Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T03:26:35.461Z Has data issue: false hasContentIssue false

Section 3 - Total joint replacements

Published online by Cambridge University Press:  05 October 2015

Michael R. Anderson
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Sylvia H. Wilson
Affiliation:
Medical University of South Carolina
Meg A. Rosenblatt
Affiliation:
The Icahn School of Medicine, Mount Sinai, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Jolles, B. M. and Bogoch, E. R.. Posterior versus lateral surgical approach for total hip arthroplasty in adults with osteoarthritis. Cochrane Database Syst Rev 2006; (3): CD003828.CrossRefGoogle ScholarPubMed
Palan, J., Beard, D. J., Murray, D. W., et al. Which approach for total hip arthroplasty: anterolateral or posterior? Clin Orthop Relat Res 2009; 467: 473477.CrossRefGoogle ScholarPubMed
Kurtz, S., Ong, K., Lau, E., et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007; 89: 780785.CrossRefGoogle ScholarPubMed
Memtsoudis, S. G., Sun, X., Chiu, Y. L., et al. Perioperative comparative effectiveness of anesthetic technique in orthopedic patients. Anesthesiology 2013; 118: 10461058.CrossRefGoogle ScholarPubMed
Parker, M. J., Handoll, H. H., and Griffiths, R.. Anaesthesia for hip fracture surgery in adults. Cochrane Database Syst Rev 2004; (4): CD000521.CrossRefGoogle ScholarPubMed
Macfarlane, A. J., Prasad, G. A., Chan, V. W., and Brull, R.. Does regional anaesthesia improve outcome after total hip arthroplasty? A systematic review. Br J Anaesth 2009; 103: 335345.CrossRefGoogle ScholarPubMed
Memtsoudis, S. G., Sun, X., Chiu, Y. L., et al. Utilization of critical care services among patients undergoing total hip and knee arthroplasty: epidemiology and risk factors. Anesthesiology 2012; 117: 107116.CrossRefGoogle ScholarPubMed
Lunn, T. H., Kristensen, B. B., Gaarn-Larsen, L., et al. Post-anaesthesia care unit stay after total hip and knee arthroplasty under spinal anaesthesia. Acta Anaesthesiol Scand 2012; 56: 11391145.CrossRefGoogle ScholarPubMed
Maurer, S. G., Chen, A. L., Hiebert, R., et al. Comparison of outcomes of using spinal versus general anesthesia in total hip arthroplasty. Am J Orthop 2007; 36: E101E106.Google ScholarPubMed
Pumberger, M., Memtsoudis, S. G., Stundner, O., et al. An analysis of the safety of epidural and spinal neuraxial anesthesia in more than 100,000 consecutive major lower extremity joint replacements. Reg Anesth Pain Med 2013; 38: 515519.CrossRefGoogle Scholar
Horlocker, T. T., Wedel, D. J., Rowlingson, J. C., et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (third edition). Reg Anesth Pain Med 2010; 35: 64101.CrossRefGoogle ScholarPubMed
Falck-Ytter, Y., Francis, C. W., Johanson, N. A., et al. Prevention of VTE in orthopedic surgery patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e278Se325.CrossRefGoogle ScholarPubMed
Adam, S. S., McDuffie, J. R., Lachiewicz, P. F., et al. Comparative effectiveness of new oral anticoagulants and standard thromboprophylaxis in patients having total hip or knee replacement: a systematic review. Ann Intern Med 2013; 159: 275284.CrossRefGoogle ScholarPubMed
Lieberman, J. R. and Pensak, M. J.. Prevention of venous thromboembolic disease after total hip and knee arthroplasty. J Bone Joint Surg Am 2013; 95: 18011811.CrossRefGoogle ScholarPubMed
Sharrock, N. E., Cazan, M. G., Hargett, M. J., et al. Changes in mortality after total hip and knee arthroplasty over a ten-year period. Anesth Analg 1995; 80: 242248.Google Scholar
Donaldson, A. J., Thomson, H. E., Harper, N. J., and Kenny, N. W.. Bone cement implantation syndrome. Br J Anaesth 2009; 102: 1222.CrossRefGoogle ScholarPubMed
Patterson, B. M., Lieberman, J. R., and Salvati, E. A.. Intraoperative complications during total hip arthroplasty. Orthopedics 1995; 18: 10891095.CrossRefGoogle ScholarPubMed
Zhu, Y., Chen, W., Sun, T., et al. Risk factors for the periprosthetic fracture after total hip arthroplasty: a systematic review and meta-analysis. Scand J Surg 2014 E pub ahead of print.Google ScholarPubMed
Jacob, A. K., Mantilla, C. B., Sviggum, H. P., et al. Perioperative nerve injury after total hip arthroplasty: regional anesthesia risk during a 20-year cohort study. Anesthesiology 2011; 115: 11721178.CrossRefGoogle ScholarPubMed
Bhargava, T., Goytia, R. N., Jones, L. C., and Hungerford, M. W.. Lateral femoral cutaneous nerve impairment after direct anterior approach for total hip arthroplasty. Orthopedics 2010; 33: 472.CrossRefGoogle ScholarPubMed
Brown, G. D., Swanson, E. A., and Nercessian, O. A.. Neurologic injuries after total hip arthroplasty. Am J Orthop 2008; 37: 191197.Google ScholarPubMed
Mathiesen, O., Jacobsen, L. S., Holm, H. E., et al. Pregabalin and dexamethasone for postoperative pain control: a randomized controlled study in hip arthroplasty. Br J Anaesth 2008; 101: 535541.CrossRefGoogle ScholarPubMed
Martinez, V., Cymerman, A., Ben Ammar, S., et al. The analgesic efficiency of combined pregabalin and ketamine for total hip arthroplasty: a randomised, double-blind, controlled study. Anaesthesia 2014; 69: 4652.CrossRefGoogle ScholarPubMed
Carmichael, N. M., Katz, J., Clarke, H., et al. An intensive perioperative regimen of pregabalin and celecoxib reduces pain and improves physical function scores six weeks after total hip arthroplasty: a prospective randomized controlled trial. Pain Res Manag 2013; 18: 127132.CrossRefGoogle ScholarPubMed
Heidari, S. M., Saghaei, M., Hashemi, S. J., and Parvazinia, P.. Effect of oral ketamine on the postoperative pain and analgesic requirement following orthopedic surgery. Acta Anaesthesiol Taiwan 2006; 44: 211215.Google ScholarPubMed
Clarke, H., Pereira, S., Kennedy, D., et al. Adding gabapentin to a multimodal regimen does not reduce acute pain, opioid consumption or chronic pain after total hip arthroplasty. Acta Anaesthesiol Scand 2009; 53: 10731083.CrossRefGoogle ScholarPubMed
Choi, P. T., Bhandari, M., Scott, J., and Douketis, J.. Epidural analgesia for pain relief following hip or knee replacement. Cochrane Database Syst Rev 2003; (3): CD003071.CrossRefGoogle ScholarPubMed
Ilfeld, B. M., Ball, S. T., Gearen, P. F., et al. Ambulatory continuous posterior lumbar plexus nerve blocks after hip arthroplasty: a dual-center, randomized, triple-masked, placebo-controlled trial. Anesthesiology 2008; 109: 491501.CrossRefGoogle ScholarPubMed
Marino, J., Russo, J., Kenny, M., et al. Continuous lumbar plexus block for postoperative pain control after total hip arthroplasty. A randomized controlled trial. J Bone Joint Surg Am 2009; 91: 2937.CrossRefGoogle ScholarPubMed
Shariat, A. N., Hadzic, A., Xu, D., et al. Fascia lliaca block for analgesia after hip arthroplasty: a randomized double-blind, placebo-controlled trial. Reg Anesth Pain Med 2013; 38: 201205.CrossRefGoogle ScholarPubMed
Stevens, M., Harrison, G., and McGrail, M.. A modified fascia iliaca compartment block has significant morphine-sparing effect after total hip arthroplasty. Anaesth Intensive Care 2007; 35: 949952.CrossRefGoogle ScholarPubMed
Kerr, D. R. and Kohan, L.. Local infiltration analgesia: a technique for the control of acute postoperative pain following knee and hip surgery: a case study of 325 patients. Acta Orthop 2008; 79: 174183.CrossRefGoogle ScholarPubMed
Andersen, L. O. and Kehlet, H.. Analgesic efficacy of local infiltration analgesia in hip and knee arthroplasty: a systematic review. Br J Anaesth 2014; 113: 360374.CrossRefGoogle ScholarPubMed
Affas, F., Eksborg, S., Wretenberg, P., et al. Plasma concentration of ketorolac after local infiltration analgesia in hip arthroplasty. Acta Anaesthesiol Scand 2014; 58: 11401145.CrossRefGoogle ScholarPubMed
Rathmell, J. P., Pino, C. A., Taylor, R., et al. Intrathecal morphine for postoperative analgesia: a randomized, controlled, dose-ranging study after hip and knee arthroplasty. Anesth Analg 2003; 97: 14521457.CrossRefGoogle ScholarPubMed

References

Liu, J., Ma, C., Elkassabany, N., et al. Neuraxial anesthesia decreases postoperative systemic infection risk compared with general anesthesia in knee arthroplasty. Anesth Analg 2013; 117: 10101016.CrossRefGoogle ScholarPubMed
Martin, F., Martinez, V., Mazoit, J. X., et al. Antiinflammatory effect of peripheral nerve blocks after knee surgery: clinical and biologic evaluation. Anesthesiology 2008; 109: 484490.CrossRefGoogle ScholarPubMed
Parker, M. J., Handoll, H. H., and Griffiths, R.. Anaesthesia for hip fracture surgery in adults. Cochrane Database Syst Rev 2004; (4): CD000521.Google ScholarPubMed
Gonano, C., Leitgeb, U., Sitzwohl, C., et al. Spinal versus general anesthesia for orthopedic surgery: anesthesia drug and supply costs. Anesth Analg 2006; 102: 524529.CrossRefGoogle ScholarPubMed
Hu, S., Zhang, Z. Y., Hua, Y. Q., et al. A comparison of regional and general anaesthesia for total replacement of the hip or knee: a meta-analysis. J Bone Joint Surg Br 2009; 91: 935942.CrossRefGoogle ScholarPubMed
Rodgers, A., Walker, N., Schug, S., et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. BMJ 2000; 321: 1493.CrossRefGoogle ScholarPubMed
Memtsoudis, S. G., Sun, X., Chiu, Y. L., et al. Perioperative comparative effectiveness of anesthetic technique in orthopedic patients. Anesthesiology 2013; 118: 10461058.CrossRefGoogle ScholarPubMed
Bainbridge, D., Martin, J., Arango, M., and Cheng, D.. Perioperative and anaesthetic-related mortality in developed and developing countries: a systematic review and meta-analysis. Lancet 2012; 380: 10751081.CrossRefGoogle ScholarPubMed
Kettner, S. C., Willschke, H., and Marhofer, P.. Does regional anaesthesia really improve outcome? Br J Anaesth 2011; 107: i90i95.CrossRefGoogle ScholarPubMed
Munin, M. C., Rudy, T. E., Glynn, N. W., et al. Early inpatient rehabilitation after elective hip and knee arthroplasty. JAMA 1998; 279: 847852.CrossRefGoogle ScholarPubMed
Husted, H.. Fast-track hip and knee arthroplasty: clinical and organizational aspects. Acta Orthop Suppl 2012; 83: 139.CrossRefGoogle ScholarPubMed
Davies, A. F., Segar, E. P., Murdoch, J., et al. Epidural infusion or combined femoral and sciatic nerve blocks as perioperative analgesia for knee arthroplasty. Br J Anaesth 2004; 93:368374.CrossRefGoogle ScholarPubMed
Liu, S. S., Buvanendran, A., Rathmell, J. P., et al. Predictors for moderate to severe acute postoperative pain after total hip and knee replacement. Int Orthop 2012; 36: 22612267.CrossRefGoogle ScholarPubMed
Mizner, R. L., Petterson, S. C., Stevens, J. E., et al. Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J Bone Joint Surg Am 2005; 87: 10471053.CrossRefGoogle ScholarPubMed
Backes, J. R., Bentley, J. C., Politi, J. R., and Chambers, B. T.. Dexamethasone reduces length of hospitalization and improves postoperative pain and nausea after total joint arthroplasty: a prospective, randomized controlled trial. J Arthroplasty 2013; 28: 1117.CrossRefGoogle ScholarPubMed
Rawal, N., Arnér, S., Gustafsson, L. L., and Allvin, R.. Present state of extradural and intrathecal opioid analgesia in Sweden. A nationwide follow-up survey. Br J Anaesth 1987; 59: 791799.CrossRefGoogle ScholarPubMed
Gehling, M. and Tryba, M.. Risks and side-effects of intrathecal morphine combined with spinal anaesthesia: a meta analysis. Anaesthesia 2009; 64: 643651.CrossRefGoogle ScholarPubMed
Rose, D. K., Cohen, M. M., Wigglesworth, D. F., and DeBoer, D. P.. Critical respiratory events in the postanesthesia care unit. Patient, surgical, and anesthetic factors. Anesthesiology 1994; 81: 410418.CrossRefGoogle ScholarPubMed
Sites, B. D., Beach, M., Gallagher, J. D., et al. A single injection ultrasound-assisted femoral nerve block provides side effect-sparing analgesia when compared with intrathecal morphine in patients undergoing total knee arthroplasty. Anesth Analg 2004; 99: 15391543.CrossRefGoogle ScholarPubMed
Choi, P. T., Bhandari, M., Scott, J., and Douketis, J.. Epidural analgesia for pain relief following hip or knee replacement. Cochrane Database Syst Rev 2003; (3): CD003071.Google ScholarPubMed
Raj, P. P., Knarr, D. C., Vigdorth, E., et al. Comparison of continuous epidural infusion of a local anesthetic and administration of systemic narcotics in the management of pain after total knee replacement surgery. Anesth Analg 1987; 66: 401406.CrossRefGoogle ScholarPubMed
Mahoney, O. M., Noble, P. C., Davidson, J., and Tullos, H. S.. The effect of continuous epidural analgesia on postoperative pain, rehabilitation, and duration of hospitalization in total knee arthroplasty. Clin Orthop Relat Res 1990; 260: 3037.CrossRefGoogle Scholar
YaDeau, J. T., Cahill, J. B., Zawadsky, M. W., et al. The effects of femoral nerve blockade in conjunction with epidural analgesia after total knee arthroplasty. Anesth Analg 2005; 101: 891895.CrossRefGoogle ScholarPubMed
Kerr, D. R. and Kohan, L.. Local infiltration analgesia: a technique for the control of acute postoperative pain following knee and hip surgery: a case study of 325 patients. Acta Orthop 2008; 79: 174183.CrossRefGoogle ScholarPubMed
Bramlett, K., Onel, E., Viscusi, E. R., and Jones, K.. A randomized, double-blind, dose-ranging study comparing wound infiltration of DepoFoam bupivacaine, an extended-release liposomal bupivacaine, to bupivacaine HCl for postsurgical analgesia in total knee arthroplasty. Knee 2012; 19: 530536.CrossRefGoogle ScholarPubMed
Marques, E. M., Jones, H. E., Elvers, K. T., et al. Local anaesthetic infiltration for peri-operative pain control in total hip and knee replacement: systematic review and meta-analyses of short- and long-term effectiveness. BMC Musculoskelet Disord 2014; 15: 220.CrossRefGoogle Scholar
Andersen, L. Ø. and Kehlet, H.. Analgesic efficacy of local infiltration analgesia in hip and knee arthroplasty: a systematic review. Br J Anaesth 2014; 113: 360374.CrossRefGoogle ScholarPubMed
Wasserstein, D., Farlinger, C., Brull, R., Mahomed, N., and Gandhi, R.. Advanced age, obesity and continuous femoral nerve blockade are independent risk factors for inpatient falls after primary total knee arthroplasty. J Arthroplasty 2013; 28: 11211124.CrossRefGoogle ScholarPubMed
Johnson, R. L., Duncan, C. M., Ahn, K. S., et al. Fall-prevention strategies and patient characteristics that impact fall rates after total knee arthroplasty. Anesth Analg 2014; 119: 11131118.CrossRefGoogle ScholarPubMed
Nadkarni, J. B., Iyengar, K. P., Dussa, C., et al. Orthopaedic injuries following falls by hospital in-patients. Gerontology 2005; 51: 329333.CrossRefGoogle ScholarPubMed
Chan, E. Y., Fransen, M., Parker, D. A., et al. Femoral nerve blocks for acute postoperative pain after knee replacement surgery. Cochrane Database Syst Rev 2014; (5): CD009941.Google ScholarPubMed
Memtsoudis, S. G., Dy, C. J., Ma, Y., et al. In-hospital patient falls after total joint arthro-plasty: incidence, demographics, and risk factors in the United States. J Arthroplasty 2012; 27: 823828.CrossRefGoogle Scholar
Kim, D. H., Lin, Y., Goytizolo, E. A., et al. Adductor canal block versus femoral nerve block for total knee arthroplasty: a prospective, randomized, controlled trial. Anesthesiology 2014; 120: 540550.CrossRefGoogle ScholarPubMed
Davies, A. F., Segar, E. P., Murdoch, J., et al. Epidural infusion or combined femoral and sciatic nerve blocks as perioperative analgesia for knee arthroplasty. Br J Anaesth 2004; 93: 368374.CrossRefGoogle ScholarPubMed
Liu, S. S., Buvanendran, A., Rathmell, J. P., et al. Predictors for moderate to severe acute postoperative pain after total hip and knee replacement. Int Orthop 2012; 36: 22612267.CrossRefGoogle ScholarPubMed
Horner, G. and Dellon, A. L.. Innervation of the human knee joint and implications for surgery. Clin Orthop Relat Res 1994; 301: 221226.CrossRefGoogle Scholar
Jaeger, P., Nielsen, Z. J., Henningsen, M. H., et al. Adductor canal block versus femoral nerve block and quadriceps strength: a randomized, double-blind, placebo-controlled, crossover study in healthy volunteers. Anesthesiology 2013; 118: 409415.CrossRefGoogle ScholarPubMed
Kim, D. H., Lin, Y., Goytizolo, E. A., et al. Adductor canal block versus femoral nerve block for total knee arthroplasty: a prospective, randomized,controlled trial. Anesthesiology 2014; 120: 540550.CrossRefGoogle ScholarPubMed
Abdallah, F. J. and Brull, R.. Is sciatic nerve block advantageous when combined with femoral nerve block for postoperative analgesia following total knee arthroplasty? A systematic review. Reg Anesth Pain Med 2011; 36: 493498.CrossRefGoogle ScholarPubMed
Weber, A., Fournier, R., Van Gessel, E., and Gamulin, Z.. Sciatic nerve block and the improvement of femoral nerve block analgesia after total knee replacement. Eur J Anaesthesiol 2002; 19: 834836.CrossRefGoogle ScholarPubMed

References

Friedman, D. J., Parnes, N. Z., Zimmer, Z., et al. Prevalence of cerebrovascular events during shoulder surgery and association with patient position. Orthopedics 2009; 32: ii.Google ScholarPubMed
Murray, M. J., Harrison, B. A., Mueller, J. T., et al. Faust's Anesthesiology Review, 4th edn. Philadelphia: Elsevier Saunders; 2015.Google Scholar
Pohl, A. and Cullen, D. J.. Cerebral ischemia during shoulder surgery in the upright position: a case series. J Clin Anesth 2005; 17: 463469.CrossRefGoogle ScholarPubMed
Barash, P. G., Cullen, B. F., Stoelting, R. K., et al. Clinical Anesthesia, 6th edn. Philadelphia: Lippincott Williams & Wilkins; 2009.Google Scholar
McCulloch, T. J., Liyanagama, K., and Petchell, J.. Relative hypotension in the beach-chair position: effects on middle cerebral artery blood velocity. Anaesth Intensive Care 2010; 38: 486491.CrossRefGoogle ScholarPubMed
Gillespie, R., Shishani, Y., Streit, J., et al. The safety of controlled hypotension for shoulder arthroscopy in the beach-chair position. J Bone Joint Surg Am 2012; 94: 12841290.CrossRefGoogle ScholarPubMed
Lee, J. H., Min, K. T., Chun, Y. M., et al. Effects of beach-chair position and induced hypotension on cerebral oxygen saturation in patients undergoing arthroscopic shoulder surgery. Arthroscopy 2011; 27: 889894.CrossRefGoogle ScholarPubMed
Moerman, A. T., De Hert, S. G., Jacobs, T. F., et al. Cerebral oxygen desaturation during beach chair position. Eur J Anaesthesiol 2012; 29: 8287.CrossRefGoogle ScholarPubMed
Salazar, D., Sears, B. W., Aghdasi, B., et al. Cerebral desaturation events during shoulder arthroscopy in the beach chair position: patient risk factors and neurocognitive effects. J Shoulder Elbow Surg 2013; 22: 12281235.CrossRefGoogle ScholarPubMed
Fischer, G. M., Torrillo, T. M., Weiner, M. M., and Rosenblatt, M. A.. The use of cerebral oximetry as a monitor of the adequacy of cerebral perfusion in a patient undergoing shoulder surgery in the beach chair position. Pain Pract 2009; 9: 304307.CrossRefGoogle Scholar
Rains, D. D., Rooke, G. A., and Wahl, C. J.. Pathomechanisms and complications related to patient positioning and anesthesia during shoulder arthroscopy. Arthroscopy 2011; 27: 532541.CrossRefGoogle ScholarPubMed
London, M. J., Hur, K., Schwartz, G. G., and Henderson, W. G.. Association of perioperative beta-blockade with mortality and cardiovascular morbidity following major noncardiac surgery. JAMA 2013; 309: 17041713.CrossRefGoogle ScholarPubMed
van Klei, W. A., Bryson, G. L., Yang, H., and Forster, A. J.. Effect of beta-blocker prescription on the incidence of postoperative myocardial infarction after hip and knee arthroplasty. Anesthesiology 2009; 111: 717724.CrossRefGoogle ScholarPubMed
Ellenberger, C., Tait, G., and Beattie, W. S.. Chronic beta blockade is associated with a better outcome after elective noncardiac surgery than acute beta blockade: a single-center propensity-matched cohort study. Anesthesiology 2011; 114: 817823.CrossRefGoogle ScholarPubMed
Bouri, S., Shun-Shin, M. J., Cole, G. D., et al. Meta-analysis of secure randomised controlled trials of beta-blockade to prevent perioperative death in non-cardiac surgery. Heart 2014; 100: 456464.CrossRefGoogle ScholarPubMed
Biccard, B. M.. A peri-operative statin update for non-cardiac surgery. Part II: Statin therapy for vascular surgery and peri-operative statin trial design. Anaesthesia 2008; 63: 162171.CrossRefGoogle ScholarPubMed
Kertai, M. D., Boersma, E., Westerhout, C. M., et al. A combination of statins and beta-blockers is independently associated with a reduction in the incidence of perioperative mortality and nonfatal myocardial infarction in patients undergoing abdominal aortic aneurysm surgery. Eur J Vasc Endovasc Surg 2004; 28: 343352.CrossRefGoogle ScholarPubMed
Schouten, O., Hoeks, S. E., Welten, G. M., et al. Effect of statin withdrawal on frequency of cardiac events after vascular surgery. Am J Cardiol 2007; 100: 316320.CrossRefGoogle ScholarPubMed
Le Manach, Y., Godet, G., Coriat, P., et al. The impact of postoperative discontinuation or continuation of chronic statin therapy on cardiac outcome after major vascular surgery. Anesth Analg 2007; 104: 13261333.CrossRefGoogle ScholarPubMed
Douketis, J. D., Spyropoulos, A. C., Spencer, F. A., et al. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141(2 Suppl.): e326Se350S.CrossRefGoogle ScholarPubMed
Darvish-Kazem, S., Gandhi, M., Marcucci, M., and Douketis, J. D.. Perioperative management of antiplatelet therapy in patients with a coronary stent who need noncardiac surgery: a systematic review of clinical practice guidelines. Chest 2013; 144: 18481856.CrossRefGoogle ScholarPubMed
Vetter, T. R., Hunter, J. M., and Boudreaux, A. M.. Preoperative management of antiplatelet drugs for a coronary artery stent: how can we hit a moving target? BMC Anesthesiol 2014; 14: 73.CrossRefGoogle ScholarPubMed
Abualsaud, A. O. and Eisenberg, M. J.. Perioperative management of patients with drug-eluting stents. JACC Cardiovasc Interv 2010; 3: 131142.CrossRefGoogle ScholarPubMed
Rabbitts, J. A., Nuttall, G. A., Brown, M. J., et al. Cardiac risk of noncardiac surgery after percutaneous coronary intervention with drug-eluting stents. Anesthesiology 2008; 109: 596604.CrossRefGoogle ScholarPubMed
Gandhi, A. K., Abdel-Karim, A. R., Banerjee, S., and Brilakis, E. S.. Frequency and risk of noncardiac surgery after drug-eluting stent implantation. Catheter Cardiovasc Interv 2011; 77: 972976.CrossRefGoogle ScholarPubMed
Killu, A. M., Wright, R. S., and Kopecky, S. L.. Questions and answers on proper peri-operative management of antiplatelet therapy after coronary stent implantation to prevent stent thrombosis. Am J Cardiol 2013; 112: 10461050.CrossRefGoogle ScholarPubMed
Bishop, J. Y., Sprague, M., Gelber, J., et al. Interscalene regional anesthesia for shoulder surgery. J Bone Joint Surg Am 2005; 87: 974979.CrossRefGoogle ScholarPubMed
Mejia-Terrazas, G. E., Ruiz-Suarez, M., Encalada-Diaz, I. M., et al. Total shoulder arthroplasty with interscalene block. Feasibility study. Acta Ortop Mex 2012; 26: 358361.Google ScholarPubMed
Wu, C. J., Rouse, L. M., Chen, J. M., and Miller, R. J.. Comparison of postoperative pain in patients receiving interscalene block or general anesthesia for shoulder surgery. Orthopedics 2002; 25: 4548.CrossRefGoogle ScholarPubMed
D’Alessio, J. G., Weller, R. S., and Rosenblum, M.. Activation of the Bezold–Jarisch reflex in the sitting position for shoulder arthroscopy using interscalene block. Anesth Analg 1995; 80: 11581162.Google ScholarPubMed
Singh, A., Kelly, C., O’Brien, T., et al. Ultrasound-guided interscalene block anesthesia for shoulder arthroscopy: a prospective study of 1319 patients. J Bone Joint Surg Am 2012; 94: 20402046.CrossRefGoogle ScholarPubMed
Ilfeld, B. M., Vandenborne, K., Duncan, P. W., et al. Ambulatory continuous interscalene nerve blocks decrease the time to discharge readiness after total shoulder arthroplasty: a randomized, triple-masked, placebo-controlled study. Anesthesiology 2006; 105: 9991007.CrossRefGoogle ScholarPubMed
Ilfeld, B. M., Wright, T. W., Enneking, F. K., et al. Total shoulder arthroplasty as an outpatient procedure using ambulatory perineural local anesthetic infusion: a pilot feasibility study. Anesth Analg 2005; 101: 13191322.CrossRefGoogle ScholarPubMed
Boardman, N. D. and Cofield, R. H.. Neurologic complications of shoulder surgery. Clin Orthop Relat Res 1999; 368: 4453.CrossRefGoogle Scholar
Nagda, S. H., Rogers, K. J., Sestokas, A. K., et al. Neer Award 2005: Peripheral nerve function during shoulder arthroplasty using intraoperative nerve monitoring. J Shoulder Elbow Surg 2007; 16(3 Suppl): S2S8.CrossRefGoogle ScholarPubMed
Ladermann, A., Lubbeke, A., Melis, B., et al. Prevalence of neurologic lesions after total shoulder arthroplasty. J Bone Joint Surg Am 2011; 93: 12881293.CrossRefGoogle ScholarPubMed
Brull, R., McCartney, C. J., Chan, V. W., and El-Beheiry, H.. Neurological complications after regional anesthesia: contemporary estimates of risk. Anesth Analg 2007; 104: 965974.CrossRefGoogle ScholarPubMed
Borgeat, A., Ekatodramis, G., Kalberer, F., and Benz, C.. Acute and nonacute complications associated with interscalene block and shoulder surgery: a prospective study. Anesthesiology 2001; 95: 875880.CrossRefGoogle ScholarPubMed
Koff, M. D., Cohen, J. A., McIntyre, J. J., et al. Severe brachial plexopathy after an ultrasound-guided single-injection nerve block for total shoulder arthroplasty in a patient with multiple sclerosis. Anesthesiology 2008; 108: 325328.CrossRefGoogle Scholar
Pogorzelski, R., Baniukiewicz, E., and Drozdowski, W.. Subclinical lesions of peripheral nervous system in multiple sclerosis patients. Neurol Neurochir Pol 2004; 38: 257264.Google ScholarPubMed
Aveline, C., Le Hetet, H., Le Roux, A., et al. Perineural ultrasound-guided catheter bacterial colonization: a prospective evaluation in 747 cases. Reg Anesth Pain Med 2011; 36: 579584.CrossRefGoogle ScholarPubMed
Ilfeld, B. M.. Continuous peripheral nerve blocks: a review of the published evidence. Anesth Analg 2011; 113: 904925.CrossRefGoogle ScholarPubMed
Clendenen, S. R., Robards, C. B., Wang, R. D., and Greengrass, R. A.. Case report: continuous interscalene block associated with neck hematoma and postoperative sepsis. Anesth Analg 2010; 110: 12361238.CrossRefGoogle ScholarPubMed
Sia, S., Sarro, F., Lepri, A., and Bartoli, M.. The effect of exogenous epinephrine on the incidence of hypotensive/bradycardic events during shoulder surgery in the sitting position during interscalene block. Anesth Analg 2003; 97: 583588.CrossRefGoogle ScholarPubMed
Kahn, R. L. and Hargett, M. J.. Beta-adrenergic blockers and vasovagal episodes during shoulder surgery in the sitting position under interscalene block. Anesth Analg 1999; 88: 378381.CrossRefGoogle ScholarPubMed

References

Hébert-Blouin, M. N., Tubbs, R. S., Carmichael, S. W., and Spinner, R. J.. Hilton's law revisited. Clin Anat 2014; 27: 548555.CrossRefGoogle ScholarPubMed
Boezaart, A. P.. Atlas of Peripheral Nerve Block and Anatomy for Orthopaedic Anesthesia. Philadelphia, PA: Saunders Elsevier, 2008, pp. 3953.Google Scholar
Boezaart, A. P.. That which we call a rose by any other name would smell as sweet – and its thorns would hurt as much. Reg Anest Pain Med 2014; 39: 174175.Google Scholar
Ilfeld, B. M., Wright, T. W., Enneking, F. K., and Vandenborne, K.. Total elbow arthroplasty as an outpatient procedure using a continuous infraclavicular nerve block at home: a prospective case report. Reg Anesth Pain Med 2006; 31: 172176.Google Scholar
Fredrickson, M. J., Wolstencroft, P., and Kejriwal, R.. Single versus triple injection ultrasound-guided infraclavicular block: confirmation of the effectiveness of the single injection technique. Anesth Analg 2010; 111: 13251327.CrossRefGoogle ScholarPubMed
Boezaart, A. P. and Ihnatsenka, B. V.. Cervical paravertebral block for elbow and wrist surgery. Reg Anesth Pain Med 2014; 39: 361362.CrossRefGoogle ScholarPubMed
Buckenmaier, C. C.. Battlefield orthopaedic anethesia. In: Boezaart, AP, ED. Anesthesia and Orthopaedic Surgery. New York, NY: McGraw-Hill, 2006; pp. 435436.Google Scholar
Boezaart, A. P.. Atlas of Peripheral Nerve Block and Anatomy for Orthopedic Anesthesia. Philadelphia, PA: Saunders Elsevier, 2008; pp. 8185.Google Scholar
Borene, S. C., Edwards, J. N., and Boezaart, A. P.. At the cords, the pinkie towards: interpreting infraclavicular motor responses to neurostimulation. Reg Anesth Pain Med 2004; 29: 125129.Google ScholarPubMed
Choo, A. and Ramsey, M. L.. Total elbow arthroplasty: current options. J Am Acad Orthop Surg 2013; 31: 427437.Google Scholar
Park, S. E., Kim, J. Y., Cho, S. W., et al. Complications and revision rate compared by type of total elbow arthroplasty. J Shoulder Elbow Surg 2013; 22: 11211127.CrossRefGoogle ScholarPubMed
Antuña, S. A., Laakso, R. B., Barrera, J. L., et al. Linked total elbow arthroplasty as treatment of distal humerus fractures. Acta Orthop Belg 2012; 78: 465472.Google ScholarPubMed
Maheshwari, R., Vaziri, S., and Helm, R. H.. Total elbow replacement with the Coonrad–Morrey prosthesis: our medium to long-term results. Ann R Coll Surg Engl 2012; 94: 189192.CrossRefGoogle ScholarPubMed
Sayles, J. and Wilcox, R. B.. Total Elbow Arthroplasty Protocol. 2010. Boston, MA: Department of Rehabilitation Services, Brigham and Women's Hospital.Google Scholar
Horlocker, T. T., Wedel, D. J., Rowlingson, J. C., et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (3rd edition). Reg Anesth Pain Med 2010; 35: 64101.CrossRefGoogle ScholarPubMed
Chelly, J. E. and Schilling, D. Thromboprophylaxis and peripheral nerve blocks in patients undergoing joint arthroplasty. J Arthroplasty 2008; 23: 350354.CrossRefGoogle ScholarPubMed

References

Kepes, E. R., Undersood, P. S., and Becsey, L.. Intraoperative death associated with acrylic bone cement. Report of two cases. JAMA 1972; 222: 576577.CrossRefGoogle ScholarPubMed
Sevitt, S.. Fat embolism in patients with fractured hips. Br Med J 1972; 2: 257262.CrossRefGoogle ScholarPubMed
Byrick, R. J., Forbes, D., and Waddell, J. P.. A monitored cardiovascular collapse during cemented total knee replacement. Anesthesiology 1986; 65: 213216.CrossRefGoogle ScholarPubMed
Clayer, M. T. and Tang, X.. Low risk of cardiac events during intramedullary instrumentation of lung cancer metastases. Acta Orthop 2007; 78: 547550.CrossRefGoogle ScholarPubMed
Pietak, S., Holmes, J., Matthews, R., et al. Cardiovascular collapse after femoral prosthesis surgery for acute hip fracture. Can J Anaesth 1997; 44: 198201.CrossRefGoogle ScholarPubMed
Persson, E. V. and Bauer, H. C.. Sudden hypotension and profuse bleeding during intramedullary nailing of the femur in cancer patients. A report of two cases. Acta Orthop Scand 1994; 65: 564567.CrossRefGoogle ScholarPubMed
White, S. M., Moppett, I. K., and Griffiths, R.. Outcome by mode of anaesthesia for hip fracture surgery. An observational audit of 65535 patients in a national dataset. Anaesthesia 2014; 69: 224230.CrossRefGoogle Scholar
Sulek, C. A., Davies, L. K., Enneking, F. K., et al. Cerebral microembolism diagnosed by transcranial Doppler during total knee arthroplasty: correlation with transesophageal echocardiography. Anesthesiology 1999; 91: 672676.CrossRefGoogle ScholarPubMed
Donaldson, A. J., Thomson, H. E., Harper, N. J., and Kenny, N. W.. Bone cement implantation syndrome. Br J Anaesth 2009; 102: 1222.CrossRefGoogle ScholarPubMed
Olsen, F., Kotyra, M., Houltz, E., and Ricksten, S. E.. Bone cement implantation syndrome in cemented hemiarthroplasty for femoral neck fracture: incidence, risk factors, and effect on outcome. Br J Anaesth 2014; 113: 800806.CrossRefGoogle Scholar
de Froidmont, S., Bonetti, L. R., Villaverde, R. V., et al. Postmortem findings in bone cement implantation syndrome-related deaths. Am J Forensic Med Pathol 2014; 35: 206211.CrossRefGoogle ScholarPubMed
Kotyra, M., Houltz, E., and Ricksten, S. E.. Pulmonary haemodynamics and right ventricular function during cemented hemiarthroplasty for femoral neck fracture. Acta Anaesthesiol Scand 2010; 54: 12101216.CrossRefGoogle ScholarPubMed
Pell, A. C., Christie, J., Keating, J. F., and Sutherland, G. R.. The detection of fat embolism by transoesophageal echocardiography during reamed intramedullary nailing. A study of 24 patients with femoral and tibial fractures. J Bone Joint Surg Br 1993; 75: 921925.CrossRefGoogle ScholarPubMed
Sierra, R. J., Timperley, J. A., and Gie, G. A.. Contemporary cementing technique and mortality during and after Exeter total hip arthroplasty. J Arthroplasty 2009; 24: 325332.CrossRefGoogle ScholarPubMed
Lamade, W. R., Friedl, W., Schmid, B., and Meeder, P. J.. Bone cement implantation syndrome. A prospective randomised trial for use of antihistamine blockade. Arch Orthop Trauma Surg 1995; 114: 335339.CrossRefGoogle ScholarPubMed
Motobe, T., Hashiguchi, T., Uchimura, T., et al. Endogenous cannabinoids are candidates for lipid mediators of bone cement implantation syndrome. Shock 2004; 21: 812.CrossRefGoogle ScholarPubMed
Bengtson, A., Larsson, M., Gammer, W., and Heideman, M.. Anaphylatoxin release in association with methylmethacrylate fixation of hip prostheses. J Bone Joint Surg Am 1987; 69: 4649.CrossRefGoogle ScholarPubMed
Kalra, A., Sharma, A., Palaniswamy, C., et al. Diagnosis and management of bone cement implantation syndrome: case report and brief review. Am J Ther 2013; 20: 121125.CrossRefGoogle ScholarPubMed
Rutter, P. D., Panesar, S. S., Darzi, A., and Donaldson, L. J.. What is the risk of death or severe harm due to bone cement implantation syndrome among patients undergoing hip hemiarthroplasty for fractured neck of femur? A patient safety surveillance study. BMJ Open 2014; 4: e004853.CrossRefGoogle ScholarPubMed
Griffiths, R. and Parker, M.. Bone cement implantation syndrome and proximal femoral fracture. Br J Anaesth 2015; 114: 67.CrossRefGoogle ScholarPubMed
Barwood, S. A., Wilson, J. L., Molnar, R. R., and Choong, P. F.. The incidence of acute cardiorespiratory and vascular dysfunction following intramedullary nail fixation of femoral metastasis. Acta Orthop Scand 2000; 71: 147152.CrossRefGoogle ScholarPubMed
Rothberg, D. L., Kubiak, E. N., Peters, C. L., et al. Reducing the risk of bone cement implantation syndrome during femoral arthroplasty. Orthopedics 2013; 36: 463467.CrossRefGoogle ScholarPubMed
Weber, K. L., Randall, R. L., Grossman, S., and Parvizi, J.. Management of lower-extremity bone metastasis. J Bone Joint Surg Am 2006; 88: 1119.Google ScholarPubMed
Weinbroum, A. A.. Superiority of postoperative epidural over intravenous patient-controlled analgesia in orthopedic oncologic patients. Surgery 2005; 138: 869876.CrossRefGoogle ScholarPubMed

References

Falck-Ytter, Y., Francis, C. W., Johanson, N. A., et al. Prevention of VTE in orthopedic surgery patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e278Se325S.CrossRefGoogle ScholarPubMed
Fisher, W. D.. Impact of venous thromboembolism on clinical management and therapy after hip and knee arthroplasty. Can J Surg 2011; 54: 344351.CrossRefGoogle ScholarPubMed
Geerts, W. H., Bergqvist, D., Pineo, G. F., et al. Prevention of venous thromboembolism: American College of Chest Physicians evidence-based clinical practice guidelines (8th edition). Chest 2008; 133: 381S453S.CrossRefGoogle ScholarPubMed
Januel, J. M., Chen, G., Ruffieux, C., et al. Symptomatic in-hospital deep vein thrombosis and pulmonary embolism following hip and knee arthroplasty among patients receiving recommended prophylaxis: a systematic review. JAMA 2012; 307: 294303.CrossRefGoogle ScholarPubMed
Todd, C. J., Freeman, C. I., Camilleri-Ferrante, C., et al. Differences in mortality after fracture of hip: the east Anglian audit. BMJ 1995; 310: 904908.CrossRefGoogle ScholarPubMed
Dahl, O. E., Gudmundsen, T. E., and Haukeland, L.. Late occurring clinical deep vein thrombosis in joint-operated patients. Acta Orthop Scand 2000; 71: 4750.CrossRefGoogle ScholarPubMed
Arcelus, J. I., Monreal, M., Caprini, J. A., et al. Clinical presentation and time-course of postoperative venous thromboembolism: Results from the RIETE Registry. Thromb Haemost 2008; 99: 546551.CrossRefGoogle ScholarPubMed
Bjornara, B. T., Gudmundsen, T. E., and Dahl, O. E.. Frequency and timing of clinical venous thromboembolism after major joint surgery. J Bone Joint Surg Br 2006; 88: 386391.CrossRefGoogle ScholarPubMed
Kohn, L. T., Corrigan, J. M., and Donaldson, M. S.. To Err is Human: Building a Safer Health System. Washington, DC: National Academy Press; 2000.Google Scholar
Wang, Y., Eldridge, N., Metersky, M. L., et al. National trends in patient safety for four common conditions. N Engl J Med 2014; 370: 341351.CrossRefGoogle ScholarPubMed
Cohen, A. T., Tapson, V. F., Bergmann, J. F. et al. Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDORSE study): a multinational cross-sectional study. Lancet 2008; 371: 387394.CrossRefGoogle ScholarPubMed
Selby, R., Borah, B. J., McDonald, H. P., et al. Impact of thromboprophylaxis guidelines on clinical outcomes following total hip and total knee replacement. Thromb Res 2012; 130: 166172.CrossRefGoogle ScholarPubMed
Rodgers, A., Walker, N., Schug, S., et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials. BMJ 2000; 321: 1493.CrossRefGoogle ScholarPubMed
Neuman, M. D., Rosenbaum, P. R., Ludwig, J. M., Zubizarreta, J. R., and Silber, J. H.. Anesthesia technique, mortality, and length of stay after hip fracture surgery. JAMA 2014; 311: 25082517.CrossRefGoogle ScholarPubMed
Richman, J. M., Liu, S. S., Courpas, G., et al. Does continuous peripheral nerve block provide superior pain control to opioids? A meta-analysis. Anesth Analg 2006; 102: 248257.CrossRefGoogle ScholarPubMed
Macfarlane, A. J., Prasad, G. A., Chan, V. W., and Brull, R.. Does regional anesthesia improve outcome after total knee arthroplasty? Clin Orthop Relat Res 2009; 467: 23792402.CrossRefGoogle ScholarPubMed
Paul, J. E., Arya, A., Hurlburt, L., et al. Femoral nerve block improves analgesia outcomes after total knee arthroplasty: a meta-analysis of randomized controlled trials. Anesthesiology 2010; 113: 11441162.CrossRefGoogle ScholarPubMed
Horlocker, T. T., Wedel, D. J., Rowlingson, J. C., et al. Regional anesthesia in the patient receiving antithrombotic or thrombolytic therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Third Edition). Reg Anesth Pain Med 2010; 35: 64101.CrossRefGoogle ScholarPubMed
Morin, A. M., Kratz, C. D., Eberhart, L. H., et al. Postoperative analgesia and functional recovery after total-knee replacement: comparison of a continuous posterior lumbar plexus (psoas compartment) block, a continuous femoral nerve block, and the combination of a continuous femoral and sciatic nerve block. Reg Anesth Pain Med 2005; 30: 434445.Google Scholar
Marino, J., Russo, J., Kenny, M., et al. Continuous lumbar plexus block for postoperative pain control after total hip arthroplasty. A randomized controlled trial. J Bone Joint Surg Am 2009; 91: 2937.CrossRefGoogle ScholarPubMed
Shum, C. F., Lo, N. N., Yeo, S. J., et al. Continuous femoral nerve block in total knee arthroplasty: immediate and two-year outcomes. J Arthroplasty 2009; 24: 204209.CrossRefGoogle ScholarPubMed
Cappelleri, G., Ghisi, D., Fanelli, A., et al. Does continuous sciatic nerve block improve postoperative analgesia and early rehabilitation after total knee arthroplasty? A prospective, randomized, double-blinded study. Reg Anesth Pain Med 2011; 36: 489492.CrossRefGoogle ScholarPubMed
Wiegel, M., Gottschaldt, U., Hennebach, R., et al. Complications and adverse effects associated with continuous peripheral nerve blocks in orthopedic patients. Anesth Analg 2007; 104: 15781582.CrossRefGoogle ScholarPubMed
Nielsen, C. H.. Bleeding after intercostal nerve block in a patient anticoagulated with heparin. Anesthesiology 1989; 71: 162164.CrossRefGoogle Scholar
Weller, R. S., Gerancher, J. C., Crews, J. C., and Wade, K. L.. Extensive retroperitoneal hematoma without neurologic deficit in two patients who underwent lumbar plexus block and were later anticoagulated. Anesthesiology 2003; 98: 581585.CrossRefGoogle ScholarPubMed
Aveline, C. and Bonnet, F.. Delayed retroperitoneal haematoma after failed lumbar plexus block. Br J Anaesth 2004; 93: 589591.CrossRefGoogle ScholarPubMed
Dauri, M., Faria, S., Celidonio, L., et al. Retroperitoneal haematoma in a patient with continuous psoas compartment block and enoxaparin administration for total knee replacement. Br J Anaesth 2009; 103: 309310.CrossRefGoogle Scholar
Buckenmaier, C. C. III, Shields, S. H., Auton, A., et al. Continuous peripheral nerve block in combat casualties receiving low-molecular weight heparin. Br J Anaesth 2006: 97; 874877.CrossRefGoogle ScholarPubMed
Chelly, J. E. and Schilling, D.. Thromboprophylaxis and peripheral nerve blocks in patients undergoing joint arthroplasty. J Arthroplasty 2008; 23: 350354.CrossRefGoogle ScholarPubMed
Chelly, J. E., Szczodry, D., and Neumann, K. J.. International normalized ratio and prothrombin time values before the removal of a lumbar plexus catheter in patients receiving warfarin after total hip replacement. Br J Anaesth 2008; 101: 250254.CrossRefGoogle ScholarPubMed
Marino, J., Curtin, J., Patrick, C., et al. A retrospective analysis of the safety of removal of continuous lumbar plexus catheters in postoperative anticoagulated patients. ASRA 2011.Google Scholar
Chelly, J. E., Clark, L. D., Gebhard, R. E., et al. Consensus of the Orthopedic Anesthesia, Pain, and Rehabilitation Society on the use of peripheral nerve blocks in patients receiving thromboprophylaxis. J Clin Anesth 2014; 26: 6974.CrossRefGoogle ScholarPubMed
Sharrock, N. E., Gonzalez Della Valle, A., Go, G., et al. Potent anticoagulants are associated with a higher all-cause mortality rate after hip and knee arthroplasty. Clin Orthop Relat Res 2008; 466: 714721.CrossRefGoogle ScholarPubMed
Westrich, G. H., Farrell, C., Bono, J. V., et al. The incidence of venous thromboembolism after total hip arthroplasty: a specific hypotensive epidural anesthesia protocol. J Arthroplasty 1999; 14: 456463.CrossRefGoogle ScholarPubMed
Dorr, L. D., Gendelman, V., Maheshwari, A., et al. Multimodal thromboprophylaxis for total hip and knee arthroplasty based on risk assessment. J Bone Joint Surg Am 2007; 89: 26482657.CrossRefGoogle ScholarPubMed
Allen, C., Glasziou, P., and Del Mar, C.. Bed rest: a potentially harmful treatment needing more careful evaluation. Lancet 1999; 354: 12291233.CrossRefGoogle ScholarPubMed
Amaragiri, S. V. and Lees, T. A.. Elastic compression stockings in the prevention of deep vein thrombosis (Cochrane Review). Cochrane Library 2001; Issue 3.Google Scholar
Holbrook, A. M., Pereira, J. A., Labiris, R., et al. Systematic overview of warfarin and its drug and food interactions. Arch Intern Med 2005; 165: 10951106.CrossRefGoogle ScholarPubMed
Whitlon, D. S., Sadowski, J. A., and Suttie, J. W.. Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry 1978; 17: 13711377.CrossRefGoogle ScholarPubMed
Bjrk, I. and Lindahl, U.. Mechanism of the anticoagulant action of heparin. Mol Cell Biochem 1982; 48: 161182.CrossRefGoogle Scholar
Laporte, S., Chapelle, C., Bertoletti, L., et al. Indirect comparison meta-analysis of two enoxaparin regimens in patients undergoing major orthopaedic surgery. Impact on the interpretation of thromboprophylactic effects of new anticoagulant drugs. Thromb Haemost 2014; 112: 503510.Google ScholarPubMed
Henry, B. L., Connell, J., Liang, A., et al. Interaction of antithrombin with sulfated, low molecular weight lignins. J Biol Chem 2009; 284: 2089720908.CrossRefGoogle ScholarPubMed
Martel, N., Lee, J., and Wells, P. S.. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood 2005; 106: 27102715.CrossRefGoogle ScholarPubMed
Warkentin, T. E., Sheppard, J. I., Sigouin, C. S., et al. Gender imbalance and risk factor interactions in heparin-induced thrombocytopenia. Blood 2006; 108: 29372941.CrossRefGoogle ScholarPubMed
Warkentin, T. E.. HIT: more than just heparin. Blood 2010; 115: 16641665.CrossRefGoogle ScholarPubMed
Greinacher, A., Alban, S., Omer-Adam, M. A., et al. Heparin-induced thrombocytopenia: a stoichiometry-based model to explain the differing immunogenicites of unfractionated heparin, low-molecular-weight heparin, and fondaparinux in different clinical settings. Thromb Res 2008; 122: 211220.CrossRefGoogle ScholarPubMed
Mismetti, P. and Laporte, S.. Rivaroxaban: clinical pharmacology. Ann Fr Anesth Reanim 2008; 27: S16S21.CrossRefGoogle ScholarPubMed
Eriksson, B. I., Borris, L. C., Friedman, R. J., et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after hip arthroplasty. The first RECORD study evaluating the use of rivaroxaban versus enoxparin for thromboprophylaxis after orthopedic surgery, in this case, total hip arthroplasty (THA). N Engl J Med 2008; 358: 27652775.CrossRefGoogle Scholar
Kakkar, A. K., Brenner, B., Dahl, O. E., et al. Extended duration rivaroxaban versus short-term enoxaparin for the prevention of venous thromboembolism after total hip arthroplasty: a doubleblind, randomised controlled trial. Lancet 2008; 372: 3139.CrossRefGoogle ScholarPubMed
Lassen, M. R., Ageno, W., Borris, L. C., et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty. N Engl J Med 2008; 358: 27762786.CrossRefGoogle ScholarPubMed
Turpie, A. G., Lassen, M. R., Davidson, B. L., et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty (RECORD4): a randomised trial. Lancet 2009; 373: 16731680.CrossRefGoogle ScholarPubMed
Wienen, W., Stassen, J. M., Priepke, H., Ries, U. J., and Hauel, N.. In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb Haemost 2007; 98: 155162.Google ScholarPubMed
RE-MOBILIZE Writing Committee, Ginsberg, J. S., Davidson, B. L., et al. Oral thrombin inhibitor dabigatran etexilate vs North American enoxaparin regimen for prevention of venous thromboembolism after knee arthroplasty surgery. J Arthroplasty 2009; 24: 19.Google ScholarPubMed
Steffel, J. and Luscher, T. F.. Novel anticoagulants in clinical development: focus on factor Xa and direct thrombin inhibitors. J Cardiovasc Med 2009; 10: 616623.CrossRefGoogle ScholarPubMed
Raghavan, N., Frost, C. E., Yu, Z., et al. Apixaban metabolism and pharmacokinetics after oral administration to humans. Drug Metab Dispos 2009; 37: 7481.CrossRefGoogle ScholarPubMed
Imberti, D., Gallerani, M., and Manfredini, R.. Therapeutic potential of apixaban in the prevention of venous thromboembolism in patients undergoing total knee replacement surgery. J Thromb Thrombolysis 2012; 34: 208213.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×