Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-20T10:08:58.190Z Has data issue: false hasContentIssue false

10 - Active cellular protrusion: continuum theories and models

Published online by Cambridge University Press:  10 November 2009

Mohammad R. K. Mofrad
Affiliation:
University of California, Berkeley
Roger D. Kamm
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

ABSTRACT: This chapter attempts to develop a general perspective on the phenomenon of active protrusion by ameboid cells. Except in rare special cases, principles of mass and momentum conservation require that one consider at least two phases to explain the process of cellular protrusion. These phases are best identified with the cytosolic and cytoskeletal components of the cytoplasm. A continuum mechanical formalism of Reactive Interpenetrative Flows (RIF) is contructed. It is general enough to encompass within its framework a large range of theories of active cell deformation and movement. Most physically plausible theories of protrusion fall into one of two classes: protrusion driven by cytoskeletal self-interactions; or protrusion driven by cytoskeletal–membrane interactions. These are described within the RIF formalism. The RIF formalism is cast in a form that is amenable to computer simulations through standard numerical algorithms. An example is next given of the numerical study of the most elementary protrusive event possible: the formation of a single pseudopod by an isolated round cell. Some final thoughts are offered on the role of modeling in understanding cellular mechanical activity.

Cellular protrusion: the standard cartoon

Over the past decades, experiments have consistently demonstrated that active protrusion in animal cells is accompanied by a local increase in cytoskeletal density through active polymerization. A review of the evidence for this is beyond the scope of this chapter, but key points include the high concentration of filamentous actin observed by fluorescence or EM at the leading edge of growing protrusions, as well as the abrogation of protrusion by nearly any disruption of actin polymerization, such as that caused by cytochalasin.

Type
Chapter
Information
Cytoskeletal Mechanics
Models and Measurements in Cell Mechanics
, pp. 204 - 224
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×