Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2009
  • Online publication date: February 2010

5 - Plastic deformation of the ice single crystal

Summary

Introduction

Single crystals undergo plastic deformation as soon as there is a component of shear stress on the basal plane. Basal slip is observed for shear stresses in the basal plane lower than 0.02 MPa (Chevy,2005). Evidence of easy basal slip was first shown by McConnel (1891) and confirmed by many authors (Glen and Perutz, 1954; Griggs and Coles, 1954; Steinemann, 1954; Readey and Kingery, 1964; Higashi, 1967; Montagnat and Duval, 2004; see Weertman, 1973, for a review). A clear illustration of basal slip was obtained by Nakaya (1958) by performing bending experiments. Traces of the basal slip lines were made clearly visible by shadow photography (Fig. 5.1). Though some prismatic glide is observed for orientations close to those that inhibit basal slip, no clear observation of any deformation is reported in crystals loaded along the [0001] direction, which inhibits both basal and prismatic slip.

Basal slip takes place from the motion of basal dislocations with the Burgers' vector (Hobbs, 1974). The macroscopic slip direction corresponds to the maximum shear direction in the basal plane (Glen and Perutz, 1954). The slip direction is therefore always close to the direction of the maximum shear stress. From Kamb (1961), the failure to detect a slip direction in ice is explained by the fact that slip can occur in the three possible glide directions on the basal plane with a value of the stress exponent, which relates strain rate to stress, between 1 and 3.

Related content

Powered by UNSILO
References
Ahmad, S. and Whitworth, R. W. (1988). Dislocation motion in ice: a study by synchrotron X-ray topography. Phil. Mag., A57, 749–766.
Alexander, H. and Haasen, P. (1968). Dislocations and plastic flow in diamond structure. In Solids State Physics, eds. Seitz, F., Turnbull, D. and Ehrenreich, H.. New York: Academic Press.
Ashby, M. F. (1970). The deformation of plastically non-homogeneous materials. Phil. Mag., 21, 399–424.
Baker, I., Trickett, Y. L., Iliescu, D. and Pradham, P. M. S. (2002). The effects of H2SO4 on the mechanical behavior of ice single crystals. In Creep Deformation Fundamentals and Applications, eds. Mishra, R. S., Earthman, J. C. and Raj, S. V.. Warrendale, Pa.: TMS, 85–94.
Bass, R. (1958). Zur theorie der mechanischen relaxation des Eises. Z. Phys., 153, 16–37.
Caillard, D. and Martin, J. L. (2003). Thermally Activated Mechanisms in Crystal Plasticity. Pergamon Materials Series, Vol. 8. Oxford: Pergamon Press.
Chevy, J. (2005). Mécanismes de déformation de la glace monocristalline en torsion; approche expérimentale et modélisation. Unpublished Master en Matériaux et Génie des Procédés, INPG, Grenoble, France.
Chevy, J., Montagnat, M., Duval, P., Fivel, M. and Weiss, J. (2007). Dislocation patterning and deformation processes in ice single crystals deformed by torsion. In Physics and Chemistry of Ice, ed. Kuhs, W. F.. Cambridge: Royal Society of Chemistry, pp. 141–146.
Cole, D. M. (1995). A model for the anelastic straining of saline ice subjected to cyclic loading. Phil. Mag., A72 (1), 231–248.
Csikor, F. F., Motz, C., Weygand, D., Zaiser, M. and Zapperi, S. (2007). Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science, 318, 251–254.
Dimiduk, D. M., Woodward, C., LeSar, R. and Uchic, M. D. (2006). Scale-free intermittent flow in crystal plasticity. Science, 312, 1188–1190.
Duesbery, M. S. (1998). Dislocation motion, constriction and cross-slip in fcc metals. Modeling Simul. Mater. Sci. Eng., 6, 35–49.
Duval, P., Ashby, M. F. and Anderman, I. (1983). Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87, 4066–4074.
Faria, S. H. and Kipfstuhl, S. (2004). Preferred slip-band orientations and bending observed in the Dome Concordia (East Antarctica) ice core. Ann. Glaciol., 39, 386–390.
Friedel, J. (1964). Dislocations. Oxford: Pergamon Press.
Frost, H. J., Goodman, D. J. and Ashby, M. F. (1976). Kink velocities on dislocations in ice. A comment on the Whitworth, Paren and Glen model. Phil. Mag., 33, 951–961.
Fukuda, A., Hondoh, T. and Higashi, A. (1987). Dislocation mechanisms of plastic deformation of ice. J. Physique, 48 (Colloque C1), 163–173.
Glen, J. W. (1968). The effect of hydrogen disorder on dislocation movement and plastic deformation of ice. Phys. Kondens. Mater., 7, 43–51.
Glen, J. W. and Perutz, M. F. (1954). The growth and deformation of ice crystals. J. Glaciol., 2, 397–403.
Gosar, P. (1974). Theory of the anelastic relaxation of cubic and hexagonal ice. Phil. Mag., 29, 221–240.
Griggs, D. T. and Coles, N. E. (1954). Creep of single crystals of ice. U.S. Snow, Ice and Permafrost Research Establishment, Report, 11.
Hamelin, B., Bastie, P., Duval, P., Chevy, J. and Montagnat, M. (2004). Lattice distortion and basal slip bands in deformed ice crystals revealed by hard X-ray diffraction. J. Phys. IV, 118, 27–33.
Higashi, A. (1967). Mechanisms of plastic deformation in ice single crystals. In Physics and Snow and Ice, ed. Oura, H.. Sapporo: Hokkaido University Press, pp. 277–289.
Higashi, A., Koinuma, S. and Mae, S. (1964). Plastic yielding in ice crystals. Jpn J. Appl. Phys., 3, 610–616.
Higashi, A., Koinuma, S. and Mae, S. (1965). Bending creep of ice single crystals. Jpn. J. Appl. Phys., 4, 575–582.
Higashi, A., Fukuda, A., Hondoh, T., Goto, K. and Amakai, S. (1985). Dynamical dislocation processes in ice crystal. In Dislocations in Solids, eds. Susuki, H., Ninomiya, T., Sumino, K. and Takeuchi, S.. Tokyo: University of Tokyo Press, pp. 511–515.
Hirth, J. P. and Lothe, J. (1982). Theory of Dislocations. New York: Wiley.
Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon Press.
Hondoh, T. (2000). Nature and behavior of dislocations in ice. In Physics of Ice Core Records, ed. Hondoh, T.. Sapporo: Hokkaido University Press, 3–24.
Hondoh, T., Iwamatsu, H. and Mae, S. (1990). Dislocation mobility for non-basal glide in ice measured by in situ X-ray topography. Phil. Mag., A62, 89–102.
Johnston, W. G. and Gilman, J. J. (1959). Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J. Appl. Phys., 30, 129–144.
Jones, S. J. and Brunet, J. G. (1978). Deformation of ice single crystals close to the melting point. J. Glaciol., 21, 445–455.
Jones, S. J. and Gilra, N. K., (1973). X-ray topographical study of dislocations in pure and HF-doped ice. Phil. Mag., 27, 457–472.
Jones, S. J. and Glen, J. W. (1969a). The mechanical properties of single crystals of pure ice. J. Glaciol., 8, 463–473.
Jones, S. J. and Glen, J. W. (1969b). The effect of dissolved impurities on the mechanical properties of ice crystals. Phil. Mag., 19, 13–24.
Kamb, W. B. (1961). The glide direction in ice. J. Glaciol., 3, 1097–1106.
Kuroiwa, D. (1964). Internal friction of ice. Contrib. Inst. Low Temp. Sci., A18, 1–62.
Liu, F., Baker, I. and Dudley, M. (1995). Dislocation-grain boundary interactions in ice crystals. Phil. Mag., A71, 15–42.
Louchet, F. (2004a). Dislocations and plasticity of ice. C. R. Physique, 5, 687–698.
Louchet, F. (2004b). A model for steady state plasticity of ice single crystals. Phil. Mag. Lett., 84, 797–802.
Louchet, F. (2006). From individual dislocation motion to collective behavior. J. Mater. Sci., 41, 2641–2646.
Louchet, F., Weiss, J. and Richeton, Th. (2006). Hall-Petch law revisited in terms of collective dislocation dynamics. Phys. Rev. Lett., 97, 075504-1–075504-4.
Mansuy, Ph. (2001). Contribution à l'étude du comportement viscoplastique d'un multicristal de glace: hétérogénéité de la déformation et localisation, expériences et modèles. Thèse de l'Université Joseph Fourier, Grenoble, France.
McConnel, J. C. (1891). On the plasticity of ice. Proc. R. Soc. London, 49, 323–343.
Mellor, M. and Testa, R. (1969). Creep of ice under low stress. J. Glaciol., 8, 147–152.
Mendelson, S. (1963). Glide band formation and broadening in ionic single crystals. Phil. Mag., 8, 1633–1648.
Miguel, C. M., Vespignani, A., Zapperi, S., Weiss, J. and Grasso, J. R. (2001). Intermittent dislocation flow in viscoplastic deformation. Nature, 410, 667–671.
Montagnat, M. and Duval, P. (2004). The viscoplastic behavior of ice in polar ice sheets: experimental results and modelling. C. R. Physique, 5, 699–708.
Montagnat, M., Duval, P., Bastie, P. and Hamelin, B. (2003). Strain gradients and geometrically necessary dislocations in deformed ice single crystals. Scr. Mater., 49, 411–415.
Montagnat, M., Weiss, J., Duval, P.et al. (2006). The heterogeneous nature of slip in ice single crystals deformed under torsion. Phil. Mag., 86, 4259–4270.
Muguruma, J. (1969). Effects of surface condition on the mechanical properties of ice crystals. Brit. J. Appl. Phys., 2, 1517–1525.
Nakamura, T. and Jones, S. (1970). Softening effect of dissolved hydrogen chloride in ice crystals. Scr. Metall., 4, 123–126.
Nakamura, T. and Jones, S. (1973). Mechanical properties of impure ice crystals. In Physics and Chemistry of Ice, eds. Whalley, E., Jones, S. J. and Gold, L. W.. Ottawa: Royal Society of Canada, pp. 365–369.
Nakaya, U. (1958). Mechanical properties of single crystals of ice. Part 1. Geometry of deformation. U.S. Army Snow Ice and Permafrost Establishment Research Report, 28.
Neuhauser, H. (1983). Slip line formation and collective dislocation motion. In Dislocations in Solids, Vol. 6, ed. Nabarro, F. R. N.. North Holland, pp. 319–440.
Nye, J. F. (1953). Some geometrical relations in dislocated crystals. Acta Metall., 1, 153–162.
Oguro, M. (1988). Dislocations in artificially grown single crystals. In Lattice Defects in Ice Crystals, ed. Higashi, A.. Sapporo: Hokkaido University Press, pp. 27–47.
Okada, Y., Hondoh, T. and Mae, S. (1999). Basal glide of dislocations in ice observed by synchrotron radiation topography. Phil. Mag., 79, 2853–2868.
Petrenko, V. F. and Whitworth, R. W. (1999). Physics of Ice. New York: Oxford University Press.
Ramseier, R. O. (1972). Growth and mechanical properties of river and lake ice. Ph.D. thesis, Laval University, Canada.
Readey, D. W. and Kingery, W. D. (1964). Plastic deformation of single crystal ice. Acta Metall., 12, 171–178.
Readings, C. J. and Bartlett, J. T. (1968). Slip in single crystals of ice. J. Glaciol., 7, 479–491.
Richeton, Th., Weiss, J. and Louchet, F. (2005). Dislocation avalanches: role of temperature, grain size and strain hardening. Acta Mater., 53, 4463–4471.
Shearwood, C. and Whitworth, R. W. (1991). The velocity of dislocations in ice. Phil. Mag., A64, 289–302.
Shearwood, C. and Whitworth, R. W. (1992). The velocity of dislocations in crystals of HCl-doped ice. Phil. Mag., A65, 85–89.
Steinemann, S. (1954). Results of preliminary experiments on the plasticity of ice crystals. J. Glaciol., 2, 404–413.
Tatibouet, J., Perez, J. and Vassoille, R. (1983). Study of lattice defects in ice by very low frequency internal friction measurements. J. Phys. Chem., 87, 4050–4054.
Tatibouet, J., Perez, J. and Vassoille, R. (1986). High-temperature internal friction and dislocations in ice Ih. J. Physique, 47, 51–60.
Taupin, V. (2007). Incompatibilité de réseau et organization collective des dislocations. Thèse de l'Université Paul Verlaine-Metz, France.
Taupin, V., Varadhan, S., Chevy, J.et al. (2007). Effects of size on the dynamics of dislocations in ice single crystals. Phys. Rev. Lett., 99, 155507-1–155507-4.
Trickett, Y. L., Baker, I. and Pradham, P. M. S. (2000a). The orientation dependence of the strength of ice single crystals. J. Glaciol., 46, 41–44.
Trickett, Y. L., Baker, I. and Pradham, P. M. S. (2000b). The effects of sulfuric acid on the mechanical properties of ice single crystals. J. Glaciol., 46, 239–243.
Varadhan, S., Beaudoin, A. J. and Fressengeas, C. (2006). Coupling the dynamics of statistically distributed and excess dislocations. Proc. Sci., 1–11.
Vassoille, R. (1978). Comportement anélastique et microplastique de la glace Ih à basse temperature. Thèse de l'INSA, Lyon, France.
Wakahama, G. (1967). On the plastic deformation of single crystal of ice. In Physics of Snow and Ice, ed. Oura, H.. Sapporo: Hokkaido University Press, pp. 291–311.
Weertman, J. (1973). Creep of ice. In Physics and Chemistry of Ice, ed. Whalley, E., Jones, S. J. and Gold, L. W.. Ottawa: Royal Society of Canada, pp. 320–337.
Weiss, J. and Grasso, J. R. (1997). Acoustic emission in single crystals of ice. J. Phys. Chem., 101, 6113–6117.
Weiss, J. and Miguel, C. M. (2004). Dislocation avalanches correlations. Mat. Sci. Eng., A387–389, 292–296.
Weiss, J. and Montagnat, M. (2007). Long-range spatial correlations and scaling in dislocation and slip patterns. Phil. Mag., 87, 1161–1174.
Whitworth, R. W. (1978). The core structure and the mobility of dislocations in ice. J. Glaciol., 21, 341–359.
Whitworth, R. W., Paren, J. G. and Glen, J. W. (1976). The velocity of dislocations in ice – a theory based on proton disorder. Phil. Mag., 33, 409–426.
Zaiser, M. (2006). Scale invariance in plastic flow of crystalline solids. Adv. Phys., 55, 185–245.
Zaiser, M. and Seeger, A. (2002). Long-range internal stresses, dislocation patterning and work-hardening in crystal plasticity. In Dislocations in Solids, eds. Nabarro, F. R. N. and Duesbery, M. S.. Amsterdam: Elsevier Science B.V., pp. 1–99.