Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-29T23:11:35.975Z Has data issue: false hasContentIssue false

27 - One-Way Chi-Square

Published online by Cambridge University Press:  05 June 2012

Lawrence S. Meyers
Affiliation:
California State University, Sacramento
Glenn Gamst
Affiliation:
University of La Verne, California
A. J. Guarino
Affiliation:
Alabama State University
Get access

Summary

Overview

Chi-square is classified as a nonparametric statistic, a class of statistics described in Section 15.3.2 when we discussed the Spearman rho correlation. The procedure is applied to categorical variables as described in this chapter and the following one. Chi-square was developed in 1900 by Karl Pearson (Pearson, 1900) as the solution to finding a goodness-of-fit test on nonnormal distributions (only quantitative variables can be described by the normal curve).

In the simplest application of chi-square, we apply the chi-square test to the frequency data associated with the categories of a single variable; such a design is known as a one-way chi-square design. The data consist of frequencies of occurrences for each category, and our intent is to determine if those frequencies are distributed as we would expect (expected frequencies for the categories) if only chance influenced the outcome.

The expected frequencies in a chi-square analysis constitute the null hypothesis or the model against which the chi-square statistic is tested. The issue is whether the data fit, that is, conform to, the model or if they significantly diverge from the model; in this sense, the chi-square test can be thought of as a goodness-of-fit test assessing how well the model fits the data.

The crux of the chi-square procedure lies in formulating the expected frequencies to which the observed frequencies are compared. In general, there are three strategies that are commonly employed to generate the expected frequencies of the categories: equal frequencies, preestablished frequencies, and mathematically modeled frequencies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×