Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T05:53:30.491Z Has data issue: false hasContentIssue false

P

Published online by Cambridge University Press:  05 May 2023

J. F. Cade
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Critical Care Compendium
1001 Topics in Intensive Care & Acute Medicine
, pp. 349 - 411
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Honarmand, K, Rafay, H, Le, J, et al. A systematic review of risk factors for sleep disruption in critically ill adults. Crit Care Med 2020; 48: 1066.CrossRefGoogle ScholarPubMed

Bibliography

Becker, C. Diseases of calcium metabolism and metabolic bone disease. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Singer, FR. Clinical efficacy of salmon calcitonin in Paget’s disease of bone. Calcif Tissue Int 1991; 49 (suppl. 2): S7.CrossRefGoogle ScholarPubMed
Singer, FR. Paget’s disease of bone. In: De Groot, LJ, ed. Endocrinology. Philadelphia. 1995; p 1259.Google Scholar
Singer, FR, Minoofar, PN. Bisphosphonates in the treatment of disorders of mineral metabolism. Adv Endocrinol Metab 1995; 6: 259.Google Scholar
Walsh, JP. Paget’s disease of bone. Med J Aust 2004; 181: 262.CrossRefGoogle ScholarPubMed

Bibliography

Boeck, L, Graf, R, Eggimann, P, et al. Pancreatic stone protein: a marker of organ failure and outcome in ventilator-associated pneumonia. Chest 2011; 140: 925.Google Scholar
De Waele, JJ. Pancreatic stone protein for predicting outcome in peritonitis: limitations and challenges. Crit Care Med 2013; 41: 1150.CrossRefGoogle ScholarPubMed
Graf, R, Schiesser, M, Reding, T, et al. Exocrine meets endocrine: pancreatic stone protein and regenerating protein – two sides of the same coin. J Surg Res 2006; 133: 113.CrossRefGoogle ScholarPubMed

Bibliography

Baker, S. Diagnosis and management of acute pancreatitis. Crit Care Resusc 2004; 6: 17.Google ScholarPubMed
Baron, TH, Morgan, DE. Acute necrotizing pancreatitis. N Engl J Med 1999; 340: 1412.Google Scholar
Basnayake, C, Ratnam, D. Blood tests for acute pancreatitis. Aust Prescriber 2015; 38: 128.Google Scholar
Berger, HG, Matsuno, S, Cameron, JL, eds. Diseases of the Pancreas. Berlin: Springer. 2008.Google Scholar
Chowdhury, RS, Forsmark, CE. Review article: pancreatic function testing. Aliment Pharmacol Ther 2003; 17: 733.CrossRefGoogle ScholarPubMed
Dellinger, EP, Tellado, JM, Soto, NE, et al. Early antibiotic treatment for severe acute necrotizing pancreatitis. Ann Surg 2007; 245: 674.Google Scholar
Dervenis, C, Bassi, C. Evidence-based assessment of severity and management of acute pancreatitis. Br J Surg 2000; 87: 257.Google Scholar
Entock, FC, Chong, P, Menezes, N, et al. A randomized study of early nasogastric versus nasojejunal feeding in severe acute pancreatitis. Am J Gastroenterol 2005; 100: 432.CrossRefGoogle Scholar
Go, VLW, et al., eds. The Pancreas: Biology, Pathobiology and Diseases. New York: Raven Press. 1993.Google Scholar
Green, PHR, Tall, AR. Drugs, alcohol and malabsorption. Am J Med 1979; 67: 1066.CrossRefGoogle ScholarPubMed
Hasibeder, WR, Torgersen, C, Rieger, M, et al. Critical care of the patient with acute pancreatitis. Anaesth Intens Care 2009; 37: 190.Google Scholar
Howes, N, Greenhall, W, Stocken, DD, et al. Cationic trypsinogen mutations and pancreatitis. Gastroenterol Clin North Am 2004; 33: 767.CrossRefGoogle ScholarPubMed
Layer, P, Yamamoto, H, Kalthoff, L, et al. The different courses of early- and late-onset idiopathic and alcoholic chronic pancreatitis. Gastroenterology 1994; 107: 1481.Google Scholar
Malledant, Y, Malbrain, MLNG, Reuter, DA. What’s new in the management of severe acute pancreatitis. Intens Care Med 2015; 41: 1957.CrossRefGoogle ScholarPubMed
Marshall, JB. Acute pancreatitis: a review with an emphasis on new developments. Arch Intern Med 1993; 153: 1185.Google Scholar
Marshall, JC. Surgical approaches to the management of acute severe necrotizing pancreatitis. Curr Opin Crit Care 1999; 5: 159.CrossRefGoogle Scholar
Mitchell, RM, Byrne, M, Baillie, J. Pancreatitis. Lancet 2003; 361: 1447.CrossRefGoogle Scholar
Nathens, AB, Curtis, JR, Beale, RJ, et al. Management of the critically ill patient with severe acute pancreatitis. Crit Care Med 2004; 32: 2524.Google Scholar
Nesvaderani, M, Eslick, GD, Cox, MR. Acute pancreatitis: update on management. Med J Aust 2016; 202: 420.CrossRefGoogle Scholar
Pastor, CM, Matthay, MA, Frossard, L-L. Pancreatitis-associated acute lung injury: new insights. Chest 2003; 124: 2341.CrossRefGoogle ScholarPubMed
Rotstein, OD. Surgical approach #1 to severe necrotizing pancreatitis. Curr Opin Crit Care 1999; 5: 160.CrossRefGoogle Scholar
Sheth, S, Ketwaroo, G, Freedman, S. Diseases of the pancreas. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Shields, CJ, Winter, DC, Redmond, HP. Lung injury in acute pancreatitis: mechanisms, prevention, and therapy. Curr Opin Crit Care 2002; 8: 158.Google Scholar
Starr, MG. Surgical approach #2 to severe necrotizing pancreatitis. Curr Opin Crit Care 1999; 5: 162.Google Scholar
Steer, ML, Meldolesi, J. The cell biology of experimental pancreatitis. N Engl J Med 1987; 316: 144.Google Scholar
Steer, ML, Waxman, I, Freedman, S. Chronic pancreatitis. N Engl J Med 1995; 332: 1482.Google Scholar
Tattersall, SJN, Apte, MV, Wilson, JS. A fire inside: current concepts in chronic pancreatitis. Intern Med J 2008; 38: 592.Google Scholar
Wyncoll, DL. The management of severe acute necrotizing pancreatitis: an evidence-based review of the literature. Intens Care Med 1999; 25: 146.Google Scholar
Yousaf, M, McCallion, K, Diamond, T. Management of severe acute pancreatitis. Br J Surg 2003; 90: 407.Google Scholar

Bibliography

Lyons, MK, Meyer, FB. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin Proc 1990; 65: 684.Google Scholar

Bibliography

Im, JG, Chang, KH, Reeder, MM. Current diagnostic imaging of pulmonary and cerebral paragonimiasis, with pathological correlation. Semin Roentgenol 1997; 32:301.Google Scholar
Pachucki, CT, Levandowski, RA, Brown, VA, et al. American paragonimiasis treated with praziquantel. N Engl J Med 1984; 311: 582.Google Scholar

Bibliography

Lehane, L. Paralytic shellfish poisoning. Med J Aust 2001; 175: 29.Google Scholar

Bibliography

Cascino, TL. Neurologic complications of systemic cancer. Med Clin North Am 1993; 77: 265.Google Scholar
Clamon, GH, Evans, WK, Shepherd, FA, et al. Myasthenic syndrome and small cell cancer of the lung: variable response to antineoplastic therapy. Arch Intern Med 1984; 144: 999.CrossRefGoogle ScholarPubMed
Cohen, PR, Kurzrock, R. Sweet’s syndrome and malignancy. Am J Med 1987; 82: 1220.Google Scholar
Cohen, PR, Talpaz, M, Kurzrock, R. Malignancy-associated Sweet’s syndrome: review of the world literature. J Clin Oncol 1988; 6: 1887.CrossRefGoogle ScholarPubMed
Cronin, RE, Kaehny, WD, Miller, PD, et al. Renal cell carcinoma: unusual systemic manifestations. Medicine 1976; 55: 291.Google Scholar
Hall, TC, ed. Paraneoplastic syndromes. Ann NY Acad Sci 1974; 230: 1.Google Scholar
Jemec, GBE. Hypertrichosis lanuginosa acquisita. Arch Dermatol 1986; 122: 805.Google Scholar
Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar
McLean, DI. Cutaneous paraneoplastic syndromes. Arch Dermatol 1986; 122: 765.Google Scholar
O’Neill, JH, Murray, NM, Newsom-Davis, J. The Lambert-Eaton myasthenic syndrome. Brain 1988; 111: 577.Google Scholar
Peterson, K, Rosenblum, MK, Kotanides, H, et al. Paraneoplastic cerebellar degeneration. Neurology 1992; 42: 1931.Google Scholar
Ruther, U, Nunnensiek, C, Bokemeyer, C, eds. Paraneoplastic Syndromes. Basel: Karger. 1998.CrossRefGoogle Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Ariyama, J, Shimada, H, Aono, M, et al. Propofol improves recovery from paraquat acute toxicity in vitro and in vivo. Intens Care Med 2000; 26: 981.Google Scholar
Gawarammana, IB, Buckley, NA. Medical management of paraquat ingestion. Br J Clin Pharmacol 2011; 72: 745.CrossRefGoogle ScholarPubMed
Lin, JL, Lin-Tan, DT, Chen, KH, et al. Repeated pulse of methylprednisolone and cyclophosphamide with continuous dexamethasone therapy for patients with severe paraquat poisoning. Crit Care Med 2006; 34: 368.CrossRefGoogle ScholarPubMed
Ng, LL, Naik, RB, Polak, A. Paraquat ingestion with methaemoglobinaemia treated with methylene blue. BMJ 1982; 284: 1445.Google Scholar
Proudfoot, AT, Stewart, MS, Levitt, T, et al. Paraquat poisoning: significance of plasma paraquat concentrations. Lancet 1979; 2: 330.CrossRefGoogle ScholarPubMed
Senarathna, L, Eddleston, M, Wilks, MF, et al. Prediction of outcome after paraquat poisoning by measurement of paraquat concentration. QJM 2009; 102: 251.CrossRefGoogle ScholarPubMed
Suzuki, K, Takasu, N, Arita, S, et al. Evaluation of severity indexes of patients with paraquat poisoning. Hum Exp Toxicol 1991; 10: 21.Google Scholar
Vale, JA, Meredith, TJ, Buckley, BM. Paraquat poisoning: clinical features and immediate general management. Hum Toxicol 1987; 6: 41.Google Scholar

Bibliography

Elston, D. Infestations. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Khemasuwan, D, Farver, CF, Mehta, AC. Parasites of the airways. Chest 2014; 145: 883.Google Scholar

Bibliography

Editorial. Paroxysmal nocturnal haemoglobinuria. Lancet 1992; 339: 395.Google Scholar
Henry, DH, Spivak, JL. Clinical use of erythropoietin. Curr Opinion Hematol 1995; 2: 118.Google Scholar
Hillmen, P, Lewis, SM, Bessler, M, et al. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 1995; 333: 1253.Google Scholar
Krantz, SB. Erythropoietin. Blood 1991; 77: 419.Google Scholar
Young, NS, Meyers, G, Schrezenmeier, H, et al. The management of paroxysmal nocturnal hemoglobinuria: recent advances in diagnosis and treatment and new hope for patients. Semin Hematol 2009; 46: S1.Google Scholar

Bibliography

Eisinger, RS, Islam, S. Caring for people with untreated pectus excavatum. Chest 2020; 157: 590.CrossRefGoogle ScholarPubMed
Fonkalsrud, EW, Dunn, JC, Atkinson, JB. Repair of pectus excavatum deformities: 30 years of experience in 375 patients. Ann Surg 2000; 231: 443.Google Scholar

Bibliography

Bondeson, J. Phthiriasis: the riddle of the lousy disease. J R Soc Med 1998; 91: 328.Google Scholar
Elston, D. Infestations. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Usha, V, Gopalakrishnan Nair, TV. A comparative study of oral ivermectin and topical permethrin cream in the treatment of scabies. J Am Acad Dermatol 2000: 42: 236.Google Scholar

Bibliography

Ahmed, AR, Spiegelman, Z, Cavacini, LA, et al. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. New Engl J Med 2006; 355: 1772.Google Scholar
Bystryn, JC, Jiao, D, Natow, S. Treatment of pemphigus with intravenous immunoglobulin. J Am Acad Dermatol 2002; 47: 358.Google Scholar
Canizares, MJ, Smith, DI, Conners, MS, et al. Successful treatment of mucous membrane pemphigoid with etanercept in 3 patients. Arch Dermatol 2006; 142: 1457.Google Scholar
Jolles, S, Hughes, J, Whittaker, S. Dermatological uses of high-dose intravenous immunoglobulin. Arch Dermatol 1998; 134: 80.Google Scholar
Korman, N. Bullous pemphigoid. J Am Acad Dermatol. 1987; 21: 1089.Google Scholar
Provost, TT. Pemphigus. N Engl J Med 1982; 306: 1224.Google Scholar
Stanley, JR, Amagai, M. Pemphigus, bullous impetigo and staphylococcal scalded skin syndrome. N Engl J Med 2006; 355: 1800.Google Scholar
Turner, MS, Sutton, D, Sauder, DN. The use of plasmapheresis and immunosuppression in the treatment of pemphigus vulgaris. J Am Acad Dermatol 2000; 43: 1058.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Adler, Y, Charron, P, Imazio, M, et al. Guidelines for the diagnosis and management of pericardial disease. Eur heart J 2015; 36: 2921.Google Scholar
Chiabrando, JG, Bonaventura, A, Vecchie, A, et al. Management of acute and recurrent pericarditis. JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75: 76.Google Scholar
Imazio, M, Gaita, F, LeWinter, M. Evaluation and treatment of pericarditis: a systematic review. JAMA 2015; 314: 1498.Google Scholar
Lazaros, G, Vlachopoulos, C. Acute pericarditis clinical features and outcome: an update on the latest evidence. Chest 2020; 158: 2262.Google Scholar

Bibliography

Griggs, R, Ptacek, L. The periodic paralysis. Hosp Pract 1992; 27: 123.Google Scholar
Knochel, J. Neuromuscular manifestations of electrolyte disorders. Am J Med 1982; 72: 521.Google Scholar

Bibliography

Pruthi, RK, Tefferi, A. Pernicious anemia revisited. Mayo Clin Proc 1994; 69: 144.Google Scholar
Romain, M, Sviri, S, Linton, DM, et al. The role of vitamin B12 in the critically ill – a review. Anaesth Intens Care 2016; 44: 447.Google Scholar
Wald, NJ, Bower, C. Folic acid, pernicious anaemia, and prevention of neural tube defects. Lancet 1994; 343: 307.Google Scholar

Bibliography

Bagshaw, SM, Stelfox, HT, Iwashyna, TJ, et al. Timing of onset of persistent critical illness: a multi-centre retrospective cohort study. Intens Care Med 2019; 44: 2134.Google Scholar
Darvall, JN, Boonstra, T, Norman, J, et al. Persistent critical illness: baseline characteristics, intensive care course, and cause of death. Crit Care Resusc 2019; 21: 110.Google Scholar
Iwashyna, TJ, Hodgson, CL, Pilcher, D, et al. Towards defining persistent critical illness and other varieties of chronic critical illness. Crit Care Resusc 2015; 17: 215.Google Scholar
Nelson, JE, Cox, CE, Hope, AA, et al. Chronic critical illness. Am J Respir Crit Care Med 2010; 182: 446.CrossRefGoogle ScholarPubMed
Sakusic, A, Gajic, O. Chronic critical illness: unintended consequence of intensive care medicine. Lancet Respir Med 2016; 4: 531.Google Scholar
Viglianti, EM, Bagshaw, SM, Bellomo, R, et al. Hospital-level variation in the development of persistent critical illness. Intens Care Med 2020; 46: 1567.Google Scholar

Bibliography

Alderazi, Y, Yeh, MW, Robinson, BG, et al. Phaeochromocytoma: current concepts. Med J Aust 2005; 183: 201.Google Scholar
Bravo, EL, Gifford, RW. Pheochromocytoma: diagnosis, localization and management. N Engl J Med 1984; 311: 1298.Google Scholar
Bravo, EL, Tagle, R. Pheochromocytoma: state-of-the-art and future prospects. Endocr Rev 2003; 24: 539.Google Scholar
Daly, PA, Landsberg, L. Phaeochromocytoma: diagnosis and management. Bailliere’s Clin Endocrinol Metab 1992; 6: 143.CrossRefGoogle ScholarPubMed
Editorial. The function of adrenaline. Lancet 1985; 1: 561.Google Scholar
Golub, MS, Tuck, ML. Diagnostic and therapeutic strategies in pheochromocytoma. Endocrinologist 1992; 2: 101.Google Scholar
Lenders, JW, Pacak, K, Walther, MM, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA 2002; 287: 1427.Google Scholar
Naranjo, J, Dodd, S, Martin, YN. Perioperative management of pheochromocytoma. J Cardiothorac Vasc Anesth 2017; 31: 1427.Google Scholar
Sutton, MG, Sheps, SG, Lie, JT. Prevalence of clinically unsuspected pheochromocytoma. Mayo Clin Proc 1981; 56: 354.Google Scholar
Whalen, RK, Althausen, AF, Daniels, GH. Extra-adrenal pheochromocytoma. J Urol 1992; 147: 1.Google Scholar

Bibliography

Grimes, PE. Melasma: etiologic and therapeutic considerations. Arch Dermatol 1995; 131: 1453.Google Scholar
Grimes, PE. Disorders of pigmentation. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Hendrix, JD, Greer, KE. Cutaneous hyperpigmentation caused by systemic drugs. Int J Dermatol 1992; 31: 458.Google Scholar
Orlow, SJ. Albinism: an update. Semin Cutan Med Surg 1997; 16: 24.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Masuda, A, Hirota, K, Satone, T, et al. Pink urine during propofol anesthesia. Anesth Analg 1996; 83: 666.Google Scholar

Bibliography

Baylis, PH. Posterior pituitary function in health and disease. Clin Endocrinol Metab 1983; 12: 747.Google Scholar
Bills, DC, Meyer, FB, Laws, ER, et al. A retrospective analysis of pituitary apoplexy. Neurosurgery 1993; 33: 602.Google Scholar
Boonen, E, Van den Berghe, G. Understanding the HPA response to critical illness: novel insights with clinical implications. Intens Care Med 2015; 41: 131.Google Scholar
Burke, CW. The pituitary megatest: outdated? Clin Endocrinol 1992; 36: 133.Google Scholar
Chrousos, GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332: 1351.Google Scholar
Dash, RJ, Gupta, V, Suri, S. Sheehan’s syndrome. Aust NZ J Med 1993; 23: 26.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Elster, AD. Modern imaging of the pituitary. Radiology 1993; 187: 1.Google Scholar
Hoffman, DM, Ho, KKY. Growth hormone deficiency in adults: to treat or not to treat. Aust NZ J Med 1999; 29: 342.Google Scholar
Holland, J, Bakker, J, Feelders, RA. What’s new on the HPA axis? Intens Care Med 2015; 41: 1477.Google Scholar
Hurley, DM, Ho, KKY. Pituitary disease in adults. Med J Aust 2004; 180: 419.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Magner, JA. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocrinol Rev 1990; 11: 354.Google Scholar
Melmed, S. Pituitary. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Molitch, ME, Russell, EJ. The pituitary ‘incidentaloma’. Ann Intern Med 1990; 112: 925.Google Scholar
Robertson, GL. Physiology of ADH secretion. Kidney Int 1987; 32 (suppl. 21): S20.Google Scholar
Russell, JA, Walley, KR, Singer, J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 2008; 358: 877.Google Scholar
Sharshar, T, Carlier, R, Blanchard, A, et al. Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med 2002; 30: 497.Google Scholar
Shupnik, MA, Ridgway, EC, Chin, WW. Molecular biology of thyrotropin. Endocr Rev 1989; 10: 459.Google Scholar
Vance, ML. Hypopituitarism. N Engl J Med 1994; 330: 1651.Google Scholar
Van den Berghe, G, de Zegher, F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med 1996; 24: 1580.Google Scholar
Vokes, TJ, Robertson, GL. Disorders of antidiuretic hormone. Endocrinol Metab Clin North Am 1988; 17: 281.Google Scholar

Bibliography

Butler, T. A clinical study of bubonic plague: observations of the 1970 Vietnam epidemic with emphasis on coagulation studies, skin histology and electrocardiograms. Am J Med 1972; 53: 268.Google Scholar
Inglesby, TV, Dennis, DT, Henderson, DA, et al. Plague as a biological weapon: medical and public health management. JAMA 2000; 283: 2281.Google Scholar
Liles, WC. Infections due to brucella, francisella, yersinia pestis, and bartonella. In: Scientific American Medicine. Infectious Disease. Hamilton: Dekker Medicine. 2020.Google Scholar
Von Reyn, CF, Weber, NS, Tempest, B, et al. Epidemiologic and clinical features of an outbreak of bubonic plague in New Mexico. J Infect Dis 1977; 136: 489.Google Scholar
Whitby, M, Ruff, TA, Street, AC, et al. Biological agents as weapons 2: anthrax and plague. Med J Aust 2002; 176: 605.Google Scholar

Bibliography

Couriel, D, Weinstein, R. Complications of therapeutic plasma exchange: a recent assessment. J Clin Apheresis 1994; 9: 1.Google Scholar
Madore, F. Plasmapheresis. In: Scientific American Medicine. Nephrology. Hamilton: Dekker Medicine. 2020.Google Scholar
Reeves, HM, Winters, JL. The mechanisms of action of plasma exchange. Br J Haematol 2014; 164: 342.Google Scholar
Reimann, PM, Mason, PD. Plasmapheresis: technique and complications. Intens Care Med 1990; 16: 3.Google Scholar
Rimmer, E, Houston, BL, Kumar, A, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 2014; 18: 699.Google Scholar

Bibliography

Cattaneo, M. Inherited platelet-based bleeding disorders. J Thromb Haemost 2003; 1: 1628.Google Scholar
Desborough, MJR, Oakland, KA, Landon, G, et al. Desmopressin for treatment of platelet dysfunction and reversal of antiplatelet agents: a systematic review and meta-analysis of randomized controlled trials. J Thromb Haemost 2017; 15: 263.Google Scholar
Deykin, D. Uremic bleeding. Kidney Int 1983; 24: 698.Google Scholar
Ferrara, JLM. The febrile platelet transfusion reaction: a cytokine shower. Transfusion 1995; 35: 89.Google Scholar
George, JN, Shattil, SJ. The clinical importance of acquired abnormalities of platelet function. N Engl J Med 1991; 324: 27.Google Scholar
Hankey, GJ, Eikelboom, JW. Antiplatelet drugs. Med J Aust 2003; 178: 568.Google Scholar
Lacoste, L, Hung, J, Lam, JY. Acute and delayed antithrombotic effects of alcohol in humans. Am J Cardiol 2001; 87: 82.Google Scholar
Leung, LLK, Zehnder, JL. Platelet disorders. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Nurden, AT, Nurden, P. Inherited disorders of platelet function: selected updates. J Thromb Haemost 2015; 13: S2.Google Scholar
Pigozzi, L, Aron, JP, Ball, J, et al. Understanding platelet dysfunction in sepsis. Intens Care Med 2016; 42: 583.Google Scholar
Rice, TW, Wheeler, AP. Coagulopathy in critically ill patient. Part 1: platelet disorders. Chest 2009; 136: 1622.Google Scholar
Sattler, FR, Weitekamp, MR, Ballard, JO. Potential for bleeding with the new beta-lactam antibiotics. Ann Intern Med 1986; 105: 924.Google Scholar
Schafer, AI. Bleeding and thrombosis in the myeloproliferative disorders. Blood 1984; 64: 1.Google Scholar
Yang, Z, Stulz, P, von Segesser, L, et al. Different interactions of platelets with arterial and venous coronary bypass vessels. Lancet 1991; 337: 939.Google Scholar

Bibliography

Bain, BJ. Ethnic and sex differences in the total and differential white cell count and platelet count. J Clin Pathol 1996; 49: 664.Google Scholar
Bombace, NM, Holmes, CE. The platelet contribution to cancer progression. J Thromb Haemost 2011; 9: 237.Google Scholar
Cognasse, F, Garraud, O, Pozzetto, B, et al. How can non-nucleated platelets be so smart? J Thromb Haemost 2016; 14: 794.Google Scholar
Handtke, S, Thiele, T. Large and small platelets — (when) do they differ? J Thromb Haemost 20020; 18: 1256.Google Scholar
Hoylaerts, MF, Vanassche, T, Verhamme, P. Bacterial killing by platelets; making sense of (H)IT. J Thromb Haemost 2018; 16: 1182.Google Scholar
Izzi, B, Bonaccio, M, De Gaetano, G, et al. Learning by counting blood platelets in population studies: survey and perspective a long way after Bizzozero. J Thromb Haemost 2018; 16: 1711.Google Scholar
Jurk, K, Kehrel, BE. Platelets: physiology and biochemistry. Semin Thromb Hemost 2005; 31: 381.Google Scholar
Koenen, RR. The prowess of platelets in immunity and inflammation. Thromb Haemost 2016; 116: 605.Google Scholar
Koupenova, M, Freedman, JE. Platelets: the unsung hero in the immune response. J Thromb Haemost 2015; 13: 268.Google Scholar
Pigozzi, L, Aron, JP, Ball, J, et al. Understanding platelet dysfunction in sepsis. Intens Care Med 2016; 42: 583.Google Scholar
Smyth, SS, McEver, RP, Weyrich, AS, et al. Platelet functions beyond hemostasis. J Thromb Haemost 2009; 7: 1759.Google Scholar

Bibliography

Agrawal, A, Palkar, A, Talwar, A. The multiple dimensions of platypnea-orthodeoxia syndrome: a review. Respir Med 2017; 129: 31.Google Scholar

Bibliography

Davignon, J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004; 109: 39.Google Scholar

Bibliography

Belani, CP, ed. International symposium on thoracic malignancies. Chest 1998; 113 (suppl.): 1S.Google Scholar
Cagle, PT, Allen, TC. Pathology of the pleura: what the pulmonologists need to know. Respirolory 2011; 16: 430.Google Scholar
Feller-Kopman, D, Light, R. Pleural disease. N Engl J Med 2018; 378: 1754.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Matin, TN, Gleeson, FV. Interventional radiology of pleural diseases. Respirology 2011; 16: 419.Google Scholar
Muller, NL. Imaging of the pleura. Radiology 1993; 186: 297.Google Scholar
Porcel, JM. Pearls and myths in pleural fluid analysis. Respirology 2011; 16: 44.Google Scholar
Sahn, SA. The pleura. Am Rev Respir Dis 1988; 138: 184.Google Scholar

Bibliography

Alexandrakis, MG, Passam, FH, Kyriakou, DS, et al. Pleural effusions in hematologic malignancies. Chest 2004; 125: 1546.Google Scholar
Alfageme, I, Munoz, F, Pena, N, et al. Empyema of the thorax in adults: etiology, microbiologic findings, and management. Chest 1993; 103: 839.Google Scholar
Bartter, T, Santarelli, R, Akers, SM, et al. The evaluation of pleural effusion. Chest 1994; 106: 1209.Google Scholar
Bates, D, Yang, N, Bailey, M, et al. Prevalence, characteristics, drainage and outcome of radiologically diagnosed pleural effusions in critically ill patients. Crit Care Resusc 2020; 22: 45.Google Scholar
Brogi, E, Gargani, L, Bignami, E, et al. Thoracic ultrasound for pleural effusion in the intensive care unit: a narrative review from diagnosis to treatment. Crit Care 2017; 21: 325.Google Scholar
Cagle, PT, Allen, TC. Pathology of the pleura: what the pulmonologists need to know. Respirolory 2011; 16: 430.Google Scholar
Cerfolio, RJ, Allen, MS, Deschamps, C, et al. Postoperative chylothorax. J Thor Cardiovasc Surg 1996; 112: 1361.Google Scholar
Gunnels, J. Perplexing pleural effusions. Chest 1978; 74: 390.Google Scholar
Jamal, S, Maurer, JR. Pulmonary disease and the menstrual cycle. Pulmonary Perspectives 1994; 11(3): 3.Google Scholar
Joseph, J, Sahn, SA. Thoracic endometriosis syndrome: new observations from an analysis of 110 cases. Am J Med 1996; 100: 164.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Light, RW. Pleural effusions. Med Clin North Am 2011; 95: 1055.Google Scholar
Light, RW, MacGregor, MI, Luchsinger, PC, et al. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med 1972; 77: 507.Google Scholar
Lynch, TJ. Management of malignant pleural effusions. Chest 1993; 103 (suppl.): S385.Google Scholar
Martinez, FJ, Villanueva, AG, Pickering, R, et al. Spontaneous hemothorax. Medicine 1992; 71: 354.Google Scholar
Matin, TN, Gleeson, FV. Interventional radiology of pleural diseases. Respirology 2011; 16: 419.Google Scholar
Muller, NL. Imaging of the pleura. Radiology 1993; 186: 297.Google Scholar
Porcel, JM. Pearls and myths in pleural fluid analysis. Respirology 2011; 16: 44.Google Scholar
Romero, S, Candela, A, Martin, C, et al. Evaluation of different criteria for the separation of pleural transudates from exudates. Chest 1993; 104: 399.Google Scholar
Ryu, JH, Tomassetti, S, Maldonado, F. Update on uncommon pleural effusions. Respirology 2011; 16: 238.Google Scholar
Sahn, SA. The pleura. Am Rev Respir Dis 1988; 138: 184.Google Scholar
Sahn, SA. Management of complicated parapneumonic effusions. Am Rev Respir Dis 1993; 148: 813.Google Scholar
Shiel, WC, Prete, PE. Pleuropulmonary manifestations of rheumatoid arthritis. Semin Arthritis Rheum 1984; 13: 235.Google Scholar
Taylor, JR, Ryu, J, Colby, TV, et al. Lymphangioleiomyomatosis. N Engl J Med 1990; 323: 1254.Google Scholar
Valentine, VG, Raffin, TA. The management of chylothorax. Chest 1992; 102: 586.Google Scholar
Vaz, MA, Marchi, E, Vargas, FS. Cholesterol in the separation of transudates and exudates. Curr Opin Pulm Med 2001; 7: 183.Google Scholar
Walker-Renard, PB, Vaughan, LM, Sahn, SA. Chemical pleurodesis for malignant pleural effusions. Ann Intern Med 1994; 120: 56.Google Scholar

Bibliography

Cagle, PT, Allen, TC. Pathology of the pleura: what the pulmonologists need to know. Respirolory 2011; 16: 430.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Matin, TN, Gleeson, FV. Interventional radiology of pleural diseases. Respirology 2011; 16: 419.Google Scholar
Muller, NL. Imaging of the pleura. Radiology 1993; 186: 297.Google Scholar
Sahn, SA. The pleura. Am Rev Respir Dis 1988; 138: 184.Google Scholar

Bibliography

Garland, SM, O’Reilly, MA. The risks and benefits of antimicrobial therapy in pregnancy. Drug Safety 1995; 13: 188.Google Scholar
Goodrum, LA. Pneumonia in pregnancy. Semin Perinatol 1997; 21: 276.Google Scholar
Rigby, FB, Pastorek, JG. Pneumonia during pregnancy. Clin Obstet Gynecol 1996; 39: 107.Google Scholar
Riley, L. Pneumonia and tuberculosis in pregnancy. Infect Dis Clin North Am 1997; 11: 119.Google Scholar

Bibliography

Alifano, M, Roth, T, Broet, SC, et al. Catamenial pneumothorax: a prospective study. Chest 2003; 124: 1004.Google Scholar
Andrivet, P, Djedaini, K, Teboul, JL, et al. Spontaneous pneumothorax: comparison of thoracic drainage vs immediate or delayed needle aspiration. Chest 1995; 108: 335.Google Scholar
Baumann, MH. Pneumothorax and air travel – editorial. Chest 2009; 136: 655.Google Scholar
Baumann, MH, Strange, C. Treatment of spontaneous pneumothorax. A more aggressive approach? Chest 1997; 112: 789.Google Scholar
Baumann, MH, Strange, C. The clinician’s perspective on pneumothorax management. Chest 1997; 112: 822.Google Scholar
Baumann, MH, Strange, C, Heffner, JE, et al. Management of spontaneous pneumothorax: an American College of Chest Physicians Delphi Consensus Statement. Chest 2001; 119: 590.Google Scholar
Chen, K-Y, Jerng, J-S, Liao, W-Y, et al. Pneumothorax in the ICU: patient outcomes and prognostic factors. Chest 2002; 122: 678.Google Scholar
Dugan, KC, Laxmanan, B, Murgu, S, et al. Management of persistent air leaks. Chest 2017; 152: 417.Google Scholar
Grotberg, JC, Hyzy, RC, De Cardenas, J, et al. Bronchopleural fistula in the mechanically ventilated patient: a concise review. Crit Care Med 2021; 49: 292.Google Scholar
Haynes, D, Baumann, MH. Pleural controversy: aetiology of pneumothorax. Respirology 2011; 16: 604.Google Scholar
Hazelrigg, SR. Secondary spontaneous pneumothorax: catamenial pneumothorax. Chest 2003; 124: 781.Google Scholar
Henry, M, Arnold, T, Harvey, J, et al. BTS guidelines for the management of spontaneous pneumothorax. Thorax 2003; 58 (suppl.): ii39.Google Scholar
Legras, A, Mansuet-Lupo, A, Rousset-Jablonski, C, et al. Pneumothorax in women of child-bearing age. Chest 2014; 145: 354.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Light, RW. Management of spontaneous pneumothorax. Am Rev Respir Dis 1993; 148: 245.Google Scholar
Light, RW. Pleural controversy: optimal chest tube size for drainage. Respirology 2011; 16: 244.Google Scholar
Manaker, S. Circulating endometrial cells: a diagnostic test for distinguishing catamenial from spontaneous pneumothorax. Chest 2020; 157: 245.Google Scholar
Watt, AG. Spontaneous pneumothorax. Med J Aust 1978; 1: 186.Google Scholar
Woodring, JH, Baker, MD, Stark, P. Pneumothorax ex vacuo. Chest 1996; 110: 1102.Google Scholar
Yarmus, L, Feller-Kopman, D. Pneumothorax in the critically ill patient. Chest 2012; 141: 1098.Google Scholar

Bibliography

Alapat, PM, Zimmerman, JL. Toxicology in the critical care unit. Chest 2008; 133: 1006.Google Scholar
Camporesi, EM. Use of hyperbaric oxygen in critical care. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 10. Fullerton: Society of Critical Care Medicine. 1990; p 219.Google Scholar
Chiew, AL, Reith, D, Pomerleau, A, et al. Updated guidelines for the management of paracetamol poisoning in Australia and New Zealand. Med J Aust 2020; 212: 175.Google Scholar
Kales, SN, Christiani, DC. Current concepts: acute chemical emergencies. N Engl J Med 2004; 350: 800.Google Scholar
Levine, M, Brooks, DE, Truitt, CA, et al. Toxicology in the ICU: part I, II & III. Chest 2011; 140: 795, 1072 & 1357.Google Scholar
Ling, L, Clark, RF, Erickson, T, et al., eds. Toxicology Secrets. Philadelphia; Hanley & Belfus. 2001.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leiken, JB, Murray, P, et al. Adult toxicology in critical care: part I: general approach to the intoxicated patient. Chest 2003; 123: 577.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Olson, KR, ed. Poisoning & Drug Overdose. 7th edition. New York: McGraw-Hill (Appleton & Lange). 2017.Google Scholar
Rosenstock, L, Cullen, M, Brodkin, C, et al., eds. Textbook of Clinical Occupational and Environmental Medicine. 2nd edition. Philadelphia: Saunders. 2004.Google Scholar
Rossoff, IS, ed. Encyclopedia of Clinical Toxicology. Boca Raton: CRC Press. 2002.Google Scholar
Shannon, MW, Borron, SW, Burns, MJ, eds. Haddad and Winchester’s Clinical Management of Poisoning and Drug Overdose. 4th edition. Philadelphia: WB Saunders. 2007.Google Scholar
True, B-L, Dreisbach, RH, eds. Dreisbach’s Handbook of Poisoning. Boca Raton: CRC Press. 2002.Google Scholar
Trujillo, MH, Guerrero, J, Fragachan, C, et al. Pharmacologic antidotes in critical care medicine: a practical guide for drug administration. Crit Care Med 1998; 26: 377.Google Scholar
Wiegand, TJ, Patel, MM, Olson, KR. Management of poisoning and drug overdose. In: Scientific American Medicine. Interdisciplinary Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Fine, PE, Griffiths, UK. Global poliomyelitis eradication: status and implications. Lancet 2007; 369: 1321.Google Scholar
Jiang, P, Faase, JA, Toyoda, H, et al. Evidence for emergence of diverse polioviruses from C-cluster coxsachie A viruses and implications for global poliovirus eradication. Proc Natl Acad Sci USA 2007; 104: 9204.Google Scholar
May, M, Durrheim, D, Roberts, JA, et al. The risks of medical complacency towards poliomyelitis. Med J Aust 2020; 213: 61.Google Scholar
Satcher, D. Polio eradication by the year 2000. JAMA 1999; 281: 221.Google Scholar

Bibliography

Albert, DA, Rimon, D, Silverstein, MD. The diagnosis of poyarteritis nodosa. Arthritis Rheum 1988; 31: 1117.Google Scholar

Bibliography

Kidson, W. Polycystic ovary syndrome: a new direction in treatment. Med J Aust 1998; 169: 537.Google Scholar
Lobo, RA, Carmina, E. The importance of diagnosing the polycystic ovary syndrome. Ann Intern Med 2000; 132:989.Google Scholar
Norman, RJ, Wu, R, Stankiewixz, MT. Polycystic ovary syndrome. Med J Aust 2004; 180: 132.Google Scholar
Pal, L, Keefe, K. Polycystic ovary syndrome. In: Scientific American Medicine. Women’s Health. Hamilton: Dekker Medicine. 2020.Google Scholar
Shorakae, S, Boyle, J, Teede, H. Polycystic ovary syndrome: a common hormonal condition with major metabolic sequelae that physicians should know about. Intern Med J 2014; 44: 720.Google Scholar
Teede, HJ, Misso, ML, Deeks, AA, et al. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust 2011; 195 (suppl.): S65.Google Scholar

Bibliography

Berlin, NI. Polycythemia vera: an update. Semin Hematol 1986; 23: 131.Google Scholar
Broudy, VC. The polycythemias. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Campbell, PJ, Green, AR. The myeloproliferative disorders. N Engl J Med 2006; 355: 2452.Google Scholar
Challoner, T, Briggs, C, Rampling, MW, et al. A study of the haematological and haemorrheological consequences of venesection. Br J Haematol 1986; 62: 671.Google Scholar
Editorial. Pseudopolycythaemia. Lancet 1987; 2: 603.Google Scholar
Gareau, R, Audran, M, Barnes, R, et al. Erythropoietin abuse in athletes. Nature 1996; 380: 113.Google Scholar
Golde, DW, Hocking, WG, Koeffler, HP, et al. Polycythemia: mechanisms and management. Ann Intern Med 1981; 95: 71.Google Scholar
Gordeuk, VR, Sergueeva, AI, Miasnikova, GY, et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 2004; 103: 3924.Google Scholar
Gruppo Italiano Studio Policitemia. Polycythaemia vera. Ann Intern Med 1995; 123: 656.Google Scholar
Hinshelwood, S, Bench, AJ, Green, AR. Pathogenesis of polycythaemia vera. Blood Rev 1997; 11: 224.Google Scholar
Krantz, SB. Erythropoietin. Blood 1991; 77: 419.Google Scholar
Kwaan, HC, ed. The hyperviscosity syndromes. Semin Thromb Hemost 2003; 29: 433.Google Scholar
Noakes, TD. Tainted glory: doping and athletic performance. N Engl J Med 2004; 351: 847.Google Scholar
Schafer, AI. Bleeding and thrombosis in myeloproliferative disorders. Blood 1984; 64: 1.Google Scholar
Tefferi, A. Myelofibrosis with myeloid metaplasia. N Engl J Med 2000; 342: 1255.Google Scholar
Watts, EJ, Lewis, SM. Spurious polycythaemia. Scand J Haematol 1983; 31: 241.Google Scholar

Bibliography

Hamilton, CR, Shelley, WM, Tumulty, PA. Giant cell arteritis: including temporal arteritis and polymyalgia rheumatica. Medicine 1971; 50: 1.Google Scholar
Hunder, GG, Bloch, DA, Michel, BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122.Google Scholar
Owen, CE, Buchanan, RRC, Hoi, A. Recent advances in polymyalgia rheumatica. Intern Med J 2015; 45: 1102.Google Scholar
Zilko, PJ. Polymyalgia rheumatica and giant cell arteritis. Med J Aust 1996; 165: 438.Google Scholar

Bibliography

Dalakas, MC. Polymyositis, dermatomyositis, and inclusion-body myositis. N Engl J Med 1991; 325: 1487.Google Scholar
Fathi, M, Lundberg, IE. Interstitial lung disease in polymyositis and dermatomyositis. Curr Opin Rheumatol 2005; 17: 701.Google Scholar
Gerami, P, Schope, JM, McDonald, L, et al. A systematic review of adult-onset clinically amyopathic dermatomyositis (dermatomyositis sine myositis): a missing link within the spectrum of the idiopathic inflammatory myopathies. J Am Acad Dermatol 2006; 54: 597.Google Scholar
Jorizzo, JL. Dermatomyositis; practical aspects. Arch Dermatol 2002; 138: 114.Google Scholar
Limaye, VS, Blumbergs, P, Roberts-Thomson, PJ. Idiopathic inflammatory myopathies. Intern Med J 2009; 39: 179.Google Scholar
Marie, I, Hatron, PY, Levesque, H, et al. Influence of age on characteristics of polymyositis and dermatomyositis in adults. Medicine 1999; 78: 139.Google Scholar
Miller, FW. Classification and prognosis of inflammatory muscle disease. Rheum Dis Clin North Am 1994; 20: 811.Google Scholar
Schwarz, MI. The lung in polymyositis. Clin Chest Med 1998; 19: 701.Google Scholar
Sigurgeirsson, B, Lindelof, B, Edhag, O, et al. Risk of cancer in patients with dermatomyositis or polymyositis. N Engl J Med 1992; 326: 363.Google Scholar
Tazelaar, HD, Viggiano, RW, Pickersgill, J, et al. Interstitial lung disease in polymyositis and dermatomyositis: clinical features and prognosis as correlated with histologic findings. Am Rev Resp Dis 1990; 141: 727.Google Scholar

Bibliography

Anderson, KE, Bloomer, JR, Bonkovsky, H, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 2005; 142: 439.Google Scholar
Anderson, KE, Kappas, A. The porphyrias. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Brodie, MJ, Moore, MR, Thompson, GG, et al. Pregnancy and the acute porphyrias. Br J Obstet Gynaec 1977; 84: 726.Google Scholar
Grandchamp, B. Acute intermittent porphyria. Semin Liver Dis 1998; 18: 17.Google Scholar
Kauppinen, R, Mustajoki, P. Prognosis of acute porphyria: occurrence of acute attacks, precipitating factors, and associated diseases. Medicine 1992; 71: 1.Google Scholar
Lamon, JM, Bennett, M, Frykholm, BC, et al. Prevention of acute porphyric attacks by intravenous haematin. Lancet 1978; 2: 492.Google Scholar
Moore, MR. Biochemistry of porphyria. Int J Biochem 1993; 25: 1353.Google Scholar
Mustajoki, P, Heinonen, J. General anesthesia in ‘inducible’ porphyrias. Anesthesiology 1980; 53: 15.Google Scholar
Mustajoki, P, Nordman, Y. Early administration of heme arginate for acute porphyric attacks. Arch Intern Med 1993; 153: 2004.Google Scholar
Puy, H, Gouya, L, Deybach, JC. Porphyrias. Lancet 2010; 375: 924.Google Scholar
Ratnaike, S, Blake, D, Campbell, D, et al. Plasma ferritin levels as a guide to the treatment of porphyria cutanea tarda by venesection. Aust J Dermatol 1988; 29: 3.Google Scholar
Yeung Laiwah, AC, Moore, MR, Goldberg, A. Pathogenesis of acute porphyria. Quart J Med 1987; 63: 377.Google Scholar

Bibliography

Arbogast, BW, Taylor, RN. Molecular Mechanisms of Pre-eclampsia. Berlin: Springer-Verlag. 1997.Google Scholar
Brown, MA, Lowe, SA. Current management of pre-eclampsia. Med J Aust 2009; 190: 3.Google Scholar
Bucher, HC, Guyatt, GH, Cook, RJ, et al. Effect of calcium supplementation on pregnancy-induced hypertension and preeclampsia. A meta-analysis of randomised controlled trials. JAMA 1996; 275: 1113.Google Scholar
Chua, S, Redman, CWG. Are prophylactic anticonvulsants required in severe pre-eclampsia? Lancet 1991; 337: 250.Google Scholar
CLASP (Collaborative Low-dose Aspirin Study in Pregnancy) Collaborative Group. CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. Lancet 1994; 343: 619.Google Scholar
Cunningham, FG, Grant, NF. Prevention of preeclampsia – a reality? N Engl J Med 1989; 321: 606.Google Scholar
Davison, JM, Shiells, EA, Barron, WM, et al. Changes in the metabolic clearance of vasopressin and plasma vasopressinase throughout human pregnancy. J Clin Invest 1989; 83: 1313.Google Scholar
Dekker, GA, Sibai, B. Primary, secondary, and tertiary prevention of pre-eclampsia. Lancet 2001; 357: 209.Google Scholar
Douglas, KA, Redman, CWG. Eclampsia in the United Kingdom. BMJ 1994; 309: 1395.Google Scholar
Durr, JA, Hoggard, JG, Hunt, JM, et al. Diabetes insipidus in pregnancy associated with abnormally high circulating vasopressinase activity. N Engl J Med 1987; 316: 1070.Google Scholar
Editorial. Are ACE inhibitors safe in pregnancy? Lancet 1989; 2: 482.Google Scholar
Gant, NF, Worley, RJ, Everett, RB, et al. Control of vascular responsiveness during human pregnancy. Kidney Int 1980; 18: 253.Google Scholar
Higby, Suiter CR, Phelps, JY, et al. Normal values of urinary albumin and total protein excretion during pregnancy. Am J Obstet Gynecol 1994; 171: 984.Google Scholar
Hod, T, Cerdeira, AS, Karumanchi, SA. Molecular mechanisms of preeclampsia. Cold Spring Harb Perspect Med 2015; 5: a023473.Google Scholar
Ihle, BU, Long, P, Oats, J. Early onset pre-eclampsia: recognition of underlying renal disease. BMJ 1987; 294: 79.Google Scholar
Leone, M, Einav, S. Severe preeclampsia: what’s new in intensive care? Intens Care Med 2015; 41: 1343.Google Scholar
Lucas, MJ, Leveno, KJ, Cunningham, FG. A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med 1995; 333: 201.Google Scholar
Magpie Trial Collaborative Group. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomized placebo controlled trial. Lancet 2002; 359: 1877.Google Scholar
Martin, JN, Files, FC, Blake, PG. Plasma exchange for preeclampsia: I. Postpartum use for persistently severe preeclampsia with HELLP syndrome. Am J Obstet Gynecol 1990; 162: 126.Google Scholar
Myatt, L, Webster, RP. Vascular biology of preeclampsia. J Thromb Haemost 2009; 7: 375.Google Scholar
Need, JA. Pre-eclampsia in pregnancies by different fathers: immunological studies. BMJ 1975; 1: 548.Google Scholar
Perry, KG, Martin, JN. Abnormal hemostasis and coagulopathy in preeclampsia and eclampsia. Clin Obstet Gynecol 1992; 35: 338.Google Scholar
Redman, C. Platelets and the beginnings of preeclampsia. N Engl J Med 1990; 323: 478.Google Scholar
Redman, CWG, Roberts, JM. Management of pre-eclampsia. Lancet 1993; 341: 1451.Google Scholar
Roberts, J, Taylor, R, Goldfen, A. Clinical and biochemical evidence of endothelial cell dysfunction in pregnancy syndrome eclampsia. Am J Hypertens 1991; 4: 700.Google Scholar
Sibai, BM, El-Nazer, A, Gonzalez-Ruiz, A. Severe preeclampsia in young primigravid women: subsequent pregnancy outcome and remote prognosis. Am J Obstet Gynecol 1986; 155: 1011.Google Scholar
The Eclampsia Trial Collaborative Group. Which anticonvulsant for women with eclampsia? Evidence from the Collaborative Eclampsia Trial. Lancet 1995; 345: 1455.Google Scholar
Williams, D. Pre-eclampsia and long-term maternal health. Obstet Med 2012; 5: 98.Google Scholar
Williams, DJ, de Swiet, M. The pathophysiology of pre-eclampsia. Intens Care Med 1997; 23: 620.Google Scholar

Bibliography

Al-Kalbani, M, Lapinsky, SE. Prgenancy and risk. Crit Care Med 2020; 48: 765.Google Scholar
Arnout, J, Spitz, B, Wittevrongel, C, et al. High-dose intravenous immunoglobulin treatment of a pregnant patient with an antiphospholipid syndrome. Thromb Haemost 1994; 71: 741.Google Scholar
Australian Society for the Study of Hypertension in Pregnancy. Management of hypertension in pregnancy: consensus statement. Med J Aust 1993; 158: 700.Google Scholar
Barron, WM. The pregnant surgical patient: medical evaluation and management. Ann Intern Med 1984; 101: 683.Google Scholar
Bates, SM, Greer, IA, Pabinger, I, et al. Venous thromboembolism, thrombophilia, antithrombotic therapy, and pregnancy. Chest 2008; 133 (suppl.): 844S.Google Scholar
Battino, D, Granata, T, Binelli, S, et al. Intrauterine growth in the offspring of epileptic mothers. Acta Neurol Scand 1992; 86: 555.Google Scholar
Beeley, L. Adverse effects of drugs in later pregnancy. Clin Obstet Gynaecol 1981; 24: 275.Google Scholar
Bick, RL. Recurrent miscarriage syndrome due to blood coagulation protein/platelet defects: prevalence, treatment and outcome results. Clin Appl Thromb Hemost 2000; 6: 115.Google Scholar
Branch, DW, Scott, JR, Kochenour, NK, et al. Obstetric complications associated with the lupus anticoagulant. N Engl J Med 1985; 313: 1322.Google Scholar
Brenner, B, Conard, J, eds. Women’s issues in thrombophilia. Semin Thromb Hemost 2003; 29: 1.Google Scholar
Briggs, GG, Freeman, RL, Towers, CV, et al., eds. Drugs in Pregnancy and Lactation. 11th edition. Philadelphia: Lippincott Williams & Wilkins. 2017.Google Scholar
Brodie, MJ, Moore, MR, Thompson, GG, et al. Pregnancy and the acute porphyrias. Br J Obstet Gynaec 1977; 84: 726.Google Scholar
Brooks, DC, Sznyter, LA. Pregnancy. In: Scientific American Surgery, Section VII Special Problems in Perioperative Care, Chapter 11. New York: Scientific American. 1998.Google Scholar
Brown, M, Whitworth, J. The kidney in hypertensive pregnancies – victim and villain. Am J Kidney Dis 1992; 20: 427.Google Scholar
Brown, MA, Buddle, ML. Hypertension in pregnancy: maternal and foetal outcomes according to laboratory and clinical features. Med J Aust 1996; 165: 360.Google Scholar
Burrow, GN. The management of thyrotoxicosis in pregnancy. N Engl J Med 1985; 313: 562.Google Scholar
Cheah, S, Gao, Y, Mo, S, et al. Fertility, pregnancy and post partum management after bariatric surgery: a narrative review. Med J Aust 2022; 216: 96.Google Scholar
Chestnut, DH. Critical care in obstetric practice. In: Fuhrman, BP, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 7. Fullerton: Society of Critical Care Medicine. 1989; 121.Google Scholar
Cope, I. Medicines in pregnancy. Med J Aust 1991; 155: 214.Google Scholar
Council on Scientific Affairs, American Medical Association. Fetal effects of maternal alcohol use. JAMA 1983; 249: 2517.Google Scholar
Cowchock, FS, Reece, EA, Balaban, D, et al. Repeated fetal losses associated with antiphospholipid antibodies. Am J Obstet Gynecol 1992; 166: 1318.Google Scholar
Dansky, LV, Rosenblatt, DS, Andermann, E. Mechanisms of teratogenesis: folic acid and antiepileptic therapy. Neurology 1992; 42 (suppl. 5): 32.Google Scholar
Editorial. Are ACE inhibitors safe in pregnancy? Lancet 1989; 2: 482.Google Scholar
Farmer, JC, ed. Critical illness of pregnancy. Crit Care Med 2005; 33 (suppl.): S248.Google Scholar
Fildes, J, Reed, L, Jones, N, et al. Trauma: the leading cause of maternal death. J Trauma 1992; 32: 643.Google Scholar
Gilbert, GL. Infections in pregnant women. Med J Aust 2002; 176: 229.Google Scholar
Ginsberg, JS, Bates, SM. Management of venous thromboembolism during pregnancy. J Thromb Haemost 2003; 1: 1435.Google Scholar
Ginsberg, JS, Brill-Edwards, P, Johnston, M, et al. Relationship of antiphospholipid antibodies to pregnancy loss in patients with systemic lupus erythematosus. Blood 1992; 80: 975.Google Scholar
Ginsberg, JS, Hirsh, J. Use of antithrombotic agents during pregnancy. Chest 1992; 102 (suppl. 4): 385S.Google Scholar
Greer, IA. Thrombosis in pregnancy: maternal and foetal issues. Lancet 1999; 353: 1258.Google Scholar
Grunfeld, J-P, Pertuiset, N. Acute renal failure in pregnancy. Am J Kidney Dis 1987; 9: 359.Google Scholar
Guntupalli, KK, Hall, N, Karnad, DR, et al. Critical illness in pregnancy. Chest 2015; 148: 1093 & 1333.Google Scholar
Hanly, JG, Gladman, DD, Rose, TH, et al. Lupus pregnancy: a prospective study of placental changes. Arthritis Rheum 1988; 31: 358.Google Scholar
Hayslett, JP. Postpartum renal failure. N Engl J Med 1985; 312: 1556.Google Scholar
Hazelgrove, JF, Price, C, Pappachan, VJ, et al. Multicenter study of obstetric admissions to 14 intensive care units in southern England. Crit Care Med 2001; 29: 770.Google Scholar
Henriquez, DDCA, Bloemenkamp, KWM, Van Der Bom, JG. Management of postpartum haemorrhage: how to improve maternal outcomes? Thromb Haemost 2018; 16: 1523.Google Scholar
Hiilesmaa, VK. Pregnancy and birth in women with epilepsy. Neurology 1992; 42 (suppl. 5): 8.Google Scholar
Homans, DC. Peripartum cardiomyopathy. N Engl J Med 1985; 312: 1432.Google Scholar
Horowitz, MD, Gomez, GA, Santiesteban, R, et al. Acute appendicitis during pregnancy. Arch Surg 1985; 120: 1362.Google Scholar
Hotham, N, Hotham, E. Drugs in breastfeeding. Aust Prescriber 2015; 38: 156.Google Scholar
Imperiale, TF, Petrulis, AS. A meta-analysis of low-dose aspirin for the prevention of pregnancy-induced hypertensive disease. JAMA 1991; 266: 237.Google Scholar
Johns, KR, Morand, EF, Littlejohn, GO. Pregnancy outcome in systemic lupus erythematosus. Aust NZ J Med 1998; 28: 18.Google Scholar
Johnson, MJ. Obstetric complications and rheumatic disease. Rheum Dis Clin North Am 1997; 23: 169.Google Scholar
Jones, WB, Lewis, JL. Integration of surgery and other techniques in the management of trophoblastic malignancy. Obstet Gynecol Clin North Am 1988; 15: 565.Google Scholar
Kaaja, E, Kaaja, R, Hiilesmaa, V. Major malformations in offspring of women with epilepsy. Neurology 2003; 50: 575.Google Scholar
Kennedy, D. Classifying drugs in pregnancy. Aust Prescriber 2014; 37: 38.Google Scholar
Kjellberg, U, Andersson, N-E, Rosen, S, et al. APC resistance and other haemostatic variables during pregnancy and puerperium. Thromb Haemost 1999; 81: 527.Google Scholar
Koch, S, Losche, G, Jager-Roman, E, et al. Major and minor birth malformations and antiepileptic drugs. Neurol 1992; 42 (suppl. 5): 83.Google Scholar
Koshy, M, Burd, L. Management of pregnancy in sickle cell anemia. Hematol Oncol Clin North Am 1991; 5: 585.Google Scholar
Lapinsky, SE. Respiratory care of the critically ill pregnant patient. Curr Opin Crit Care 1996; 3: 1.Google Scholar
Lapinsky, SE. Cardiopulmonary complications of pregnancy. Crit Care Med 2005; 33: 1616.Google Scholar
Laskin, CA, Bombardier, C, Hannah, ME. Prednisolone and aspirin in women with autoantibodies and unexplained recurrent fetal loss. N Engl J Med 1997; 337: 148.Google Scholar
Ledger, WJ. Antibiotics in pregnancy. Clin Obstet Gynaecol 1977; 20: 411.Google Scholar
Lemire, RJ. Neural tube defects. JAMA 1988; 259: 558.Google Scholar
Leung, AS, Millar, LK, Koonings, PP, et al. Perinatal outcome in hypothyroid pregnancies. Obstet Gynecol 1993; 81: 349.Google Scholar
Lim, V, Katz, A, Lindheimer, M. Acid-base regulation in pregnancy. Am J Physiol 1976; 231: 1764.Google Scholar
Lindheimer, MD, Katz, AI. Hypertension in pregnancy. N Engl J Med 1985; 313: 675.Google Scholar
Lockshin, MD. Lupus pregnancy. Clin Rheum Dis 1985; 11: 611.Google Scholar
Loverro, G, Pansini, V, Greco, P, et al. Indications and outcome for intensive care unit admission during puerperium. Arch Gynecol Obstet 2002; 265: 195.Google Scholar
McDonald, CF, Burdon, JGW. Asthma in pregnancy and lactation: a position paper for the Thoracic Society of Australia and New Zealand. Med J Aust 1996; 165: 485.Google Scholar
McLintock, C, James, AH. Obstetric hemorrhage. J Thromb Haemost 2011; 9: 1441.Google Scholar
McPartin, J, Halligan, A, Scott, JM, et al. Accelerated folate breakdown in pregnancy. Lancet 1993; 341: 148.Google Scholar
Oakley, CM. Anticoagulants in pregnancy. Br Heart J 1995; 74: 107.Google Scholar
Oats, JJN (chairman). Annual Report for the Year 2007. Melbourne: Consultative Council on Obstetric and Paediatric Mortality and Morbidity. 2008.Google Scholar
Persellin, RH. The effect of pregnancy on rheumatoid arthritis. Bull Rheum Dis 1977; 27: 922.Google Scholar
Phelan, JP, Pacheco, LD, Foley, MR, et al., eds. Critical Care Obstetrics. 6th edition. Oxford: Wiley. 2018.Google Scholar
Pisani, RJ, Rosenow, EC. Pulmonary edema associated with tocolytic therapy. Ann Intern Med 1989; 110: 714.Google Scholar
Pollock, W, Rose, L, Dennis, C-L. Pregnant and postpartum admissions to the intensive care unit: a systematic review. Intens Care Med 2010; 36: 1465.Google Scholar
Rabinovich, A, Abdul-Kadir, R, Thachil, J, et al. DIC in obstetrics: Diagnostic score, highlights in management, and international registry – communication from the DIC and Women’s Health SSCs of the International Society of Thrombosis and Haemostasis. J Thromb Haemost 2019; 17: 1562.Google Scholar
Rand, JH, Wu, X-X, Andree, HAM, et al. Pregnancy loss in the antiphospholipid-antibody-syndrome – a possible thrombogenic mechanism. N Engl J Med 1997; 337: 154.Google Scholar
Rizk, NW, Kalassian, KG, Gilligan, T, et al. Obstetric complications in pulmonary and critical care medicine. Chest 1996; 110: 791.Google Scholar
Rubin, PC. Beta-blockers in pregnancy. N Engl J Med 1981; 305: 1323.Google Scholar
Sanson, B-J, Lensing, AWA, Prins, MH, et al. Safety of low-molecular-weight heparin in pregnancy: a systematic review. Thromb Haemost 1999; 81: 668.Google Scholar
Schrier, RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy. N Engl J Med 1988; 319: 1065 & 1127.Google Scholar
Seely, EW, Ecker, J. Medical complications in pregnancy. In: Scientific American Medicine. Women’s Health. Hamilton: Dekker Medicine. 2020.Google Scholar
Smith, A, Eccles-Smith, J, D’Emden, M, et al. Thyroid disorders in pregnancy and postpartum. Aust Prescriber 2017; 40: 214.Google Scholar
Stirrat, GM. Recurrent miscarriage. Lancet 1990; 336: 673.Google Scholar
Therapeutic Goods administration. Prescribing medicines in pregnancy database. www.tga.gov.au/mode/4012. 2019.Google Scholar
Vasquez, DN, Estenssoro, E, Canales, HS, et al. Clinical characteristics and outcomes of obstetric patients requiring ICU admission. Chest 2007; 131: 718.Google Scholar
Wald, NJ, Bower, C. Folic acid, pernicious anaemia, and prevention of neural tube defects. Lancet 1994; 343: 307.Google Scholar
Yerby, M, Koepsell, T, Darling, J. Pregnancy complications and outcomes in a cohort of women with epilepsy. Epilepsia 1985; 26: 631.Google Scholar
Yerby, MS. Pregnancy and epilepsy. Epilepsia 1991; 32 (suppl. 6): S51.Google Scholar
Yerby, MS, Friel, PN, McCormick, K. Antiepileptic drug disposition during pregnancy. Neurology 1992; 42 (suppl. 5): 12.Google Scholar
Yerby, MS, Leavitt, A, Erickson, DM, et al. Antiepileptics and the development of congenital anomalies. Neurology 1992; 42 (suppl. 5): 132.Google Scholar
Zeeman, GG. Obstetric critical care: a blueprint for improved outcomes. Crit Care Med 2006; 34 (suppl.): S208.Google Scholar
Zwart, JJ, Dupuis, JRO, Richters, A, et al. Obstetric intensive care unit admission: a 2-year nationwide population-based cohort study. Intens Care Med 2010; 36: 256.Google Scholar

Bibliography

Hodgson, D. Of gods and leeches: treatment of priapism in the nineteenth century. J R Soc Med 2003; 96: 562.Google Scholar
Melman, A, Serels, S. Priapism. Int J Impot Res 2000; 12: S133.Google Scholar
Pautler, SE, Brock, GB. Priapism: from Priapus to the present time. Urol Clin North Am 2001; 28: 391.Google Scholar

Bibliography

Afzelius, BA. A human syndrome caused by immotile cilia. Science 1976; 193: 317.Google Scholar
Corbelli, R, Bringolf-Isler, B, Amacher, A, et al. Nasal nitric oxide measurements to screen for primary ciliary dyskinesia. Chest 2004; 126: 1054.Google Scholar
Horani, A, Ferkol, TW. Advances in the genetics of primary ciliary dyskinesia: clinical implications. Chest 2018; 154: 645.Google Scholar
Kennedy, MP, Noone, PG, Cardon, J, et al. Calcium stone lithoptysis in primary ciliary dyskinesia. Respir Med 2007; 101: 76.Google Scholar
Marthin, JK, Mortensen, J, Pressler, T, et al. Pulmonary radioaerosol mucociliary clearance in diagnosis of primary ciliary dyskinesia. Chest 2007; 132: 966.Google Scholar
Mygind, N, Nielsen, MH, Pedersen, M. Kartagener’s syndrome and abnormal cilia. Eur J Respir Dis 1983; 64 (suppl. 127): 1.Google Scholar
Noone, PG, Leigh, MW, Sannuti, A, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169: 459.Google Scholar

Bibliography

Hempel, S, Newberry, SJ, Maher, AR, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 2012; 307: 1959.Google Scholar
Ho, KM, Kalgudi, S, Corbett, J-M, et al. Gut microbiota in surgical and critically ill patients. Anaesth Intens Care 2020; 48: 179.Google Scholar
Johnstone, J, Meade, M, Lauzier, F, et al. Effect of probiotics on incident ventilator-associated pneumonia in critically ill patients: a randomized clinical trial. JAMA 2021; 326: 1024.Google Scholar
Manzanares, W, Lemieux, M, Langlois, PL, et al. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care 2016; 19: 262.Google Scholar
Morrow, LE, Wischmeyer, P. Blurred lines: dysbiosis and probiotics in the ICU. Chest 2017; 151: 492.Google Scholar

Bibliography

Chukwuemeka, A, Ko, R, Ralph-Edwards, A. Short-term low-dose propofol anaesthesia associated with severe metabolic acidosis. Anaesth Intens Care 2006; 34: 651.Google Scholar
De Waele, JJ, Hoste, E. Propofol infusion syndrome in a patient with sepsis. Anaesth Intens Care 2006; 34: 676.Google Scholar
Ernest, D, French, C. Propofol infusion syndrome – report of an adult fatality. Anaesth Intens Care 2003; 31: 316.Google Scholar
Fudickar, A, Bein, B, Tonner, PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol 2006; 19: 404.Google Scholar
Hempill, S, McMenamin, L, Bellamy, MC, et al. Propofol infusion syndrome: a structured literature review and analysis of published case reports. Br J Anaesth 2019; 122: 448.Google Scholar
Iyer, VN, Hoel, R, Rabinstein, AA. Propofol infusion syndrome in patients with refractory status epilepticus: an 11-year clinical experience. Crit Care Med 2009; 37: 3024.Google Scholar
Krajcova, A, Waldauf, P, Andel, M, et al. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care 2015; 19: 398.Google Scholar
Masuda, A, Hirota, K, Satone, T, et al. Pink urine during propofol anesthesia. Anesth Analg 1996; 83: 666.Google Scholar
Mizock, BA, Falk, JL. Lactic acidosis in critical illness. Crit Care Med 1992; 20: 80.Google Scholar
Riker, RR, Glisic, EK, Fraser, GL. Propofol infusion syndrome: difficult to recognize, difficult to study. Crit Care Med 2009; 37: 3169.Google Scholar
Vasile, B, Rasulo, F, Candiani, A, et al. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intens Care Med 2003; 29: 1417.Google Scholar

Bibliography

Bernard, GR, Vincent, J-L, Laterre, P-F, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699.Google Scholar
Bertina, RM, Koeleman, RPC, Koster, T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64.Google Scholar
Castoldi, E, Rosing, J. APC resistance: biological basis and acquired influences. J Thromb Haemost 2009; 8: 445.Google Scholar
Dhainaut, J-F, Aird, WC, Esmon, CT, eds. Protein C pathways: bedside to bench. Crit Care Med 2004; 32; suppl.Google Scholar
Dowd, P, Ham, S-W, Naganathan, S, et al. The mechanism of action of vitamin K. Annu Rev Nutr 1995; 15: 419.Google Scholar
Esmon, C. The protein C pathway. Crit Care Med 2000; 28: 556.Google Scholar
Esmon, CT, Johnson, AE, Esmon, NL, et al. Initiation of the protein C pathway. Ann NY Acad Sci 1991; 614: 30.Google Scholar
Hillarp, A, Dahlback, B. Activated protein C resistance. Vessels 1997; 3: 4.Google Scholar
Kisiel, W. Human plasma protein C: isolation, characterization and mechanism of activation by alpha-thrombin. J Clin Invest 1979; 64: 761.Google Scholar
Kjellberg, U, Andersson, N-E, Rosen, S, et al. APC resistance and other haemostatic variables during pregnancy and puerperium. Thromb Haemost 1999; 81: 527.Google Scholar
Koster, T, Rosendaal, FR, de Ronde, H, et al. Venous thrombosis due to poor anticoagulant response to activated protein C. Lancet 1993; 342: 1503.Google Scholar
Mannucci, PM, Franchini, M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114: 885.Google Scholar
Matsuzaka, T, Tanaka, H, Fukuda, M, et al. Relationship between vitamin K dependent coagulation factors and anticoagulants (protein C and protein S) in neonatal vitamin K deficiency. Arch Dis Child 1993; 68: 297.Google Scholar
Papinger, I, Kyrle, PA, Heistinger, M, et al. The risk of thromboembolism in asymptomatic patients with protein C and protein S deficiency. Thromb Haemost 1994; 71: 441.Google Scholar
Rodeghiero, F, Tosetto, A. Activated protein C resistance and factor V Leiden mutation are independent risk factors for venous thromboembolism. Ann Intern Med 1999; 130: 643.Google Scholar
Rose, VL, Kwaan, HC, Williamson, K, et al. Protein C antigen deficiency and warfarin necrosis. Am J Clin Pathol 1986; 86: 653.Google Scholar
Shearer, MJ. Vitamin, K. Lancet 1995; 345: 229.Google Scholar
Smith, OP, White, B, Vaughan, D, et al. Use of protein C concentrate, heparin, and haemodiafiltration in meningococcus-induced purpura fulminans. Lancet 1997; 350: 1590.Google Scholar
Svensson, PJ, Dahlback, B. Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1994; 330: 517.Google Scholar
Yan, SB, Helterbrand, JD, Hartman, DL, et al. Low levels of protein C are associated with poor outcome in severe sepsis. Chest 2001; 120: 915.Google Scholar
Zoller, B, Hillarp, A, Dahlback, B. Activated protein C resistance: Clinical implications. Clin Appl Thromb Hemost 1997; 3: 25.Google Scholar

Bibliography

Borgel, D, Gandrille, S, Aiach, M. Protein S deficiency. Thromb Haemost 1997; 78: 351.Google Scholar
Comp, PC. Laboratory evaluation of protein S status. Semin Thromb Haemost 1990; 16: 177.Google Scholar
Comp, PC, Esmon, CT. Recurrent venous thromboembolism in patients with a partial deficiency of protein S. N Engl J Med 1984; 311: 1525.Google Scholar
Dahlback, B. Vitamin K-dependent protein S: beyond the protein C pathway. Semin Thromb Hemost 2018; 44: 176.Google Scholar
Dowd, P, Ham, S-W, Naganathan, S, et al. The mechanism of action of vitamin K. Annu Rev Nutr 1995; 15: 419.Google Scholar
Engesser, L, Broekmans, AW, Briet, E, et al. Hereditary protein S deficiency: clinical manifestations. Ann Intern Med 1987; 106: 677.Google Scholar
Gierula, M, Ahnstrom, J. Anticoagulant protein S – new insights on interactions and functions. J Thromb Haemost 2020; 18: 2801.Google Scholar
Mannucci, PM, Franchini, M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114: 885.Google Scholar
Matsuzaka, T, Tanaka, H, Fukuda, M, et al. Relationship between vitamin K dependent coagulation factors and anticoagulants (protein C and protein S) in neonatal vitamin K deficiency. Arch Dis Child 1993; 68: 297.Google Scholar
Papinger, I, Kyrle, PA, Heistinger, M, et al. The risk of thromboembolism in asymptomatic patients with protein C and protein S deficiency. Thromb Haemost 1994; 71: 441.Google Scholar
Shearer, MJ. Vitamin, K. Lancet 1995; 345: 229.Google Scholar

Bibliography

Vasse, M. Protein, Z, a protein seeking a pathology. Thromb Haemost 2008; 100: 548.Google Scholar

Bibliography

Gosling, P, Czyz, J, Nightingale, P, et al. Microalbuminuria in the intensive care unit: clinical correlates and association with outcomes in 431 patients. Crit Care Med 2006; 34: 2158.Google Scholar
Robinson, RR. Isolated proteinuria in asymptomatic patients. Kidney Int 1980; 18: 395.Google Scholar
Turner, NN, Lameire, N, Goldsmith, DJ, et al. eds. Oxford Textbook of Clinical Nephrology. 4th edition. Oxford: Oxford University Press. 2015.Google Scholar

Bibliography

Poort, SR, Rosendaal, FR, Reitsma, PH, et al. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698.Google Scholar

Bibliography

Van Voorhis, WC. Protozoan infections. In: Scientific American Medicine. Infectious Disease. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Champion, RH. Generalised pruritus. BMJ 1984; 289: 751.Google Scholar
Denman, ST. A review of pruritus. J Am Acad Dermatol 1986; 14: 375.Google Scholar

Bibliography

Greenberg, S, Reiser, IW, Chou, SY, et al. Trimethoprim-sulfamethoxazole induces reversible hyperkalemia. Ann Intern Med 1993; 119: 291.Google Scholar

Bibliography

Bonventre, JV, Leaf, A. Sodium homeostasis: steady states without a set point. Kidney Int 1982; 21: 880.Google Scholar
Colls, BM. Guillain–Barré syndrome and hyponatraemia. Intern Med J 2003; 33: 5.Google Scholar
Dixon, B, Ernest, D. Hyponatraemia in the transurethral resection of prostate syndrome. Anaesth Intens Care 1996; 24: 102.Google Scholar
Spasovski, G, Vanholder, R, Allolio, B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intens Care Med 2014; 40: 320.Google Scholar
Weinberg, LS. Pseudohyponatremia: a reappraisal. Am J Med 1989; 86: 315.Google Scholar

Bibliography

Hinson, FL, Ambrose, NS. Pseudomyxoma peritonei. Br J Surg 1998; 85: 1332.Google Scholar
Moran, BJ, Cecil, TD. The etiology, clinical presentation, and management of pseudomyxoma peritonei. Surg Oncol Clin N Am 2003; 12: 585.Google Scholar

Bibliography

Ponec, RJ, Saunders, MD, Kimmey, MB. Neostigmine for the treatment of acute colonic pseudo-obstruction. N Engl J Med 1999; 341: 137.Google Scholar

Bibliography

Kaplan, RM. Budgies and bugs: our homegrown contribution to pandemics. Med J Aust 2021; 214: 509.Google Scholar
Stewardson, AJ, Grayson, ML. Psittacosis. Infect Dis Clin North Am 2010; 24: 7.Google Scholar

Bibliography

Abel, EA, Lebwohl, M. Psoriasis. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Calvert, HT, Smith, MA, Wells, RS. Psoriasis and the nails. Br J Dermatol 1963; 75: 415.Google Scholar
Dawe, RS, Cameron, H, Yule, S, et al. UV-B phototherapy clears psoriasis through local effects. Arch Dermatol 2002; 138: 1071.Google Scholar
Farber, EM, Nall, ML. The natural history of psoriasis in 5,600 patients. Dermatologica 1974; 148: 1.Google Scholar
Farber, EM, Nall, ML. An appraisal of measures to prevent and control psoriasis. J Am Acad Dermatol 1992; 26: 736.Google Scholar
Fox, BJ, Odom, RB. Papulosquamous diseases: a review. J Am Acad Dermatol 1985; 12: 597.Google Scholar
Ingram, JT. Pustular psoriasis. Arch Dermatol 1958; 77: 314.Google Scholar
Kovitwanichkanont, T, Chong, AH, Foley, P. Beyond skin deep: addressing comorbidities in psoriasis. Med J Aust 2020; 212: 528.Google Scholar
Lebwohl, M. Advances in psoriasis therapy. Dermatol Clin 2000; 18: 13.Google Scholar
Smith, D. Fumaric acid esters for psoriasis: a systematic review. Ir J Med Sci 2017; 186: 161.Google Scholar
Whyte, HJ, Baughman, RD. Acute guttate psoriasis and streptococcal infection. Arch Dermatol 1964; 89: 350.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Bienvenu, OJ, Neufeld, KJ, Needham, DM. Treatment of four psychiatric emergencies in the intensive care unit. Crit Care Med 2012; 40: 2662.Google Scholar
Black, DW, ed. Psychiatry. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Cucci, MD, Chester, KW, Hamilton, LA. Concise definitive review for reinitiation of antidepressants, antipsychotics, and gabapentinoids in ICU patients. Crit Care Med 2022; 50: 665.Google Scholar

Bibliography

Claypool, WD, Rogers, RM, Matuschak, GM. Update on the clinical diagnosis, management, and pathogenesis of pulmonary alveolar proteinosis (phospholipidosis). Chest 1984; 85: 550.Google Scholar
Goldstein, LS, Kavuru, MS, Curtis-McCarthy, P, et al. Pulmonary alveolar proteinosis: clinical features and outcome. Chest 1998; 114: 1357.Google Scholar
Greenhill, SR, Kotton, DN. Pulmonary alveolar proteinosis: a bench-to-bedside story of granulocyte-macrophage colony-stimulating factor dysfunction. Chest 2009; 136: 571.Google Scholar
Jouneau, S, Menard, C, Lederlin, M. Pulmonary alveolar proteinosis. Respirology 2020; 10: 1111.Google Scholar
Michaud, G, Reddy, C, Ernst, A. Whole-lung lavage for pulmonary alveolar proteinosis. Chest 2009; 136: 1678.Google Scholar
Rosen, SH, Castleman, B, Liebow, AA. Pulmonary alveolar proteinosis. N Engl J Med 1958: 258: 1123.Google Scholar
Seymour, JF, Presneill, JJ. Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med 2002; 166: 215.Google Scholar
Seymour, JF, Presneill, JJ, Schoch, OD, et al. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med 2001; 163: 531.Google Scholar
Trapnell, BC, Whitsett, JA, Nakata, K. Pulmonary alveolar proteinosis. N Engl J Med 2003; 349: 2527.Google Scholar

Bibliography

Auger, WR, Channick, RN, Kerr, KM, et al. Evaluation of patients with suspected chronic thromboembolic pulmonary hypertension. Semin Thorac Cardiovasc Surg 1999; 11: 179.Google Scholar
Badesch, DB, Abman, SH, Simonneau, G, et al. Medical therapy for pulmonary arterial hypertension: updated ACCP evidence-based clinical practice guidelines. Chest 2007; 131: 1917.Google Scholar
Barst, RJ, Rubin, LJ, Long, WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med 1996; 334: 296.Google Scholar
Bauer, M, Fuhrmann, V, Wendon, J. Pulmonary complications of liver disease. Intens Care Med 2019; 45: 1433.Google Scholar
Budhiraja, R, Hassoun, PM. Portopulmonary hypertension: a tale of two circulations. Chest 2003; 123: 562.Google Scholar
Chin, KM, Channick, RN, Rubin, LJ. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest 2006; 130: 1657.Google Scholar
Dantzker, DR, Grant, BJB. Pulmonary hypertension. In: Shoemaker, WC, Thompson, WL, eds. Critical Care: State of the Art. Fullerton: Society of Critical Care Medicine. 1983; p F1.Google Scholar
Dartrevelle, P, Fadel, E, Mussor, S, et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J 2004; 23: 637.Google Scholar
Ewert, R, ed. Iloprost in Intensive Care Medicine. Bremen: Uni-Med Verlag. 2006.Google Scholar
Farber, HW, Loscalzo, J. Pulmonary arterial hypertension N Engl J Med 2004; 351: 1655.Google Scholar
Fedullo, PF, Auger, WR, Kerr, KM, et al. Chronic thromboembolic pulmonary hypertension. N Engl J Med 2001; 345: 1465.Google Scholar
Fishman, AP. Aminorex to fen/phen: an epidemic foretold. Circulation 1999; 99: 156.Google Scholar
Fishman, AP. Clinical classification of pulmonary hypertension. Clin Chest Med 2001; 22: 385.Google Scholar
Gabbay, E, Reed, A, Williams, TJ. Assessment and treatment of pulmonary arterial hypertension. Intern Med J 2007; 37: 38.Google Scholar
Gaine, SP, Rubin, LJ. Primary pulmonary hypertension. Lancet 1998; 352: 719.Google Scholar
Gaine, S. Pulmonary hypertension. JAMA 2000; 284: 3160.Google Scholar
Hemnes, AR, Opotowsky, AR, Assad, TR, et al. Features associated with discordance between pulmonary arterial wedge pressure and left ventricular end diastolic pressure in clinical practice: implications for pulmonary hypertension classification. Chest 2019; 154: 1099.Google Scholar
Humbert, M, Sitbon, O, Simonneau, G. Treatment of pulmonary arterial hypertension. N Engl J Med 2004; 351: 1425.Google Scholar
Keogh, AM, McNeil, KD, Williams, T, et al. Pulmonary arterial hypertension: a new era in management. Med J Aust 2003; 178: 564.Google Scholar
Klinger, JR, Elliott, CG, Levine, DJ, et al. Therapy for pulmonary arterial hypertension in adults: update of the CHEST guideline and expert panel report. Chest 2019; 155: 565.Google Scholar
Klok, FA, Delcroix, M, Bogaard, HJ. Chronic thromboembolic pulmonary hypertension from the perspective of the patient with pulmonary embolism. J Thromb Haemost 2018; 16: 1040.Google Scholar
Langleben, D. Endothelin receptor antagonists in the treatment of pulmonary arterial hypertension. Clin Chest Med 2007; 28: 117.Google Scholar
Libby, DM, Briscoe, WA, Boyce, B, et al. Acute respiratory failure in scoliosis or kyphosis: prolonged survival and treatment. Am J Med 1982; 73: 532.Google Scholar
Martin, KB, Klinger, JR, Rounds, SIS. Pulmonary arterial hypertension: new insights and new hope. Respirology 2006; 11: 6.Google Scholar
McGregor, M, Sniderman, A. On pulmonary vascular resistance: the need for more precise definition. Am J Cardiol 1985; 55: 217.Google Scholar
Moll, M, Sardana, M, Farber, HW. Pulmonary hypertension, cor pulmonale, and other pulmonary vascular conditions. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Naeije, R. Pulmonary vascular resistance: a meaningless variable? Crit Care Med 2003; 29: 526.Google Scholar
Newman, JH. Treatment of primary pulmonary hypertension – the next generation. N Engl J Med 2002; 346: 933.Google Scholar
Newman, JH. Pulmonary hypertension by the method of Paul Wood. Chest 2020; 158: 1164.Google Scholar
Niemann, CU, Mandell, SM. Pulmonary hypertension and liver transplantation. Pulmonary Perspectives 2003; 20(1): 4.Google Scholar
Palevsky, HI, Fishman, AP. The management of primary pulmonary hypertension. JAMA 1991; 265: 1014.Google Scholar
Pengo, V, Lensing, AW, Prins, MH, et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 2004; 350: 2257.Google Scholar
Pepke-Zaba, J, Higenbottam, TW, Dinh-Xuan, AT, et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 1991; 338: 1173.Google Scholar
Prasad, S, Wilkinson, J, Gatzoulis, MA. Sildenafil in primary pulmonary hypertension. N Engl J Med 2000; 343: 1342.Google Scholar
Prior, DL, Adamas, H, Williams, TJ. Update on pharmacotherapy for pulmonary hypertension. Med J Aust 2016; 205: 271.Google Scholar
Rich, S. Primary pulmonary hypertension. Prog Cardiovasc Dis 1988; 31: 205.Google Scholar
Rich, S. The current treatment of pulmonary arterial hypertension: time to redefine success. Chest 2006; 130: 1198.Google Scholar
Rich, S, Herskowitz, A, eds. Pulmonary vascular disease: the global perspective. Chest 2010; 6 (suppl.): 1S.Google Scholar
Rich, S, Rubin, L, Walker, AM, et al. Anorexigens and pulmonary hypertension in the United States. Chest 2000; 117: 870.Google Scholar
Robalino, BD, Moodie, DS. Association between pulmonary hypertension and portal hypertension: analysis of its pathophysiology and clinical, laboratory and hemodynamic manifestations. J Am Coll Cardiol 1991; 17: 492.Google Scholar
Roberts, WC. A simple histologic classification of pulmonary arterial hypertension. Am J Cardiol 1986; 58: 385.Google Scholar
Rubin, LJ. Primary pulmonary hypertension. N Engl J Med 1997; 336: 111.Google Scholar
Rubin, LJ, ed. Brenot memorial symposium on the pathogenesis of primary pulmonary hypertension. Chest 1998; 114: no.3 (suppl.).Google Scholar
Rubin, LJ. Therapy of pulmonary hypertension: targeting pathogenic mechanisms with selective treatment delivery. Crit Care Med 2001; 29: 1086.Google Scholar
Rubin, LJ, ed. Diagnosis and management of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 2004; 126: no.1 (suppl.).Google Scholar
Rubin, LJ, Badesch, DB, Barst, RJ, et al. Bosentan therapy for pulmonary artery hypertension. N Engl J Med 2002; 346: 896.Google Scholar
Runo, JR, Loyd, JE. Primary pulmonary hypertension. Lancet 2003; 361: 1533.Google Scholar
Salvador, ML, Loaiza, CAQ, Padial, LR, et al. Portopulmonary hypertension: prognosis and management in the current treatment era – results from the REHAP registry. Intern Med J 2021; 51: 355.Google Scholar
Shah, SJ, Gomberg-Maitland, M, Thenappan, T, et al. Selective serotonin reuptake inhibitors and the incidence and outcome of pulmonary hypertension. Chest 2009; 136: 694.Google Scholar
Shure, D. Primary pulmonary hypertension – good news and bad. Pulmonary Perspectives 1996; 13(3): 6.Google Scholar
Simonneau, G, Galie, N, Rubin, LJ, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004; 43: 5S.Google Scholar
Smith, I. Pulmonary hypertension: an overview for the non-cardiac anaesthetist. In: Riley, R, ed. Australasian Anaesthesia. Melbourne: ANZCA. 2015; p 75.Google Scholar
Taichman, DB, Omelas, J, Chung, L, et al. Pharmacologic therapy for pulmonary arterial hypertension in adults: CHEST guideline and expert panel report. Chest 2014; 146: 449.Google Scholar
Various. 47th annual Thomas L Petty lung conference: cellular and molecular pathobiology of pulmonary hypertension. Chest 2005; 128 (suppl.): 547S.Google Scholar
Versprille, A. Pulmonary vascular resistance: a meaningless variable. Intens Care Med 1984; 10: 51.Google Scholar
Walmrath, D, Schneider, T, Pilch, J, et al. Effects of aerosolized prostacyclin in severe pneumonia. Am J Respir Crit Care Med 1995; 151: 724.Google Scholar
Winter, M-P, Schernthaner, GH, Lang, IM. Chronic complications of venous thromboembolism. J Thromb Haemost 2017; 15: 1531.Google Scholar

Bibliography

Crystal, RG, Bitterman, PB, Rennard, SI, et al. Interstitial lung diseases of unknown cause. N Engl J Med 1984; 310: 154 & 235.Google Scholar
Muller, NL, Miller, RR. Computed tomography of chronic diffuse infiltrative lung disease. Am Rev Respir Dis 1990; 142: 1440.Google Scholar

Bibliography

Baldwin, DR. Development of guidelines for the management of pulmonary nodules. Chest 2015; 148: 1365.Google Scholar
Cruickshank, A, Stieler, G, Ameer, F. Evaluation of the solitary pulmonary nodule. Intern Med J 2019; 49: 306.Google Scholar
Dines, DE, Arms, RA, Bernatz, PE, et al. Pulmonary arteriovenous fistulas. Mayo Clin Proc 1974; 48: 460.Google Scholar
Faughnan, ME, Lui, YW, Wirth, JA, et al. Diffuse pulmonary arteriovenous malformations: characteristics and prognosis. Chest 2000; 117: 31.Google Scholar
Gould, MK, Tang, T, Liu, IL, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med 2015; 192: 1208.Google Scholar
Lee, P, Minai, OA, Mehta, AC, et al. Pulmonary nodules in lung transplant recipients: etiology and outcome. Chest 2004; 125: 165.Google Scholar
Lillington, GA. Management of the solitary pulmonary nodule. Hosp Pract 1993; 28: 41.Google Scholar
MacMahon, H, Naidich, DP, Goo, JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology 2017; 284: 228.Google Scholar
Ost, D, Fein, A. Evaluation and management of the solitary pulmonary nodule. Am J Respir Crit Care Med 2000; 162: 782.Google Scholar
Patel, VK, Naik, SK, Naidich, DP, et al. A practical algorithmic approach to the diagnosis and management of solitary pulmonary nodules: Parts 1 & 2. Chest 2013; 143: 825 & 840.Google Scholar
Savic, B, Birtel, FJ, Tholen, W, et al. Lung sequestration. Thorax 1979; 34: 96.Google Scholar
Steele, JD. The solitary pulmonary nodule. J Thorac Cardiovasc Surg 1963; 46: 21.Google Scholar
Terry, PB, Barth, KH, Kaufman, SL, et al. Balloon embolization for the treatment of pulmonary arteriovenous fistulas. N Engl J Med 1980; 302: 1189.Google Scholar
Wiener, DC, Wiener, RS. Patient-centred guideline-concordant discussion and management of pulmonary nodules. Chest 2020; 158: 416.Google Scholar
White, RJ, Lynch-Nyhan, A, Terry, P, et al. Pulmonary arteriovenous malformation: techniques and long-term outcome of embolotherapy. Radiology 1988; 169: 663.Google Scholar

Bibliography

Heath, D, Segal, N, Bishop, J. Pulmonary veno-occlusive disease. Circulation 1966; 34: 242.Google Scholar
Holcomb, BW, Loyd, JE, Ely, EW, et al. Pulmonary veno-occlusive disease. Chest 2000; 118: 1671.Google Scholar
Palevsky, HI, Pietra, GG, Fishman, AP. Pulmonary veno-occlusive disease and its response to vasodilator agents. Am Rev Respir Dis 1990; 142: 426.Google Scholar
Palmer, SM, Robinson, LJ, Wand, A, et al. Massive pulmonary edema and death after prostacyclin infusion in a patient with pulmonary veno-occlusive disease. Chest 1998; 113: 237.Google Scholar

Bibliography

Bick, R. Vascular thrombohaemorrhagic disorders: hereditary and acquired. Clin Appl Thromb Hemost 2001; 7: 178.Google Scholar
Cameron, JS. Henoch-Schonlein purpura: clinical presentation. Contrib Nephrol 1984; 40: 246.Google Scholar
Connell, NT. Microangiopathic and vascular disorders. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Stein, RH, Sapadin, AN. Purpura fulminans. Int J Dermatol 2003; 42: 130.Google Scholar
Thachil, J. History of the word ‘purpura’ and its current relevance. J Thromb Haemost 2021; 191: 2381.Google Scholar

Bibliography

Cooper, A, Powell, FC. Pyoderma gangrenosum – a frequently misdiagnosed skin condition. Med J Aust 2013; 199: 382.Google Scholar
Hecker, MS, Lebwohl, MG. Recalcitrant pyoderma gangrenosum: treatment with thalidomide. J Am Acad Dermatol 1998; 38: 490.Google Scholar
Newell, LM, Malkinson, FD. Pyoderma gangrenosum. Arch Dermatol 1982; 118: 769.Google Scholar
Schwaegerle, SM, Bergfeld, WF, Senitzer, D, et al. Pyoderma gangrenosum: A review. J Am Acad Dermatol 1988; 18: 559.Google Scholar
Teagle, A, Hargest, R. Management of pyoderma gangrenosum. J R Soc Med 2014; 107: 228.Google Scholar

Bibliography

Aduan, RP, Fauci, AS, Dale, DC, et al. Factitious fever and self-induced infection. Ann Intern Med 1979; 90: 230.Google Scholar
Aronoff, DM, Neilson, EC. Antipyretics: mechanisms of action and clinical use in fever suppression. Am J Med 2001; 111: 304.Google Scholar
Axelrod, P. External cooling in the management of fever. Clin Infect Dis 2000; 31: S224.Google Scholar
Ben-Chetrit, E, Levy, M. Familial Mediterranean fever. Lancet 1998; 351: 659.Google Scholar
Beresford, RW, Gosbell, IB. Pyrexia of unknown origin: causes, investigation and management. Intern Med J 2016; 46: 1011.Google Scholar
Bernheim, HA, Block, LH, Atkins, E. Fever: pathogenesis, pathophysiology, and purpose. Ann Intern Med 1979; 91: 261.Google Scholar
Blumenthal, I. Fever – concepts old and new. J R Soc Med 1997; 90: 391.Google Scholar
Cunha, BA. Fever in the intensive care unit. Intens Care Med 1999; 25: 648.Google Scholar
Dallimore, J, Ebmeier, S, Thayabaran, D, et al. Effect of active temperature management on mortality in intensive care patients. Crit Care Resusc 2018; 20: 150.Google Scholar
Dinarello, CA, Cannon, JG, Wolff, SM. New concepts on the pathogenesis of fever. Rev Infect Dis 1988; 10: 168.Google Scholar
Drenth, JPH, van der Meer, JWM. Hereditary periodic fever. New Engl J Med 2001; 345: 1748.Google Scholar
Editorial. Familial Mediterranean fever. BMJ 1980; 281: 2.Google Scholar
Eliakim, M, Levy, M, Ehrenfeld, M. Recurrent Polyserositis (Familial Mediterranean Fever, Periodic Disease). Amsterdam: Elsevier. 1981.Google Scholar
Gherardin, A, Sisson, J. Assessing fever in the returned traveller. Aust Prescriber 2012; 35; 10.Google Scholar
Hasday, JD, Garrison, A. Antipyretic therapy in sepsis. Clin Infect Dis 2000; 31: S234.Google Scholar
Jacoby, GA, Swartz, MN. Fever of undetermined origin N Engl J Med 1973; 289: 1407.Google Scholar
Kluger, MJ, Ringler, DH, Anver, MR. Fever and survival. Science 1975; 188: 166.Google Scholar
Knockaert, DC, Vanneste, LJ, Vanneste, SB, et al. Fever of unknown origin in the 1980s. Arch Intern Med 1992; 152: 51.Google Scholar
Laupland, KB. Fever in the critically ill patient. Crit Care Med 2009; 37 (suppl.): S273.Google Scholar
Laupland, KB, Shahpori, R, Kirkpatrick, AW, et al. Occurrence and outcome of fever in critically ill adults. Crit Care Med 2008; 36: 1531.Google Scholar
Lefrant, J-Y, Muller, L, Coussaye, JE, et al. Temperature measurement in intensive care patients: comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core method. Intens Care Med 2003; 29: 414.Google Scholar
Mackowiak, PA. Fever: blessing or curse? A unifying hypothesis. Ann Intern Med 1994; 120: 1037.Google Scholar
Mackowiak, PA. Concepts of fever. Arch Intern Med 1998; 158: 1870.Google Scholar
Mackowiak, PA, LeMaistre, CF. Drug fever: a critical appraisal of conventional concepts. Ann Intern Med 1987; 106: 728.Google Scholar
Marik, PE. Fever in the ICU. Chest 2000; 117: 855.Google Scholar
Musher, DM, Fainstein, V, Young, EJ. Fever patterns: their lack of clinical significance. Arch Intern Med 1979; 139: 1225.Google Scholar
Netea, MG, Kullberg, BJ, Van der Meer, JW. Circulating cytokines as mediators of fever. Clin Infect Dis 2000; 31: S178.Google Scholar
Nimmo, SM, Kennedy, BW, Tullet, WM, et al. Drug-induced hyperthermia. Anaesthesia 1993; 48: 892.Google Scholar
O’Grady, NP, Barie, PS, Bartlett, J, et al. Practice guidelines for evaluating new fever in critically ill adult patients. Crit Care Med 1998; 26: 392.Google Scholar
Olson, KR, Benowitz, NL. Environmental and drug-induced hyperthermia: pathophysiology, recognition and management. Emerg Med Clin North Am 1984; 2: 459.Google Scholar
Petersdorf, RG, Beeson, PB. Fever of unexplained origin. Medicine 1961; 40: 1.Google Scholar
Plaisance, KI, Mackowiak, PA. Antipyretic therapy: physiologic rationale, diagnostic implications, and clinical consequences. Arch Intern Med 2000; 160: 449.Google Scholar
Point/Counterpoint Editorial. Should antipyretic therapy be given routinely to febrile patients in septic shock? Yes or no. Chest 2013; 144: 1096 & 1098.Google Scholar
Rehman, T, deBloisblanc, BP. Persistent fever in the ICU. Chest 2014; 145: 158.Google Scholar
Reny, J-L, Vuagnat, A, Ract, C, et al. Diagnosis and follow-up of infections in intensive care patients: value of C-reactive protein compared with other clinical and biological variables. Crit Care Med 2002; 30: 529.Google Scholar
Roberts, NJ. Impact of temperature elevation on immunologic defenses. Rev Infect Dis 1991; 13: 462.Google Scholar
Robins, HI, Longo, W. Whole body hyperthermia. Intens Care Med 1999; 25: 898.Google Scholar
Rosenberg, J, Pentel, P, Pond, S, et al. Hyperthermia associated with drug intoxication. Crit Care Med 1986; 14: 964.Google Scholar
Saper, CB, Breeder, CD. The neurologic basis of fever. N Engl J Med 1994; 330: 1880.Google Scholar
Shafazand, S, Weinacker, AB. Blood cultures in the critical care unit: improving utilization and yield. Chest 2002; 122: 1727.Google Scholar
Shann, F. Antipyretics in severe sepsis. Lancet 1995; 345: 338.Google Scholar
Simon, HB. Hyperthermia. N Engl J Med 1993; 329: 483.Google Scholar
Simon, HB. Hyperthermia, fever, and fever of undetermined origin. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Simon, HB, Daniels, GH. Hormonal hyperthermia: endocrinologic causes of fever. Am J Med 1979; 66: 257.Google Scholar
Sohar, E, Gafni, J, Heller, H. Familial Mediterranean fever. Am J Med 1967; 43: 227.Google Scholar
Young, PJ, Nielsen, N, Saxena, M. Fever control. Intens Care Med 2018; 44: 227.Google Scholar
Young, PJ, Prescott, HC. When less is more in the active management of elevated body temperature of ICU patients. Intens Care Med 2019; 45: 1275.Google Scholar

Bibliography

Dempsey, GA, Lyall, HJ, Corke, CF, et al. Pyroglutamic acidemia: a cause of high anion gap metabolic acidosis. Crit Care Med 2000; 28: 1803.Google Scholar
Mo, L, Lliang, DL, Madden, A, et al. A case of delayed onset pyroglutamic acidosis in the sub-acute setting. Intern Med J 2016; 46: 747.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • P
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • P
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • P
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
Available formats
×