, S.Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imagingBiochemical Society Transactions 35 2007 61CrossRefGoogle ScholarPubMed
Kobayashi, H.Brechbiel, M. W.Nano-sized MRI contrast agents with dendrimer coresAdvanced Drug Delivery Reviews 57 2005 2271CrossRefGoogle ScholarPubMed
Knecht, M. R.Crooks, R. M.Magnetic properties of dendrimer-encapsulated iron nanoparticles containing an average of 55 and 147 atomsNew. J. Chem 31 2007 1349CrossRefGoogle Scholar
Imaoka, T.Tanaka, R.Yamamoto, K.Investigation of a molecular morphology effect on polyphenylazomethine dendrimers: physical properties and metal-assembling processesChem. Eur. J 12 2006 7328CrossRefGoogle ScholarPubMed
Choi, M.-S.Aida, T.Luo, H.Araki, Y.Ito, O.Fullerene-terminated dendritic multiporphyrin arrays: “dendrimer effects” on photoinduced charge separationAngew. Chem. Int. Ed. 42 2003 4060CrossRefGoogle ScholarPubMed
Sayed-Sweet, Y.Hedstrand, D. M.Spindler, R.Tomalia, D. A.Hydrophobically modified poly(amidoamine) (PAMAM) dendrimers: their properties at the air–water interface and use as nanoscopic container moleculesJ. Mater. Chem 7 1997 1199CrossRefGoogle Scholar
Zhou, J.Wu, J.Hafdi, N.PAMAM dendrimers for efficient siRNA delivery and potent gene silencingChem. Commun 2006 2362CrossRefGoogle ScholarPubMed
Venuganti, V. V. K.Perumal, O. P.Poly (amidoamine) dendrimers as skin permeation enhancers: influence of charge, generation and concentrationJ. Pharm. Sci 98 2009 2345CrossRefGoogle ScholarPubMed
Feng, X.Cheng, Y.Yang, K.Host–guest chemistry of dendrimer–drug complexes. 5. Insights into the design of formulations for noninvasive delivery of heparin revealed by isothermal titration calorimetry and NMR studiesJ. Phys. Chem. B 114 2010 11017CrossRefGoogle ScholarPubMed
Hu, J.Cheng, Y.Ma, Y.Wu, Q.Xu, T.Host–guest chemistry and physiochemical properties of the dendrimer – Mycophenolic acid complexJ. Phys. Chem. B 113 2009 64CrossRefGoogle Scholar
Hu, J.Cheng, Y.Wu, Q.Zhao, L.Xu, T.Host–guest chemistry of dendrimer-drug complexes. 2. Effects of molecular properties of guests and surface functionalities of dendrimersJ. Phys. Chem. B 113 2009 10650CrossRefGoogle ScholarPubMed
Wu, Q.Cheng, Y.Hu, J.Zhao, L.Xu, T.Insights into the interactions between dendrimers and bioactive surfactants: 3. Size-dependent and hydrophobic property-dependent encapsulation of bile saltsJ. Phys. Chem. B 113 2009 12934CrossRefGoogle ScholarPubMed
Kojima, C.Tsumura, S.Harada, A.Kono, K.A collagen-mimic dendrimer capable of controlled releaseJ. Am. Chem. Soc 131 2009 6052CrossRefGoogle ScholarPubMed
Boisselier, E.Liang, L.Dalko-Csiba, M.Ruiz, J.D. Astruc, Interaction and encapsulation of vitamins C, B3, and B6 with dendrimers in waterChem. Eur. J 16 2010 6056CrossRefGoogle Scholar
Tomalia, D. A.Dendrons/dendrimer: quantized nano-element like building blocks for soft–soft and soft–hard nano-compound synthesisSoft Matter 6 2010 456CrossRefGoogle Scholar
Tomalia, D. A.NJC 36 2012 264

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×